Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Comprehensive Review on Phytoconstituents-based Nanomedicine for the Treatment of Atopic Dermatitis

Author(s): Mayuri Varshney and Shiv Bahadur*

Volume 25, Issue 6, 2024

Published on: 05 October, 2023

Page: [737 - 756] Pages: 20

DOI: 10.2174/0113892010245092230922180341

Price: $65

Abstract

Atopic dermatitis (AD) is known as a chronic disease characterized by eczematous and pruritus skin lesions. The pathology behind atopic dermatitis etiology is loss of epidermal barrier, which prevents the production of protein filaggrin that can induce T-cell infiltration and inflammation. Treatment of AD is majorly based on limiting skin repair as well as reducing inflammation and itching. There are several remedies available for the treatment of AD, such as Janus kinase and calcineurin inhibitors, topical corticosteroids, and phosphodiesterase-4 inhibitors. The conventional formulations in the market have limited safety and efficacy. Hence, effective treatment of atopic dermatitis requires the development of novel, efficacious, reliable, and specific therapies. Recent research data have revealed that some naturally occurring medicinal plants have potential applications in the management of AD through different mechanisms. The nanotechnology-based therapeutics have gained a lot of attention in the last decade for the improvement in the activity of drugs having low absorption due to poor solubility, thus leading to lesser bioavailability. Therapies based on nanotechnology can be an effective way to overcome these obstacles. Due to their effective propensity to provide better drug diffusion and bioavailability as well as drug targeting potential at the desired site of action, these approaches may have decreased adverse drug effects, better penetration, and enhanced therapeutic efficacy. Hence, this review highlights the potential of phytoconstituents-based novel formulations for the treatment of atopic dermatitis. Furthermore, recent patents on therapeutic approaches to atopic dermatitis have also been briefly described.

Graphical Abstract

[1]
Mandlik, D.S.; Mandlik, S.K. Atopic dermatitis: New insight into the etiology, pathogenesis, diagnosis and novel treatment strategies. Immunopharmacol. Immunotoxicol., 2021, 43(2), 105-125.
[http://dx.doi.org/10.1080/08923973.2021.1889583] [PMID: 33645388]
[2]
Ahmed, A.; Solman, L.; Williams, H.C. Magnitude of benefit for topical crisaborole in the treatment of atopic dermatitis in children and adults does not look promising: A critical appraisal. Br. J. Dermatol., 2018, 178(3), 659-662.
[http://dx.doi.org/10.1111/bjd.16046] [PMID: 29205284]
[3]
Holm, J.G.; Thomsen, S.F. Omalizumab for atopic dermatitis: Evidence for and against its use. G. Ital. Dermatol. Venereol., 2019, 154(4), 480-487.
[http://dx.doi.org/10.23736/S0392-0488.19.06302-8] [PMID: 30717578]
[4]
Yan, F.; Li, F.; Liu, J.; Ye, S.; Zhang, Y.; Jia, J.; Li, H.; Chen, D.; Mo, X. The formulae and biologically active ingredients of Chinese herbal medicines for the treatment of atopic dermatitis. Biomed. Pharmacother., 2020, 127, 110142.
[http://dx.doi.org/10.1016/j.biopha.2020.110142] [PMID: 32330795]
[5]
Möbus, L.; Rodriguez, E.; Harder, I.; Schwarz, A.; Wehkamp, U.; Stölzl, D.; Boraczynski, N.; Gerdes, S.; Litman, T.; Kleinheinz, A.; Abraham, S.; Heratizadeh, A.; Handrick, C.; Haufe, E.; Schmitt, J.; Werfel, T.; Weidinger, S. Elevated NK-cell transcriptional signature and dysbalance of resting and activated NK cells in atopic dermatitis. J. Allergy Clin. Immunol., 2021, 147(5), 1959-1965.e2.
[http://dx.doi.org/10.1016/j.jaci.2020.11.022] [PMID: 33390269]
[6]
Palmer, C.N.A.; Irvine, A.D.; Terron-Kwiatkowski, A.; Zhao, Y.; Liao, H.; Lee, S.P.; Goudie, D.R.; Sandilands, A.; Campbell, L.E.; Smith, F.J.D.; O’Regan, G.M.; Watson, R.M.; Cecil, J.E.; Bale, S.J.; Compton, J.G.; DiGiovanna, J.J.; Fleckman, P.; Lewis-Jones, S.; Arseculeratne, G.; Sergeant, A.; Munro, C.S.; El Houate, B.; McElreavey, K.; Halkjaer, L.B.; Bisgaard, H.; Mukhopadhyay, S.; McLean, W.H.I. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet., 2006, 38(4), 441-446.
[http://dx.doi.org/10.1038/ng1767] [PMID: 16550169]
[7]
Li, H.; Zhang, Z.; Zhang, H.; Guo, Y.; Yao, Z. Update on the pathogenesis and therapy of Atopic Dermatitis. Clin. Rev. Allergy Immunol., 2021, 61(3), 324-338.
[http://dx.doi.org/10.1007/s12016-021-08880-3] [PMID: 34338977]
[8]
Sung, Y.Y.; Kim, H. Crocin ameliorates Atopic Dermatitis symptoms by down regulation of Th2 response via blocking of NF-κB/STAT6 signaling pathways in mice. Nutrients, 2018, 10(11), 1625.
[http://dx.doi.org/10.3390/nu10111625] [PMID: 30400140]
[9]
Pribowo, A.; Girish, J.; Gustiananda, M.; Nandhira, R.G.; Hartrianti, P. Potential of Tamanu (Calophyllum inophyllum) Oil for Atopic Dermatitis Treatment. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/6332867] [PMID: 35069754]
[10]
Luger, T.; Amagai, M.; Dreno, B.; Dagnelie, M.A.; Liao, W.; Kabashima, K.; Schikowski, T.; Proksch, E.; Elias, P.M.; Simon, M.; Simpson, E.; Grinich, E.; Schmuth, M. Atopic dermatitis: Role of the skin barrier, environment, microbiome, and therapeutic agents. J. Dermatol. Sci., 2021, 102(3), 142-157.
[http://dx.doi.org/10.1016/j.jdermsci.2021.04.007] [PMID: 34116898]
[11]
Akan, A.; Dibek-Mısırlıoğlu, E.; Civelek, E.; Vezir, E.; Kocabaş, C.N. Diagnosis of atopic dermatitis in children: Comparison of the Hanifin-Rajka and the United Kingdom Working Party criteria. Allergol. Immunopathol. (Madr.), 2020, 48(2), 175-181.
[http://dx.doi.org/10.1016/j.aller.2019.07.008] [PMID: 31611041]
[12]
Cheng, R.; Zhang, H.; Zong, W.; Tang, J.; Han, X.; Zhang, L.; Zhang, X.; Gu, H.; Shu, Y.; Peng, G.; Huang, L.; Liu, Q.; Gao, X.; Guo, Y.; Yao, Z. Development and validation of new diagnostic criteria for atopic dermatitis in children of China. J. Eur. Acad. Dermatol. Venereol., 2020, 34(3), 542-548.
[http://dx.doi.org/10.1111/jdv.15979] [PMID: 31568595]
[13]
Manz, J.; Rodríguez, E.; ElSharawy, A.; Oesau, E.M.; Petersen, B.S.; Baurecht, H.; Mayr, G.; Weber, S.; Harder, J.; Reischl, E.; Schwarz, A.; Novak, N.; Franke, A.; Weidinger, S. Targeted resequencing and functional testing identifies low-frequency missense variants in the gene encoding GARP as significant contributors to Atopic Dermatitis risk. J. Invest. Dermatol., 2016, 136(12), 2380-2386.
[http://dx.doi.org/10.1016/j.jid.2016.07.009] [PMID: 27448748]
[14]
Wu, S.; Pang, Y.; He, Y.; Zhang, X.; Peng, L.; Guo, J.; Zeng, J. A comprehensive review of natural products against atopic dermatitis: Flavonoids, alkaloids, terpenes, glycosides and other compounds. Biomed. Pharmacother., 2021, 140, 111741.
[http://dx.doi.org/10.1016/j.biopha.2021.111741] [PMID: 34087696]
[15]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[16]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[17]
Lee, H.S.; Kim, E.N.; Jeong, G.S. Oral administration of Liquiritigenin confers protection from Atopic Dermatitis through the inhibition of T cell activation. Biomolecules, 2020, 10(5), 786.
[http://dx.doi.org/10.3390/biom10050786] [PMID: 32438694]
[18]
Lee, D.; Park, J.; Choi, J.; Jang, H.; Seol, J. Anti-inflammatory effects of natural flavonoid diosmetin in IL-4 and LPS-induced macrophage activation and atopic dermatitis model. Int. Immunopharmacol., 2020, 89(Pt A), 107046.
[http://dx.doi.org/10.1016/j.intimp.2020.107046] [PMID: 33045572]
[19]
Orita, K.; Hiramoto, K.; Kobayashi, H.; Ishii, M.; Sekiyama, A.; Inoue, M. Inducible nitric oxide synthase (iNOS) and α-melanocyte-stimulating hormones of iNOS origin play important roles in the allergic reactions of atopic dermatitis in mice. Exp. Dermatol., 2011, 20(11), 911-914.
[http://dx.doi.org/10.1111/j.1600-0625.2011.01360.x] [PMID: 21895774]
[20]
Park, S.; Bong, S.K.; Lee, J.W.; Park, N.J.; Choi, Y.; Kim, S.M.; Yang, M.H.; Kim, Y.K.; Kim, S.N. Diosmetin and its glycoside, diosmin, improve Atopic Dermatitis-like lesions in 2, 4-dinitrochlorobenzene-induced murine models. Biomol. Ther. (Seoul), 2020, 28(6), 542-548.
[http://dx.doi.org/10.4062/biomolther.2020.135] [PMID: 32938818]
[21]
Hou, D.D.; Zhang, W.; Gao, Y.L.; Sun, Y.; Wang, H.X.; Qi, R.Q.; Chen, H.D.; Gao, X.H. Anti-inflammatory effects of quercetin in a mouse model of MC903-induced atopic dermatitis. Int. Immunopharmacol., 2019, 74, 105676.
[http://dx.doi.org/10.1016/j.intimp.2019.105676] [PMID: 31181406]
[22]
Kim, T.H.; Kim, G.D.; Ahn, H.J.; Cho, J.J.; Park, Y.S.; Park, C.S. The inhibitory effect of naringenin on atopic dermatitis induced by DNFB in NC/Nga mice. Life Sci., 2013, 93(15), 516-524.
[http://dx.doi.org/10.1016/j.lfs.2013.07.027] [PMID: 23933131]
[23]
Karuppagounder, V.; Arumugam, S.; Thandavarayan, R.A.; Sreedhar, R.; Giridharan, V.V.; Pitchaimani, V.; Afrin, R.; Harima, M.; Krishnamurthy, P.; Suzuki, K.; Nakamura, M.; Ueno, K.; Watanabe, K. Naringenin ameliorates skin inflammation and accelerates phenotypic reprogramming from M1 to M2 macrophage polarization in atopic dermatitis NC/Nga mouse model. Exp. Dermatol., 2016, 25(5), 404-407.
[http://dx.doi.org/10.1111/exd.12962] [PMID: 26836240]
[24]
Moon, P.D.; Choi, I.H.; Kim, H.M. Naringenin suppresses the production of thymic stromal lymphopoietin through the blockade of RIP2 and caspase-1 signal cascade in mast cells. Eur. J. Pharmacol., 2011, 671(1-3), 128-132.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.163] [PMID: 21963452]
[25]
Nagula, R.L.; Wairkar, S. Cellulose microsponges based gel of naringenin for atopic dermatitis: Design, optimization, in vitro and in vivo investigation. Int. J. Biol. Macromol., 2020, 164, 717-725.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.168] [PMID: 32698069]
[26]
Yun, M.Y.; Yang, J.H.; Kim, D.K.; Cheong, K.J.; Song, H.H.; Kim, D.H.; Cheong, K.J.; Kim, Y.I.; Shin, S.C. Therapeutic effects of Baicalein on atopic dermatitis-like skin lesions of NC/Nga mice induced by dermatophagoides pteronyssinus. Int. Immunopharmacol., 2010, 10(9), 1142-1148.
[http://dx.doi.org/10.1016/j.intimp.2010.06.020] [PMID: 20621172]
[27]
Huang, K.F.; Ma, K.H.; Liu, P.S.; Chen, B.W.; Chueh, S.H. Baicalein increases keratin 1 and 10 expression in HaCaT keratinocytes via TRPV4 receptor activation. Exp. Dermatol., 2016, 25(8), 623-629.
[http://dx.doi.org/10.1111/exd.13024] [PMID: 27060689]
[28]
Nguyen, L.T.H.; Oh, T.W.; Nguyen, U.T.; Choi, M.J.; Yang, I.J.; Shin, H.M. A natural compound mixture containing Arctigenin, Hederagenin, and Baicalein alleviates Atopic Dermatitis in mice by regulating HPA Axis and immune activity. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/1970349] [PMID: 32714398]
[29]
Yang, L.; Stöckigt, J. Trends for diverse production strategies of plant medicinal alkaloids. Nat. Prod. Rep., 2010, 27(10), 1469-1479.
[http://dx.doi.org/10.1039/c005378c] [PMID: 20730220]
[30]
Aiello, A.; Fattorusso, E.; Imperatore, C.; Irace, C.; Luciano, P.; Menna, M.; Santamaria, R.; Vitalone, R. Zorrimidazolone, a bioactive alkaloid from the non-indigenous mediterranean stolidobranch Polyandrocarpa zorritensis. Mar. Drugs, 2011, 9(6), 1157-1165.
[http://dx.doi.org/10.3390/md9061157] [PMID: 21747753]
[31]
Choi, D.W.; Jung, S.Y.; Shon, D.H.; Shin, H.S. Piperine Ameliorates Trimellitic anhydride-induced Atopic Dermatitis-like symptoms by suppressing Th2-mediated immune responses via inhibition of STAT6 phosphorylation. Molecules, 2020, 25(9), 2186.
[http://dx.doi.org/10.3390/molecules25092186] [PMID: 32392825]
[32]
Chen, X.; Lin, J.; Liang, Q.; Chen, X.; Wu, Z. Pseudoephedrine alleviates atopic dermatitis-like inflammatory responses in vivo and in vitro. Life Sci., 2020, 258, 118139.
[http://dx.doi.org/10.1016/j.lfs.2020.118139] [PMID: 32721463]
[33]
Wu, S.; Yu, D.; Liu, W.; Zhang, J.; Liu, X.; Wang, J.; Yu, M.; Li, Z.; Chen, Q.; Li, X.; Ye, X. Magnoflorine from Coptis chinese has the potential to treat DNCB-induced Atopic dermatits by inhibiting apoptosis of keratinocyte. Bioorg. Med. Chem., 2020, 28(2), 115093.
[http://dx.doi.org/10.1016/j.bmc.2019.115093] [PMID: 31859028]
[34]
Lai, J.; Liu, Y.; Liu, C.; Qi, M.; Liu, R.; Zhu, X.; Zhou, Q.; Chen, Y.; Guo, A.; Hu, C. Indirubin inhibits LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways. Inflammation, 2017, 40(1), 1-12.
[http://dx.doi.org/10.1007/s10753-016-0447-7] [PMID: 27718095]
[35]
Kim, M.H.; Choi, Y.Y.; Yang, G.; Cho, I.H.; Nam, D.; Yang, W.M. Indirubin, a purple 3,2- bisindole, inhibited allergic contact dermatitis via regulating T helper (Th)-mediated immune system in DNCB-induced model. J. Ethnopharmacol., 2013, 145(1), 214-219.
[http://dx.doi.org/10.1016/j.jep.2012.10.055] [PMID: 23149289]
[36]
Han, N.R.; Moon, P.D.; Kim, H.M.; Jeong, H.J. Tryptanthrin ameliorates atopic dermatitis through down-regulation of TSLP. Arch. Biochem. Biophys., 2014, 542, 14-20.
[http://dx.doi.org/10.1016/j.abb.2013.11.010] [PMID: 24295961]
[37]
Hortelano, S.; González-Cofrade, L.; Cuadrado, I.; de las Heras, B. Current status of terpenoids as inflammasome inhibitors. Biochem. Pharmacol., 2020, 172, 113739.
[http://dx.doi.org/10.1016/j.bcp.2019.113739] [PMID: 31786260]
[38]
Park, J.H.; Yeo, I.J.; Han, J.H.; Suh, J.W.; Lee, H.P.; Hong, J.T. Anti-inflammatory effect of astaxanthin in phthalic anhydride-induced atopic dermatitis animal model. Exp. Dermatol., 2018, 27(4), 378-385.
[http://dx.doi.org/10.1111/exd.13437] [PMID: 28887839]
[39]
Park, J.H.; Yeo, I.J.; Jang, J.S.; Kim, K.C.; Park, M.H.; Lee, H.P.; Han, S.B.; Hong, J.T. Combination effect of titrated extract of Centella asiatica and astaxanthin in a mouse model of phthalic anhydride-induced Atopic Dermatitis. Allergy Asthma Immunol. Res., 2019, 11(4), 548-559.
[http://dx.doi.org/10.4168/aair.2019.11.4.548] [PMID: 31172723]
[40]
Yoshihisa, Y.; Andoh, T.; Matsunaga, K.; Rehman, M.U.; Maoka, T.; Shimizu, T. Efficacy of astaxanthin for the treatment of Atopic Dermatitis in a murine model. PLoS One, 2016, 11(3), e0152288.
[http://dx.doi.org/10.1371/journal.pone.0152288] [PMID: 27023003]
[41]
Natsume, C.; Aoki, N.; Aoyama, T.; Senda, K.; Matsui, M.; Ikegami, A.; Tanaka, K.; Azuma, Y.T.; Fujita, T. Fucoxanthin ameliorates Atopic Dermatitis symptoms by regulating keratinocytes and regulatory innate lymphoid cells. Int. J. Mol. Sci., 2020, 21(6), 2180.
[http://dx.doi.org/10.3390/ijms21062180] [PMID: 32235696]
[42]
Yang, H.; Jung, E.M.; Ahn, C.; Lee, G.S.; Lee, S.Y.; Kim, S.H.; Choi, I.G.; Park, M.J.; Lee, S.S.; Choi, D.H.; Jeung, E.B. Elemol from Chamaecyparis obtusa ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis. Int. J. Mol. Med., 2015, 36(2), 463-472.
[http://dx.doi.org/10.3892/ijmm.2015.2228] [PMID: 26035417]
[43]
Lin, G.; Gao, S.; Cheng, J.; Li, Y.; Shan, L.; Hu, Z. 1 β -Hydroxyalantolactone, a sesquiterpene lactone from Inula japonica, attenuates atopic dermatitis-like skin lesions induced by 2,4-dinitrochlorobenzene in the mouse. Pharm. Biol., 2016, 54(3), 516-522.
[http://dx.doi.org/10.3109/13880209.2015.1050745] [PMID: 26017682]
[44]
Choi, J.H.; Jin, S.W.; Han, E.H.; Park, B.H.; Kim, H.G.; Khanal, T.; Hwang, Y.P.; Do, M.T.; Lee, H.S.; Chung, Y.C.; Kim, H.S.; Jeong, T.C.; Jeong, H.G. Platycodon grandiflorum root-derived saponins attenuate atopic dermatitis-like skin lesions via suppression of NF-κB and STAT1 and activation of Nrf2/ARE-mediated heme oxygenase-1. Phytomedicine, 2014, 21(8-9), 1053-1061.
[http://dx.doi.org/10.1016/j.phymed.2014.04.011] [PMID: 24854572]
[45]
Bartnik, M.; Facey, P.C. Glycosides.Pharmacognosy; Academic Press: Massachusetts, 2017, pp. 101-161.
[http://dx.doi.org/10.1016/B978-0-12-802104-0.00008-1]
[46]
Ahn, J.Y.; Choi, S.E.; Jeong, M.S.; Park, K.H.; Moon, N.J.; Joo, S.S.; Lee, C.S.; Choi, Y.W.; Li, K.; Lee, M.K.; Lee, M.W.; Seo, S.J. Effect of taxifolin glycoside on atopic dermatitis-like skin lesions in NC/Nga mice. Phytother. Res., 2010, 24(7), 1071-1077.
[http://dx.doi.org/10.1002/ptr.3084] [PMID: 20041431]
[47]
Kim, J.Y.; Lee, O.S.; Ha, S.; Kim, J.H.; Park, G.; Kim, J.K.; Oh, C.H. In vivo assessment of the effect of taxifolin glycoside on atopic dermatitis-like skin lesions using biomedical tools in NC/Nga mice. Clin. Exp. Dermatol., 2015, 40(5), 547-555.
[http://dx.doi.org/10.1111/ced.12522] [PMID: 25475067]
[48]
Kang, M.J.; Eum, J.Y.; Park, S.H.; Kang, M.H.; Park, K.H.; Choi, S.E.; Lee, M.W.; Kang, K.H.; Oh, C.H.; Choi, Y.W. Pep-1 peptide-conjugated elastic liposomal formulation of taxifolin glycoside for the treatment of atopic dermatitis in NC/Nga mice. Int. J. Pharm., 2010, 402(1-2), 198-204.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.030] [PMID: 20888893]
[49]
Jegal, J.; Park, N.J.; Jo, B.G.; Bong, S.K.; Jegal, H.; Yang, M.; Kim, S.N. Anti-Atopic properties of gracillin isolated from Dioscorea quinqueloba on 2, 4-dinitrochlorobenzene-induced skin lesions in mice. Nutrients, 2018, 10(9), 1205.
[http://dx.doi.org/10.3390/nu10091205] [PMID: 30200442]
[50]
Ingawale, D.K.; Mandlik, S.K.; Patel, S.S. Anti-inflammatory potential of hecogenin on atopic dermatitis and airway hyper-responsiveness by regulation of pro-inflammatory cytokines. Immunopharmacol. Immunotoxicol., 2019, 41(2), 327-336.
[http://dx.doi.org/10.1080/08923973.2019.1608445] [PMID: 31039648]
[51]
Georgiev, M.; Pastore, S.; Lulli, D.; Alipieva, K.; Kostyuk, V.; Potapovich, A.; Panetta, M.; Korkina, L. Verbascum xanthophoeniceum-derived phenylethanoid glycosides are potent inhibitors of inflammatory chemokines in dormant and interferon-gamma-stimulated human keratinocytes. J. Ethnopharmacol., 2012, 144(3), 754-760.
[http://dx.doi.org/10.1016/j.jep.2012.10.035] [PMID: 23117092]
[52]
Li, Y.; Yu, H.; Jin, Y.; Li, M.; Qu, C. Verbascoside alleviates Atopic Dermatitis-like symptoms in mice via its potent anti-inflammatory effect. Int. Arch. Allergy Immunol., 2018, 175(4), 220-230.
[http://dx.doi.org/10.1159/000486958] [PMID: 29587260]
[53]
Karuppagounder, V.; Arumugam, S.; Thandavarayan, R.A.; Pitchaimani, V.; Sreedhar, R.; Afrin, R.; Harima, M.; Suzuki, H.; Nomoto, M.; Miyashita, S.; Suzuki, K.; Nakamura, M.; Ueno, K.; Watanabe, K. Tannic acid modulates NFκB signaling pathway and skin inflammation in NC/Nga mice through PPARγ expression. Cytokine, 2015, 76(2), 206-213.
[http://dx.doi.org/10.1016/j.cyto.2015.05.016] [PMID: 26049169]
[54]
Noh, S.U.; Cho, E.A.; Kim, H.O.; Park, Y.M. Epigallocatechin-3-gallate improves Dermatophagoides pteronissinus extract-induced atopic dermatitis-like skin lesions in NC/Nga mice by suppressing macrophage migration inhibitory factor. Int. Immunopharmacol., 2008, 8(9), 1172-1182.
[http://dx.doi.org/10.1016/j.intimp.2008.04.002] [PMID: 18602062]
[55]
Shimizu, T.; Abe, R.; Ohkawara, A.; Mizue, Y.; Nishihira, J. Macrophage migration inhibitory factor is an essential immunoregulatory cytokine in atopic dermatitis. Biochem. Biophys. Res. Commun., 1997, 240(1), 173-178.
[http://dx.doi.org/10.1006/bbrc.1997.7633] [PMID: 9367905]
[56]
An, E.J.; Kim, Y.; Lee, S.H.; Choi, S.H.; Chung, W.S.; Jang, H.J. Ophiopogonin D ameliorates DNCB-induced atopic dermatitis-like lesions in BALB/c mice and TNF-α- inflamed HaCaT cell. Biochem. Biophys. Res. Commun., 2020, 522(1), 40-46.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.190] [PMID: 31735336]
[57]
Shenefelt, PD Herbal treatment for dermatologic disorders. Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; National Library of Medicine: Rockville Pike, 2011.
[http://dx.doi.org/10.1201/b10787-19]
[58]
Hoffmann, J.; Gendrisch, F.; Schempp, C.M.; Wölfle, U. New herbal biomedicines for the topical treatment of dermatological disorders. Biomedicines, 2020, 8(2), 27.
[http://dx.doi.org/10.3390/biomedicines8020027] [PMID: 32046246]
[59]
Bae, M.J.; Lim, S.; Lee, D.S.; Ko, K.R.; Lee, W.; Kim, S. Water soluble extracts from Actinidia arguta, PG102, attenuates house dust mite-induced murine atopic dermatitis by inhibiting the mTOR pathway with Treg generation. J. Ethnopharmacol., 2016, 193, 96-106.
[http://dx.doi.org/10.1016/j.jep.2016.08.004] [PMID: 27496579]
[60]
Han, H.M.; Kim, S.J.; Kim, J.S.; Kim, B.H.; Lee, H.W.; Lee, Y.T.; Kang, K.H. Ameliorative effects of Artemisia argyi Folium extract on 2,4-dinitrochlorobenzene-induced atopic dermatitis-like lesions in BALB/c mice. Mol. Med. Rep., 2016, 14(4), 3206-3214.
[http://dx.doi.org/10.3892/mmr.2016.5657] [PMID: 27571702]
[61]
Ryu, K.J.; Yoou, M.S.; Seo, Y.; Yoon, K.W.; Kim, H.M.; Jeong, H.J. Therapeutic effects of Artemisia scoparia Waldst. et Kitaib in a murine model of atopic dermatitis. Clin. Exp. Dermatol., 2018, 43(7), 798-805.
[http://dx.doi.org/10.1111/ced.13565] [PMID: 29740850]
[62]
Ku, J.M.; Hong, S.H.; Kim, H.I.; Seo, H.S.; Shin, Y.C.; Ko, S.G. Effects of Angelicae dahuricae Radix on 2, 4-dinitrochlorobenzene-induced Atopic Dermatitis-like skin lesions in mice model. BMC Complement. Altern. Med., 2017, 17(1), 98.
[http://dx.doi.org/10.1186/s12906-017-1584-8] [PMID: 28173791]
[63]
Qi, X.F.; Kim, D.H.; Yoon, Y.S.; Li, J.H.; Jin, D.; Deung, Y.K.; Lee, K.J. Effects of Bambusae caulis in Liquamen on the development of atopic dermatitis-like skin lesions in hairless mice. J. Ethnopharmacol., 2009, 123(2), 195-200.
[http://dx.doi.org/10.1016/j.jep.2009.03.020] [PMID: 19429362]
[64]
Kim, E.C.; Lee, H.S.; Kim, S.K.; Choi, M.S.; Lee, S.; Han, J.B.; An, H.J.; Um, J.Y.; Kim, H.M.; Lee, N.Y.; Bae, H.; Min, B.I. The bark of Betula platyphylla var. japonica inhibits the development of atopic dermatitis-like skin lesions in NC/Nga mice. J. Ethnopharmacol., 2008, 116(2), 270-278.
[http://dx.doi.org/10.1016/j.jep.2007.11.042] [PMID: 18191513]
[65]
Lee, J.K.; Ha, H.; Lee, H.Y.; Park, S.J.; Jeong, S.; Choi, Y.J.; Shin, H.K. Inhibitory effects of heartwood extracts of Broussonetia kazinoki Sieb on the development of atopic dermatitis in NC/Nga mice. Biosci. Biotechnol. Biochem., 2010, 74(9), 1802-1806.
[http://dx.doi.org/10.1271/bbb.100138] [PMID: 20834170]
[66]
Hong, S.; Ku, J.; Kim, H.; Lee, S.; Lim, Y.; Seo, H.; Shin, Y.; Ko, S.G. Oral administration of Cervus nippon mantchuricus extract suppresses 2,4-dinitrochlorobenzene-induced atopic dermatitis in BALB/c mice and inflammatory effects in mast cells. Int. J. Mol. Med., 2018, 42(5), 2961-2971.
[http://dx.doi.org/10.3892/ijmm.2018.3856] [PMID: 30226556]
[67]
Choi, Y.Y.; Kim, M.H.; Lee, H.; Ahn, K.S.; Um, J.Y.; Lee, S.; Kim, J.; Yang, W.M. Cynanchum atratum inhibits the development of atopic dermatitis in 2,4-dinitrochlorobenzene-induced mice. Biomed. Pharmacother., 2017, 90, 321-327.
[http://dx.doi.org/10.1016/j.biopha.2017.03.065] [PMID: 28365521]
[68]
Sung, Y.Y.; Yoon, T.; Jang, J.Y.; Park, S.J.; Jeong, G.H.; Kim, H.K. Inhibitory effects of Cinnamomum cassia extract on atopic dermatitis-like skin lesions induced by mite antigen in NC/Nga mice. J. Ethnopharmacol., 2011, 133(2), 621-628.
[http://dx.doi.org/10.1016/j.jep.2010.10.043] [PMID: 21035532]
[69]
Kim, H.; Yang, B.; Lyu, J.H.; Kim, S.; Park, Y.C.; Kim, K. Dictamnus dasycarpus Turcz., root bark alleviates oxazolone-induced atopy-like dermatitis in mice. Pharmacogn. Mag., 2019, 15(61), 219.
[http://dx.doi.org/10.4103/pm.pm_110_18]
[70]
Sung, Y.Y.; Yoon, T.; Jang, S.; Kim, H.K. Forsythia suspensa suppresses house dust mite extract-induced atopic dermatitis in NC/Nga mice. PLoS One, 2016, 11(12), e0167687.
[http://dx.doi.org/10.1371/journal.pone.0167687] [PMID: 27936051]
[71]
Sung, Y.Y.; Lee, A.Y.; Kim, H.K. The Gardenia jasminoides extract and its constituent, geniposide, elicit anti-allergic effects on atopic dermatitis by inhibiting histamine in vitro and in vivo. J. Ethnopharmacol., 2014, 156, 33-40.
[http://dx.doi.org/10.1016/j.jep.2014.07.060] [PMID: 25153023]
[72]
Kim, T.; Park, K.; Jung, H.S.; Kong, W.S.; Jeon, D.; Lee, S.H. Evaluation of anti-atopic dermatitis activity of Hypsizigus marmoreus extract. Phytother. Res., 2014, 28(10), 1539-1546.
[http://dx.doi.org/10.1002/ptr.5164] [PMID: 24839932]
[73]
Lim, H.S.; Ha, H.; Lee, H.; Lee, J.K.; Lee, M.Y.; Shin, H.K. Morus alba L. suppresses the development of atopic dermatitis induced by the house dust mite in NC/Nga mice. BMC Complement. Altern. Med., 2014, 14(1), 139.
[http://dx.doi.org/10.1186/1472-6882-14-139] [PMID: 24755250]
[74]
Lee, S-H.; Nam, D.Y.; Seo, M.S.; Lee, S.H. Alleviation of atopic dermatitis-related symptoms by Perilla frutescens Britton. Int. J. Mol. Med., 2011, 28(5), 733-737.
[http://dx.doi.org/10.3892/ijmm.2011.763] [PMID: 21811759]
[75]
Jin, J.H.; Ngoc, T.M.; Bae, K.; Kim, Y.S.; Kim, H.P. Inhibition of experimental atopic dermatitis by rhubarb (rhizomes of Rheum tanguticum) and 5-lipoxygenase inhibition of its major constituent, emodin. Phytother. Res., 2011, 25(5), 755-759.
[http://dx.doi.org/10.1002/ptr.3480] [PMID: 21442678]
[76]
Kang, Y.H.; Shin, H.M. Inhibitory effects of Schizandra chinensis extract on atopic dermatitis in NC/Nga mice. Immunopharmacol. Immunotoxicol., 2012, 34(2), 292-298.
[http://dx.doi.org/10.3109/08923973.2011.602689] [PMID: 21854164]
[77]
Kim, J.; Lee, I.; Park, S.; Choue, R. Effects of Scutellariae radix and Aloe vera gel extracts on immunoglobulin E and cytokine levels in atopic dermatitis NC/Nga mice. J. Ethnopharmacol., 2010, 132(2), 529-532.
[http://dx.doi.org/10.1016/j.jep.2010.08.049] [PMID: 20817082]
[78]
Kang, S.Y.; Jung, H.W.; Nam, J.H.; Kim, W.K.; Kang, J.S.; Kim, Y.H.; Cho, C.W.; Cho, C.W.; Park, Y.K.; Bae, H.S. Effects of the fruit extract of Tribulus terrestris on skin inflammation in mice with oxazolone-induced atopic dermatitis through regulation of calcium channels, orai-1 and TRPV3, and mast cell activation. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/8312946] [PMID: 29348776]
[79]
Saeedi, M.; Morteza-Semnani, K.; Ghoreishi, M-R. The treatment of atopic dermatitis with licorice gel. J. Dermatolog. Treat., 2003, 14(3), 153-157.
[http://dx.doi.org/10.1080/09546630310014369] [PMID: 14522625]
[80]
Sirikudta, W.; Kulthanan, K.; Varothai, S.; Nuchkull, P. Moisturizers for patients with atopic dermatitis: An overview. J. Allergy Ther., 2013, 4(4), 1-6.
[http://dx.doi.org/10.4172/2155-6121.1000143]
[81]
Gupta, V.; Sanyogita, K.; Manigauha, A. Novel Formulation of Aloe Vera and Quercetin in the Management of Dermal Disease: Eczema. J. Pharm. Drug Res., 2021, 4(2), 480-487.
[http://dx.doi.org/10.13140/RG.2.2.21014.27207]
[82]
Ramos Campos, E.V.; Proença, P.L.D.F.; Doretto-Silva, L.; Andrade-Oliveira, V.; Fraceto, L.F.; de Araujo, D.R. Trends in nanoformulations for atopic dermatitis treatment. Expert Opin. Drug Deliv., 2020, 17(11), 1615-1630.
[http://dx.doi.org/10.1080/17425247.2020.1813107] [PMID: 32816566]
[83]
Mezei, M.; Gulasekharam, V. Liposomes - a selective drug delivery system for the topical route of administration I. Lotion dosage form. Life Sci., 1980, 26(18), 1473-1477.
[http://dx.doi.org/10.1016/0024-3205(80)90268-4] [PMID: 6893068]
[84]
Krishnan, V.; Mitragotri, S. Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Adv. Drug Deliv. Rev., 2020, 153, 87-108.
[http://dx.doi.org/10.1016/j.addr.2020.05.011] [PMID: 32497707]
[85]
Raza, K.; Shareef, M.A.; Singal, P.; Sharma, G.; Negi, P.; Katare, O.P. Lipid-based capsaicin-loaded nano-colloidal biocompatible topical carriers with enhanced analgesic potential and decreased dermal irritation. J. Liposome Res., 2014, 24(4), 290-296.
[http://dx.doi.org/10.3109/08982104.2014.911314] [PMID: 24766639]
[86]
Abdel-Mottaleb, M.M.A.; Moulari, B.; Beduneau, A.; Pellequer, Y.; Lamprecht, A. Nanoparticles enhance therapeutic outcome in inflamed skin therapy. Eur. J. Pharm. Biopharm., 2012, 82(1), 151-157.
[http://dx.doi.org/10.1016/j.ejpb.2012.06.006] [PMID: 22728016]
[87]
Badihi, A.; Frušić-Zlotkin, M.; Soroka, Y.; Benhamron, S.; Tzur, T.; Nassar, T.; Benita, S. Topical nano-encapsulated cyclosporine formulation for atopic dermatitis treatment. Nanomedicine, 2020, 24, 102140.
[http://dx.doi.org/10.1016/j.nano.2019.102140] [PMID: 31830614]
[88]
Baspinar, Y.; Keck, C.M.; Borchert, H.H. Development of a positively charged prednicarbate nanoemulsion. Int. J. Pharm., 2010, 383(1-2), 201-208.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.002] [PMID: 19747968]
[89]
Bernardi, D.S.; Pereira, T.A.; Maciel, N.R.; Bortoloto, J.; Viera, G.S.; Oliveira, G.C.; Rocha-Filho, P.A. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. J. Nanobiotechnology, 2011, 9(1), 44.
[http://dx.doi.org/10.1186/1477-3155-9-44] [PMID: 21952107]
[90]
Espinoza, L.C.; Silva-Abreu, M.; Calpena, A.C.; Rodríguez-Lagunas, M.J.; Fábrega, M.J.; Garduño-Ramírez, M.L.; Clares, B. Nanoemulsion strategy of pioglitazone for the treatment of skin inflammatory diseases. Nanomedicine, 2019, 19, 115-125.
[http://dx.doi.org/10.1016/j.nano.2019.03.017] [PMID: 31004811]
[91]
Hemrajani, C.; Negi, P.; Parashar, A.; Gupta, G.; Jha, N.K.; Singh, S.K.; Chellappan, D.K.; Dua, K. Overcoming drug delivery barriers and challenges in topical therapy of atopic dermatitis: A nanotechnological perspective. Biomed. Pharmacother., 2022, 147, 112633.
[http://dx.doi.org/10.1016/j.biopha.2022.112633] [PMID: 35030434]
[92]
Paiva-Santos, A.C.; Silva, A.L.; Guerra, C.; Peixoto, D.; Pereira-Silva, M.; Zeinali, M.; Mascarenhas-Melo, F.; Castro, R.; Veiga, F. Ethosomes as nanocarriers for the development of skin delivery formulations. Pharm. Res., 2021, 38(6), 947-970.
[http://dx.doi.org/10.1007/s11095-021-03053-5] [PMID: 34036520]
[93]
Kang, M.J.; Eum, J.Y.; Jeong, M.S.; Choi, S.E.; Park, S.H.; Cho, H.I.; Cho, C.S.; Seo, S.J.; Lee, M.W.; Choi, Y.W. Facilitated skin permeation of oregonin by elastic liposomal formulations and suppression of atopic dermatitis in NC/Nga mice. Biol. Pharm. Bull., 2010, 33(1), 100-106.
[http://dx.doi.org/10.1248/bpb.33.100] [PMID: 20045944]
[94]
Choi, Y.; Kang; Eum; Jeong; Park; Moon; Kang; Choi, S.E.; Lee, M.W.; Lee, D.I.; Bang, H.; Lee, C.S.; Joo, S.S.; Li, K.; Lee, M.K.; Seo, S.J.; Kim, Tat peptide-admixed elastic liposomal formulation of hirsutenone for the treatment of atopic dermatitis in Nc/Nga mice. Int. J. Nanomedicine, 2011, 6, 2459-2467.
[http://dx.doi.org/10.2147/IJN.S24350] [PMID: 22072881]
[95]
Priprem, A.; Janpim, K.; Nualkaew, S.; Mahakunakorn, P. Topical niosome gel of Zingiber cassumunar Roxb. extract for anti-inflammatory activity enhanced skin permeation and stability of compound D. AAPS PharmSciTech, 2016, 17(3), 631-639.
[http://dx.doi.org/10.1208/s12249-015-0376-z] [PMID: 26292930]
[96]
Suryawanshi, J.S. Phytosome: An emerging trend in herbal drug treatment. J Med Genet Genomics., 2011, 3(6), 109-114.
[97]
Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[98]
Neelam, K.; Vijay, S.; Lalit, S. Various techniques for the modification of starch and the applications of its derivatives. Int Res J Pharm., 2012, 3(5), 25-31.
[99]
Ju Ho, P.; Jun Sung, J.; Ki Cheon, K.; Jin Tae, H. Anti-inflammatory effect of Centella asiatica phytosome in a mouse model of phthalic anhydride-induced atopic dermatitis. Phytomedicine, 2018, 43, 110-119.
[http://dx.doi.org/10.1016/j.phymed.2018.04.013] [PMID: 29747743]
[100]
Togni, S.; Riva, A.; Maramaldi, G.; Cesarone, M.R.; Belcaro, G. Oral curcumin (Meriva®) reduces symptoms and recurrence rates in subjects with atopic dermatitis. Esperienze Dermatol., 2020, 21(2-4), 42-46.
[http://dx.doi.org/10.23736/S1128-9155.19.00486-2]
[101]
Kumari, S.; Goyal, A.; Sönmez Gürer, E.; Algın Yapar, E.; Garg, M.; Sood, M.; Sindhu, R.K. Bioactive Loaded Novel Nano-Formulations for Targeted Drug Delivery and Their Therapeutic Potential. Pharmaceutics, 2022, 14(5), 1091.
[http://dx.doi.org/10.3390/pharmaceutics14051091] [PMID: 35631677]
[102]
Sahu, S.; Saraf, S.; Kaur, C.D.; Saraf, S. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak. J. Biol. Sci., 2013, 16(13), 601-609.
[http://dx.doi.org/10.3923/pjbs.2013.601.609] [PMID: 24505982]
[103]
Wang, Y.; Cao, S.; Yu, K.; Yang, F.; Yu, X.; Zhai, Y.; Wu, C.; Xu, Y. Integrating tacrolimus into eutectic oil-based microemulsion for atopic dermatitis: Simultaneously enhancing percutaneous delivery and treatment efficacy with relieving side effects. Int. J. Nanomedicine, 2019, 14, 5849-5863.
[http://dx.doi.org/10.2147/IJN.S212260] [PMID: 31440050]
[104]
Marto, J.; Ruivo, E.; Lucas, S.D.; Gonçalves, L.M.; Simões, S.; Gouveia, L.F.; Felix, R.; Moreira, R.; Ribeiro, H.M.; Almeida, A.J. Starch nanocapsules containing a novel neutrophil elastase inhibitor with improved pharmaceutical performance. Eur. J. Pharm. Biopharm., 2018, 127, 1-11.
[http://dx.doi.org/10.1016/j.ejpb.2018.01.011] [PMID: 29409864]
[105]
Mroginski Weber, D.; Voss, G.T.; de Oliveira, R.L.; da Fonseca, C.A.R.; Paltian, J.; Rodrigues, K.C.; Rodrigues Ianiski, F.; Vaucher, R.A.; Luchese, C.; Antunes Wilhelm, E. Topic application of meloxicam-loaded polymeric nanocapsules as a technological alternative for treatment of the atopic dermatitis in mice. J. Appl. Biomed., 2018, 16(4), 337-343.
[http://dx.doi.org/10.1016/j.jab.2018.03.003]
[106]
Parekh, K.; Mehta, T.A.; Dhas, N.; Kumar, P.; Popat, A. Emerging nanomedicines for the treatment of atopic dermatitis. AAPS PharmSciTech, 2021, 22(2), 55.
[http://dx.doi.org/10.1208/s12249-021-01920-3] [PMID: 33486609]
[107]
Kwon, T.K.; Kim, J.C. In vitro skin permeation and anti-atopic efficacy of lipid nanocarriers containing water soluble extracts of Houttuynia cordata. Drug Dev. Ind. Pharm., 2014, 40(10), 1350-1357.
[http://dx.doi.org/10.3109/03639045.2013.819883] [PMID: 23886304]
[108]
Fang, Ma Traditional Chinese medicine for treating phytophotodermatitis. CN103830620A, 2014.
[109]
Junior, Dante Alario; Pereira, Jose Roberto Da Costa Topical pharmaceutical composition, method for producing the topical pharmaceutical composition, use of the topical pharmaceutical composition and method for the topical treatment of psoriasis, atopic dermatitis or chronic eczema. WO2013155584A1, 2013.
[110]
Eun-kyung, Ahn; Seong-soo, Hong Composition for Improving Atopy Dermatitis Using an Extract of Scirpus karuizawensis. KR20220076983A, 2022.
[111]
Kang, Jae-Shin; Le, Jaeho; Yoo, Eunhwa; Cry, Marsfal; Chang, Kimsun Composition for Improving Atopy Dermatitis Using an Extract of Careya arborea. KR102087651B1, 2020.
[112]
Jeon, Minkyu; Shin-young, Park; Kim, Yunyeon Composition for prevention and treatment of atopic dermatitis comprising bifidobacterium animal's subsp. lactis lm1017 derived from Korean infants. KR102136346B1, 2020.
[113]
André, Philippe; Shantara, Laurent; Lin, Ink Treatment of atopic dermatitis with extracts of indigo naturalis or indigo-producing plants. JP6803849B2, 2020.
[114]
Abdulrahman, Muna; Abdulrahman, Mohamed Formulations for Cosmetic and Dermatological Applications. US20190160134A1, 2019.
[115]
Jing, Ruan Composition capable of relieving eczema skin condition, and preparation method therefor. WO2021082298A1, 2021.
[116]
Yong-won, Song Composition for treating atopic dermatitis using natural materials. WO2012036446A2, 2012.
[117]
Ga-young, Noh; Jae-young, Noh Therapeutic effects cream for anti-atopic. KR101313660B1, 2013.
[118]
Oucrea, Christian Composition comprising dihydroquercetin for use in a method of treating an action associated with a skin inflammatory disorder. JP2017505806A, 2017.
[119]
Ahn, Taekwon; Park, Jungmi; Tae-soo, Jang; Choi, Heejeong Pharmaceutical Compositions Comprising Aralia cordata var. continent- ails Composite oil Having Anti-atopy. KR20190031985A, 2020.
[120]
Seong-yul, Park Composition for treating atopic dermatitis comprising Patrinia scabiosaefolia and Dioscorea opposita extracts. KR20200080497A, 2020.
[121]
Ji-hwan, Joo; Kim, Donghee; Boo-yong, Shim A composite for improving atopic dermatitis treatment using apples. KR101923343B1, 2018.
[122]
Lee, Hwanmyeong; Kim, Doyoon; Hwang, Daeil; Soo-min, Park; Kim, Miyeon; Lee, Sehee Composition for treating atopic dermatitis or reinforcing skin barrier containing chrysanthemum bore-ale makino essential oil or 1-iodohexadecan. KR20190007184A, 2019.
[123]
Jeong, Hyeoksang; Son, Youngjoo; Park, Jaeho; Eun-young, Kim Composition comprising Fritillariae Thunbergii Bulbs extract for preventing or treating atopic dermatitis. KR102209969B1, 2021.
[124]
Jeong, Hyeoksang; Son, Youngjoo; Jwa-jin, Kim; Park, Jaeho; Eun-young, Kim; Ga-yul, Min A composition for preventing or terating atopic dermatitis comprising lycopi herba extract as an active ingredient. KR102144566B1, 2020.
[125]
Dae-hyun, Ham; Hye-jeong, Lee; Bong-joon, Seo Composition comprising Polygala tenuifolia extract for preventing or treating atopic dermatitis. KR20150086982A, 2015.
[126]
Jang, Seonil Composition for preventing, improving or treating atopic dermatitis comprising extract mixture of Diospyros lotus leaf and grape fruit stem as effective component. KR101934794B1, 2019.
[127]
Yang, Jaekyung; Kim, Rumi; Hasiyoung, Jongcheol Kim; Kim, Taeheung; Ji-young, Jeong; Seung-cheol, Park Composition for improving atopic dermatitis comprising extract of steamed green tea. KR101330411B1, 2013.
[128]
Cai, Ruikang; Yuan, Hailong; Yan, Wu; Shen, Chengying; Rong, Xu; Si, Zhang Traditional Chinese medicine composition and granules for treating atopic dermatitis and preparation method. CN105998164A, 2020.
[129]
Chen, Dacan Chinese medicinal composition for treating atopic dermatitis and preparation method thereof. CN103393981A, 2015.
[130]
Fever, Margin; Tae-ho, Jeong Composition for preventing or treating atopic dermatitis including galenical extract or lactobacillus fermentation thereof. WO2012043920A1, 2012.
[131]
Hyun-sook, Kim Atopic dermatitis remedy and method for producing the same. KR101977908B1, 2019.
[132]
Hwang, Incheol Manufacturing method of composition comprising natural extracts for treating atopic dermatitis. KR101605623B1, 2016.
[133]
Ahuja, A.; Gupta, J.; Gupta, R. Miracles of herbal phytomedicines in treatment of skin disorders: Natural healthcare perspective. Infect. Disord. Drug Targets, 2021, 21(3), 328-338.
[http://dx.doi.org/10.2174/1871526520666200622142710] [PMID: 32568024]
[134]
Garg, A.; Chaturvedi, S. A Comprehensive Review on Chrysin: Emphasis on Molecular Targets, Pharmacological Actions and Bio-pharmaceutical Aspects. Curr. Drug Targets, 2022, 23(4), 420-436.
[http://dx.doi.org/10.2174/1389450122666210824141044] [PMID: 34431464]
[135]
Cláudia Paiva-Santos, A.; Gama, M.; Peixoto, D.; Sousa-Oliveira, I.; Ferreira-Faria, I.; Zeinali, M.; Abbaspour-Ravasjani, S.; Mascarenhas-Melo, F.; Hamishehkar, H.; Veiga, F. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis. Int. J. Pharm., 2022, 618, 121656.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121656] [PMID: 35278601]
[136]
Chaturvedi, S.; Garg, A.; Verma, A. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J. Drug Deliv. Sci. Technol., 2020, 59, 101899.
[http://dx.doi.org/10.1016/j.jddst.2020.101899]
[137]
Chaturvedi, S.; Garg, A. An insight of techniques for the assessment of permeation flux across the skin for optimization of topical and transdermal drug delivery systems. J. Drug Deliv. Sci. Technol., 2021, 62, 102355.
[http://dx.doi.org/10.1016/j.jddst.2021.102355]
[138]
Grabarek, B.O.; Dąbala, M.; Kasela, T.; Gralewski, M.; Gładysz, D. Changes in the expression pattern of DUSP1-7 and miRNA regulating their expression in the keratinocytes treated with LPS and adalimumab. Curr. Pharm. Biotechnol., 2022, 23(6), 873-881.
[http://dx.doi.org/10.2174/1389201022666210802102508] [PMID: 34342258]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy