Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

An Updated Overview of Synthetic α-glucosidase Inhibitors: Chemistry and Bioactivities

Author(s): Yong-Si Cai, Hong-Xu Xie, Jin-He Zhang, Yue Li, Juan Zhang*, Kai-Ming Wang* and Cheng-Shi Jiang*

Volume 23, Issue 26, 2023

Published on: 05 October, 2023

Page: [2488 - 2526] Pages: 39

DOI: 10.2174/0115680266260682230921054652

Price: $65

Abstract

Diabetes mellitus (DM) is a critical global health issue, affecting nearly half a billion people worldwide, with an increasing incidence rate and mortality. Type 2 diabetes is caused by the body's inability to effectively use insulin, and approximately 95% of patients have type 2 diabetes. α-glucosidase has emerged as an important therapeutic target for the treatment of type 2 diabetes. In the past years, three α-glucosidase inhibitors have been approved for clinical use, namely acarbose, voglibose, and miglitol. However, the undesirable effects associated with these carbohydrate mimic-based α-glucosidase inhibitors have limited their clinical applications. Consequently, researchers have shifted their focus towards the development of non-carbohydrate mimic α-glucosidase inhibitors that can safely and effectively manage postprandial hyperglycemia in type 2 diabetes. Herein, this article provides an overview of the synthetic α-glucosidase inhibitors, particularly those based on heterocycles, which have been reported from 2018 to 2022. This article aims to provide useful information for medicinal chemists in further developing clinically available anti-type 2 diabetes drugs.

« Previous
Graphical Abstract

[1]
IDf Congress. International Diabetes Federation., 2023. Available From: https://www.idf.org/
[2]
World Health Organization. Global Report on Diabetes., 2016. Available from: https://www.who.int/health-topics/diabetes#tab=tab_1
[3]
Kerru, N.; Singh-Pillay, A.; Awolade, P.; Singh, P. Current anti-diabetic agents and their molecular targets: A review. Eur. J. Med. Chem., 2018, 152, 436-488.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.061] [PMID: 29751237]
[4]
Agrawal, N.; Sharma, M.; Singh, S.; Goyal, A. Recent Advances of α-Glucosidase Inhibitors: A Comprehensive Review. Curr. Top. Med. Chem., 2022, 22(25), 2069-2086.
[http://dx.doi.org/10.2174/1568026622666220831092855] [PMID: 36045528]
[5]
Wang, X.; Li, J.; Shang, J.; Bai, J.; Wu, K.; Liu, J.; Yang, Z.; Ou, H.; Shao, L. Metabolites extracted from microorganisms as potential inhibitors of glycosidases (α-glucosidase and α-amylase): A review. Front. Microbiol., 2022, 13, 1050869.
[http://dx.doi.org/10.3389/fmicb.2022.1050869] [PMID: 36466660]
[6]
Hirsh, A.J.; Yao, S.Y.; Young, J.D.; Cheeseman, C.I. Inhibition of glucose absorption in the rat jejunum: A novel action of alpha-D-glucosidase inhibitors. Gastroenterology, 1997, 113(1), 205-211.
[http://dx.doi.org/10.1016/S0016-5085(97)70096-9] [PMID: 9207279]
[7]
Joshi, S.R.; Standl, E.; Tong, N.; Shah, P.; Kalra, S.; Rathod, R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: An evidence-based review. Expert Opin. Pharmacother., 2015, 16(13), 1959-1981.
[http://dx.doi.org/10.1517/14656566.2015.1070827] [PMID: 26255950]
[8]
Seino, H.; Yamaguchi, H.; Misaki, A.; Sakata, Y.; Kitagawa, M.; Yamazaki, T.; Kikuchi, H.; Abe, R. Clinical effect of combination therapy of pioglitazone and an α-glucosidase inhibitor. Curr. Med. Res. Opin., 2003, 19(8), 675-682.
[http://dx.doi.org/10.1185/030079903125002423] [PMID: 14687436]
[9]
Ghani, U. Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. Eur. J. Med. Chem., 2015, 103, 133-162.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.043] [PMID: 26344912]
[10]
Derosa, G.; Maffioli, P. Mini-Special Issue paper Management of diabetic patients with hypoglycemic agents α-Glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci., 2012, 5(5), 899-906.
[http://dx.doi.org/10.5114/aoms.2012.31621] [PMID: 23185202]
[11]
Saeedi, M.; Hadjiakhondi, A.; Nabavi, S.; Manayi, A. Heterocyclic Compounds: Effective α-Amylase and α-Glucosidase Inhibitors. Curr. Top. Med. Chem., 2016, 17(4), 428-440.
[http://dx.doi.org/10.2174/1568026616666160824104655] [PMID: 27558678]
[12]
Dhameja, M.; Gupta, P. Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: An overview. Eur. J. Med. Chem., 2019, 176, 343-377.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.025] [PMID: 31112894]
[13]
Pelle, E.; Mammone, T.; Marenus, K.; Maes, D.; Huang, X.; Frenkel, K. Ultraviolet-B-induced oxidative DNA base damage in primary normal human epidermal keratinocytes and inhibition by a hydroxyl radical scavenger. J. Invest. Dermatol., 2003, 121(1), 177-183.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12330.x] [PMID: 12839579]
[14]
Rikimaru, K.; Wakabayashi, T.; Abe, H.; Imoto, H.; Maekawa, T.; Ujikawa, O.; Murase, K.; Matsuo, T.; Matsumoto, M.; Nomura, C.; Tsuge, H.; Arimura, N.; Kawakami, K.; Sakamoto, J.; Funami, M.; Mol, C.D.; Snell, G.P.; Bragstad, K.A.; Sang, B.C.; Dougan, D.R.; Tanaka, T.; Katayama, N.; Horiguchi, Y.; Momose, Y. A new class of non-thiazolidinedione, non-carboxylic-acid-based highly selective peroxisome proliferator-activated receptor (PPAR) γ agonists: Design and synthesis of benzylpyrazole acylsulfonamides. Bioorg. Med. Chem., 2012, 20(2), 714-733.
[http://dx.doi.org/10.1016/j.bmc.2011.12.008] [PMID: 22209730]
[15]
Shen, D.M.; Brady, E.J.; Candelore, M.R.; Dallas-Yang, Q.; Ding, V.D.H.; Feeney, W.P.; Jiang, G.; McCann, M.E.; Mock, S.; Qureshi, S.A.; Saperstein, R.; Shen, X.; Tong, X.; Tota, L.M.; Wright, M.J.; Yang, X.; Zheng, S.; Chapman, K.T.; Zhang, B.B.; Tata, J.R.; Parmee, E.R. Discovery of novel, potent, selective, and orally active human glucagon receptor antagonists containing a pyrazole core. Bioorg. Med. Chem. Lett., 2011, 21(1), 76-81.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.074] [PMID: 21147532]
[16]
Griffith, D.A.; Dow, R.L.; Huard, K.; Edmonds, D.J.; Bagley, S.W.; Polivkova, J.; Zeng, D.; Garcia-Irizarry, C.N.; Southers, J.A.; Esler, W.; Amor, P.; Loomis, K.; McPherson, K.; Bahnck, K.B.; Préville, C.; Banks, T.; Moore, D.E.; Mathiowetz, A.M.; Menhaji-Klotz, E.; Smith, A.C.; Doran, S.D.; Beebe, D.A.; Dunn, M.F. Spirolactam-based acetyl-CoA carboxylase inhibitors: Toward improved metabolic stability of a chromanone lead structure. J. Med. Chem., 2013, 56(17), 7110-7119.
[http://dx.doi.org/10.1021/jm401033t] [PMID: 23981033]
[17]
Hernández-Vázquez, E.; Aguayo-Ortiz, R.; Ramírez-Espinosa, J.J.; Estrada-Soto, S.; Hernández-Luis, F. Synthesis, hypoglycemic activity and molecular modeling studies of pyrazole-3-carbohydrazides designed by a CoMFA model. Eur. J. Med. Chem., 2013, 69, 10-21.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.054] [PMID: 23995214]
[18]
Aslam, N.; White, J.M.; Ghafoor, A.; Shafique, A.; Nasim, F.H.; Jahan, B.; Ashraf, M.; Jabeen, M.; Zafar, A.M.; Noreen, S.; Sajid, N.; Khan, M.A. Biologically active scaffolds: Synthesis, characterization and studies of oxino bis-pyrazoles by environmental friendly method. Pak. J. Pharm. Sci., 2019, 32(2 (Supplementary))(Suppl.), 831-837.
[PMID: 31103979]
[19]
Chaudhry, F.; Naureen, S.; Huma, R.; Shaukat, A.; al-Rashida, M.; Asif, N.; Ashraf, M.; Munawar, M.A.; Khan, M.A. In search of new α -glucosidase inhibitors: Imidazolylpyrazole derivatives. Bioorg. Chem., 2017, 71, 102-109.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.017] [PMID: 28160945]
[20]
Özil, M.; Emirik, M.; Beldüz, A.; Ülker, S. Molecular docking studies and synthesis of novel bisbenzimidazole derivatives as inhibitors of α-glucosidase. Bioorg. Med. Chem., 2016, 24(21), 5103-5114.
[http://dx.doi.org/10.1016/j.bmc.2016.08.024] [PMID: 27576293]
[21]
Chaudhry, F.; Naureen, S.; Ashraf, M.; Al-Rashida, M.; Jahan, B.; Munawar, M.A.; Khan, M.A. Imidazole-pyrazole hybrids: Synthesis, characterization and in-vitro bioevaluation against α-glucosidase enzyme with molecular docking studies. Bioorg. Chem., 2019, 82, 267-273.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.047] [PMID: 30396060]
[22]
Peytam, F.; Adib, M.; Shourgeshty, R.; Mohammadi-Khanaposhtani, M.; Jahani, M.; Imanparast, S.; Faramarzi, M.A.; Mahdavi, M.; Moghadamnia, A.A.; Rastegar, H.; Larijani, B. Design and synthesis of new imidazo[1,2-b]pyrazole derivatives, in vitro α-glucosidase inhibition, kinetic and docking studies. Mol. Divers., 2020, 24(1), 69-80.
[http://dx.doi.org/10.1007/s11030-019-09925-8] [PMID: 30825061]
[23]
Singh, M.; Fatma, S.; Ankit, P.; Singh, S.B.; Singh, J. Boric acid in aqueous micellar medium: An effective and recyclable catalytic system for the synthesis of aryl-7,8-dihydro[1,2,4]triazolo[4,3-a]pyrimidine-6-carbonitriles. Tetrahedron Lett., 2014, 55(2), 525-527.
[http://dx.doi.org/10.1016/j.tetlet.2013.11.090]
[24]
DeNinno, M.P.; Wright, S.W.; Etienne, J.B.; Olson, T.V.; Rocke, B.N.; Corbett, J.W.; Kung, D.W.; DiRico, K.J.; Andrews, K.M.; Millham, M.L.; Parker, J.C.; Esler, W.; van Volkenburg, M.; Boyer, D.D.; Houseknecht, K.L.; Doran, S.D. Discovery of triazolopyrimidine-based PDE8B inhibitors: Exceptionally ligand-efficient and lipophilic ligand-efficient compounds for the treatment of diabetes. Bioorg. Med. Chem. Lett., 2012, 22(17), 5721-5726.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.079] [PMID: 22858141]
[25]
Pogaku, V.; Gangarapu, K.; Basavoju, S.; Tatapudi, K.K.; Katragadda, S.B. Design, synthesis, molecular modelling, ADME prediction and anti-hyperglycemic evaluation of new pyrazole-triazolopyrimidine hybrids as potent α-glucosidase inhibitors. Bioorg. Chem., 2019, 93, 103307.
[http://dx.doi.org/10.1016/j.bioorg.2019.103307] [PMID: 31585262]
[26]
Taha, M.; Ismail, N.H.; Lalani, S.; Fatmi, M.Q.; Atia-tul-Wahab; Siddiqui, S.; Khan, K.M.; Imran, S.; Choudhary, M.I. Synthesis of novel inhibitors of α-glucosidase based on the benzothiazole skeleton containing benzohydrazide moiety and their molecular docking studies. Eur. J. Med. Chem., 2015, 92, 387-400.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.009] [PMID: 25585009]
[27]
Azimi, F.; Ghasemi, J.B.; Azizian, H.; Najafi, M.; Faramarzi, M.A.; Saghaei, L.; Sadeghi-aliabadi, H.; Larijani, B.; Hassanzadeh, F.; Mahdavi, M. Design and synthesis of novel pyrazole-phenyl semicarbazone derivatives as potential α-glucosidase inhibitor: Kinetics and molecular dynamics simulation study. Int. J. Biol. Macromol., 2021, 166, 1082-1095.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.263] [PMID: 33157144]
[28]
Islam, M.S.; Barakat, A.; Al-Majid, A.M.; Ali, M.; Yousuf, S.; Iqbal Choudhary, M.; Khalil, R.; Ul-Haq, Z. Catalytic asymmetric synthesis of indole derivatives as novel α-glucosidase inhibitors in vitro. Bioorg. Chem., 2018, 79, 350-354.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.004] [PMID: 29807208]
[29]
Barakat, A.; Soliman, S.M.; Al-Majid, A.M.; Lotfy, G.; Ghabbour, H.A.; Fun, H.K.; Yousuf, S.; Choudhary, M.I.; Wadood, A. Synthesis and structure investigation of novel pyrimidine-2,4,6-trione derivatives of highly potential biological activity as anti-diabetic agent. J. Mol. Struct., 2015, 1098(15), 365-376.
[http://dx.doi.org/10.1016/j.molstruc.2015.06.037]
[30]
Solangi, M.; Kanwal; Mohammed Khan, K.; Saleem, F.; Hameed, S.; Iqbal, J.; Shafique, Z.; Qureshi, U.; Ul-Haq, Z.; Taha, M.; Perveen, S. Indole acrylonitriles as potential anti-hyperglycemic agents: Synthesis, α-glucosidase inhibitory activity and molecular docking studies. Bioorg. Med. Chem., 2020, 28(21), 115605.
[http://dx.doi.org/10.1016/j.bmc.2020.115605] [PMID: 33065441]
[31]
Alomari, M.; Taha, M.; Rahim, F.; Selvaraj, M.; Iqbal, N.; Chigurupati, S.; Hussain, S.; Uddin, N.; Almandil, N.B.; Nawaz, M.; Khalid Farooq, R.; Khan, K.M. Synthesis of indole-based-thiadiazole derivatives as a potent inhibitor of α-glucosidase enzyme along with in silico study. Bioorg. Chem., 2021, 108, 104638.
[http://dx.doi.org/10.1016/j.bioorg.2021.104638] [PMID: 33508679]
[32]
Sun, H.; Zhang, Y.; Ding, W.; Zhao, X.; Song, X.; Wang, D.; Li, Y.; Han, K.; Yang, Y.; Ma, Y.; Wang, R.; Wang, D.; Yu, P. Inhibitory activity evaluation and mechanistic studies of tetracyclic oxindole derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem., 2016, 123, 365-378.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.044] [PMID: 27487567]
[33]
Hao, L.; Ma, Y.; Zhao, L.; Zhang, Y.; Zhang, X.; Ma, Y.; Dodd, R.H.; Sun, H.; Yu, P. Synthesis of tetracyclic oxindoles and evaluation of their α-glucosidase inhibitory and glucose consumption-promoting activity. Bioorg. Med. Chem. Lett., 2020, 30(14), 127264.
[http://dx.doi.org/10.1016/j.bmcl.2020.127264] [PMID: 32527562]
[34]
Patch, R.J.; Huang, H.; Patel, S.; Cheung, W.; Xu, G.; Zhao, B.P.; Beauchamp, D.A.; Rentzeperis, D.; Geisler, J.G.; Askari, H.B.; Liu, J.; Kasturi, J.; Towers, M.; Gaul, M.D.; Player, M.R. Indazole-based ligands for estrogen-related receptor α as potential anti-diabetic agents. Eur. J. Med. Chem., 2017, 138, 830-853.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.015] [PMID: 28735214]
[35]
Song, F.; Xu, G.; Gaul, M.D.; Zhao, B.; Lu, T.; Zhang, R.; DesJarlais, R.L.; DiLoreto, K.; Huebert, N.; Shook, B.; Rentzeperis, D.; Santulli, R.; Eckardt, A.; Demarest, K. Design, synthesis and structure activity relationships of indazole and indole derivatives as potent glucagon receptor antagonists. Bioorg. Med. Chem. Lett., 2019, 29(15), 1974-1980.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.036] [PMID: 31138472]
[36]
Mphahlele, M.J.; Magwaza, N.M.; Gildenhuys, S.; Setshedi, I.B. Synthesis, α-glucosidase inhibition and antioxidant activity of the 7-carbo-substituted 5-bromo-3-methylindazoles. Bioorg. Chem., 2020, 97, 103702.
[http://dx.doi.org/10.1016/j.bioorg.2020.103702] [PMID: 32146175]
[37]
Adib, M.; Peytam, F.; Shourgeshty, R.; Mohammadi-Khanaposhtani, M.; Jahani, M.; Imanparast, S.; Faramarzi, M.A.; Larijani, B.; Moghadamnia, A.A.; Esfahani, E.N.; Bandarian, F.; Mahdavi, M. Design and synthesis of new fused carbazole-imidazole derivatives as anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and in silico studies. Bioorg. Med. Chem. Lett., 2019, 29(5), 713-718.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.012] [PMID: 30661823]
[38]
Arshad, T.; Khan, K.M.; Rasool, N.; Salar, U.; Hussain, S.; Asghar, H.; Ashraf, M.; Wadood, A.; Riaz, M.; Perveen, S.; Taha, M.; Ismail, N.H. 5-Bromo-2-aryl benzimidazole derivatives as non-cytotoxic potential dual inhibitors of α -glucosidase and urease enzymes. Bioorg. Chem., 2017, 72, 21-31.
[http://dx.doi.org/10.1016/j.bioorg.2017.03.007] [PMID: 28346872]
[39]
Bharadwaj, S.S.; Poojary, B.; Nandish, S.K.M.; Kengaiah, J.; Kirana, M.P.; Shankar, M.K.; Das, A.J.; Kulal, A.; Sannaningaiah, D. Efficient Synthesis and in silico Studies of the Benzimidazole Hybrid Scaffold with the Quinolinyloxadiazole Skeleton with Potential α-Glucosidase Inhibitory, Anticoagulant, and Antiplatelet Activities for Type-II Diabetes Mellitus Management and Treating Thrombotic Disorders. ACS Omega, 2018, 3(10), 12562-12574.
[http://dx.doi.org/10.1021/acsomega.8b01476] [PMID: 30411010]
[40]
Zawawi, N.K.N.A.; Taha, M.; Ahmat, N.; Ismail, N.H.; Wadood, A.; Rahim, F. Synthesis, molecular docking studies of hybrid benzimidazole as α -glucosidase inhibitor. Bioorg. Chem., 2017, 70, 184-191.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.009] [PMID: 28043716]
[41]
Li, Y.; Zhang, J.H.; Xie, H.X.; Ge, Y.X.; Wang, K.M.; Song, Z.L.; Zhu, K.K.; Zhang, J.; Jiang, C.S. Discovery of new 2-phenyl-1H-benzo[d]imidazole core-based potent α-glucosidase inhibitors: Synthesis, kinetic study, molecular docking, and in vivo anti-hyperglycemic evaluation. Bioorg. Chem., 2021, 117, 105423.
[http://dx.doi.org/10.1016/j.bioorg.2021.105423] [PMID: 34717239]
[42]
Khan, I.A.; Saddique, F.A.; Aslam, S.; Ashfaq, U.A.; Ahmad, M.; Al-Hussain, S.A.; Zaki, M.E.A. Synthesis of Novel N-Methylmorpholine-Substituted Benzimidazolium Salts as Potential α-Glucosidase Inhibitors. Molecules, 2022, 27(18), 6012.
[http://dx.doi.org/10.3390/molecules27186012] [PMID: 36144750]
[43]
Peytam, F.; Takalloobanafshi, G.; Saadattalab, T.; Norouzbahari, M.; Emamgholipour, Z.; Moghimi, S.; Firoozpour, L.; Bijanzadeh, H.R.; Faramarzi, M.A.; Mojtabavi, S.; Rashidi-Ranjbar, P.; Karima, S.; Pakraad, R.; Foroumadi, A. Design, synthesis, molecular docking, and in vitro α-glucosidase inhibitory activities of novel 3-amino-2,4-diarylbenzo[4,5]imidazo[1,2-a]pyrimidines against yeast and rat α-glucosidase. Sci. Rep., 2021, 11(1), 11911.
[http://dx.doi.org/10.1038/s41598-021-91473-z] [PMID: 34099819]
[44]
Menteşe, E.; Baltaş, N.; Emirik, M. Synthesis, α-glucosidase inhibition and in silico studies of some 4-(5-fluoro-2-substituted-1H-benzimidazol-6-yl)morpholine derivatives. Bioorg. Chem., 2020, 101, 104002.
[http://dx.doi.org/10.1016/j.bioorg.2020.104002] [PMID: 32563964]
[45]
Aroua, L.M.; Almuhaylan, H.R.; Alminderej, F.M.; Messaoudi, S.; Chigurupati, S.; Al-mahmoud, S.; Mohammed, H.A. A facile approach synthesis of benzoylaryl benzimidazole as potential α-amylase and α-glucosidase inhibitor with antioxidant activity. Bioorg. Chem., 2021, 114, 105073.
[http://dx.doi.org/10.1016/j.bioorg.2021.105073] [PMID: 34153810]
[46]
Raghuvanshi, D.S.; Verma, N.; Singh, S.V.; Khare, S.; Pal, A.; Negi, A.S. Synthesis of thymol-based pyrazolines: An effort to perceive novel potent-antimalarials. Bioorg. Chem., 2019, 88, 102933.
[http://dx.doi.org/10.1016/j.bioorg.2019.102933] [PMID: 31048119]
[47]
Ibraheem, F.; Ahmad, M.; Ashfaq, U.A.; Aslam, S.; Khan, Z.A.; Sultan, S. Synthesis, molecular docking and anti-diabetic studies of novel benzimidazole-pyrazoline hybrid molecules. Pak. J. Pharm. Sci., 2020, 33(2 Suppl.), 847-854.
[PMID: 32863261]
[48]
Bakherad, Z.; Mohammadi-Khanaposhtani, M.; Sadeghi-Aliabadi, H.; Rezaei, S.; Fassihi, A.; Bakherad, M.; Rastegar, H.; Biglar, M.; Saghaie, L.; Larijani, B.; Mahdavi, M. New thiosemicarbazide-1,2,3-triazole hybrids as potent α-glucosidase inhibitors: Design, synthesis, and biological evaluation. J. Mol. Struct., 2019, 1192(15), 192-200.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.082]
[49]
Asemanipoor, N.; Mohammadi-Khanaposhtani, M.; Moradi, S.; Vahidi, M.; Asadi, M.; Faramarzi, M.A.; Mahdavi, M.; Biglar, M.; Larijani, B.; Hamedifar, H.; Hajimiri, M.H. Synthesis and biological evaluation of new benzimidazole-1,2,3-triazole hybrids as potential α-glucosidase inhibitors. Bioorg. Chem., 2020, 95, 103482.
[http://dx.doi.org/10.1016/j.bioorg.2019.103482] [PMID: 31838286]
[50]
Taha, M.; Ismail, N.H.; Imran, S.; Mohamad, M.H.; Wadood, A.; Rahim, F.; Saad, S.M.; Rehman, A.; Khan, K.M. Synthesis, α-glucosidase inhibitory, cytotoxicity and docking studies of 2-aryl-7-methylbenzimidazoles. Bioorg. Chem., 2016, 65, 100-109.
[http://dx.doi.org/10.1016/j.bioorg.2016.02.004] [PMID: 26894559]
[51]
Rahim, F.; Zaman, K.; Taha, M.; Ullah, H.; Ghufran, M.; Wadood, A.; Rehman, W.; Uddin, N.; Shah, S.A.A.; Sajid, M.; Nawaz, F.; Khan, K.M. Synthesis, in vitro alpha-glucosidase inhibitory potential of benzimidazole bearing bis-Schiff bases and their molecular docking study. Bioorg. Chem., 2020, 94, 103394.
[http://dx.doi.org/10.1016/j.bioorg.2019.103394] [PMID: 31699396]
[52]
Azizian, H.; Pedrood, K.; Moazzam, A.; Valizadeh, Y.; Khavaninzadeh, K.; Zamani, A.; Mohammadi-Khanaposhtani, M.; Mojtabavi, S.; Faramarzi, M.A.; Hosseini, S.; Sarrafi, Y.; Adibi, H.; Larijani, B.; Rastegar, H.; Mahdavi, M. Docking study, molecular dynamic, synthesis, anti-α-glucosidase assessment, and ADMET prediction of new benzimidazole-Schiff base derivatives. Sci. Rep., 2022, 12(1), 14870.
[http://dx.doi.org/10.1038/s41598-022-18896-0] [PMID: 36050498]
[53]
Taha, M.; Rahim, F.; Zaman, K.; Selvaraj, M.; Uddin, N.; Farooq, R.K.; Nawaz, M.; Sajid, M.; Nawaz, F.; Ibrahim, M.; Khan, K.M. Synthesis, α-glycosidase inhibitory potential and molecular docking study of benzimidazole derivatives. Bioorg. Chem., 2020, 95, 103555.
[http://dx.doi.org/10.1016/j.bioorg.2019.103555] [PMID: 31911306]
[54]
Zhou, C.H.; Wang, Y. Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem., 2012, 19(2), 239-280.
[http://dx.doi.org/10.2174/092986712803414213] [PMID: 22320301]
[55]
Papakonstantinou-Garoufalias, S.; Pouli, N.; Marakos, P.; Chytyroglou-Ladas, A. Synthesis antimicrobial and antifungal activity of some new 3-substituted derivatives of 4-(2,4-dichlorophenyl)-5-adamantyl-1H-1,2,4-triazole. Farmaco, 2002, 57(12), 973-977.
[http://dx.doi.org/10.1016/S0014-827X(02)01227-2] [PMID: 12564470]
[56]
Yeye, E.O.; Kanwal; Mohammed Khan, K.; Chigurupati, S.; Wadood, A.; Ur Rehman, A.; Perveen, S.; Kannan Maharajan, M.; Shamim, S.; Hameed, S.; Aboaba, S.A.; Taha, M. Syntheses, in vitro α-amylase and α-glucosidase dual inhibitory activities of 4-amino-1,2,4-triazole derivatives their molecular docking and kinetic studies. Bioorg. Med. Chem., 2020, 28(11), 115467.
[http://dx.doi.org/10.1016/j.bmc.2020.115467] [PMID: 32327353]
[57]
Nafeesa, K.; Aziz-Ur-Rehman; Abbasi, M.A.; Siddiqui, S.Z.; Rasool, S.; Ali Shah, S.A.; Ashraf, M.; Jahan, B.; Lodhi, M.A.; Khan, F.A. α-Glucosidase inhibitory potential and hemolytic evaluation of newly synthesized 3,4,5-trisubstituted-1,2,4-triazole derivatives. Pak. J. Pharm. Sci., 2019, 32(6), 2651-2658.
[PMID: 31969298]
[58]
Abuelizz, H.A.; Anouar, E.H.; Ahmad, R.; Azman, N.I.I.N.; Marzouk, M.; Al-Salahi, R. Triazoloquinazolines as a new class of potent α-glucosidase inhibitors: In vitro evaluation and docking study. PLoS One, 2019, 14(8), e0220379.
[http://dx.doi.org/10.1371/journal.pone.0220379] [PMID: 31412050]
[59]
Gurram, V.; Garlapati, R.; Thulluri, C.; Madala, N.; Kasani, K.S.; Machiraju, P.K.; Doddapalla, R.; Addepally, U.; Gundla, R.; Patro, B.; Pottabathini, N. Design, synthesis, and biological evaluation of quinazoline derivatives as α-glucosidase inhibitors. Med. Chem. Res., 2015, 24(5), 2227-2237.
[http://dx.doi.org/10.1007/s00044-014-1293-5]
[60]
Javaid, K.; Saad, S.M.; Rasheed, S.; Moin, S.T.; Syed, N.; Fatima, I.; Salar, U.; Khan, K.M.; Perveen, S.; Choudhary, M.I. 2-Arylquinazolin-4(3H)-ones: A new class of α-glucosidase inhibitors. Bioorg. Med. Chem., 2015, 23(23), 7417-7421.
[http://dx.doi.org/10.1016/j.bmc.2015.10.038] [PMID: 26552899]
[61]
Wei, M.; Chai, W.M.; Wang, R.; Yang, Q.; Deng, Z.; Peng, Y. Quinazolinone derivatives: Synthesis and comparison of inhibitory mechanisms on α-glucosidase. Bioorg. Med. Chem., 2017, 25(4), 1303-1308.
[http://dx.doi.org/10.1016/j.bmc.2016.09.042] [PMID: 28110817]
[62]
Saeedi, M.; Mohammadi-Khanaposhtani, M.; Pourrabia, P.; Razzaghi, N.; Ghadimi, R.; Imanparast, S.; Faramarzi, M.A.; Bandarian, F.; Esfahani, E.N.; Safavi, M.; Rastegar, H.; Larijani, B.; Mahdavi, M.; Akbarzadeh, T. Design and synthesis of novel quinazolinone-1,2,3-triazole hybrids as new anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and docking study. Bioorg. Chem., 2019, 83, 161-169.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.023] [PMID: 30366316]
[63]
Moghimi, S.; Salarinejad, S.; Toolabi, M.; Firoozpour, L.; Esmaeil Sadat Ebrahimi, S.; Safari, F.; Madani-Qamsari, F.; Mojtabavi, S.; Faramarzi, M.A.; Karima, S.; Pakrad, R.; Foroumadi, A. Synthesis, in-vitro evaluation, molecular docking, and kinetic studies of pyridazine-triazole hybrid system as novel α-glucosidase inhibitors. Bioorg. Chem., 2021, 109, 104670.
[http://dx.doi.org/10.1016/j.bioorg.2021.104670] [PMID: 33588241]
[64]
Avula, S.K.; Khan, A.; Rehman, N.U.; Anwar, M.U.; Al-Abri, Z.; Wadood, A.; Riaz, M.; Csuk, R.; Al-Harrasi, A. Synthesis of 1H-1,2,3-triazole derivatives as new α-glucosidase inhibitors and their molecular docking studies. Bioorg. Chem., 2018, 81, 98-106.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.008] [PMID: 30118991]
[65]
Avula, S.K.; Khan, A.; Halim, S.A.; Al-Abri, Z.; Anwar, M.U.; Al-Rawahi, A.; Csuk, R.; Al-Harrasi, A. Synthesis of novel (R)-4-fluorophenyl-1H-1,2,3-triazoles: A new class of α-glucosidase inhibitors. Bioorg. Chem., 2019, 91, 103182.
[http://dx.doi.org/10.1016/j.bioorg.2019.103182] [PMID: 31404793]
[66]
Taha, M.; Ismail, N.H.; Javaid, K.; Imran, S.; Anouar, E.H.; Wadood, A.; Atia-tul-Wahab; Ali, M.; Khan, K.M.; Saad, S.M.; Rahim, F.; Choudhary, M.I. Evaluation of 2-indolcarbohydrazones as potent α-glucosidase inhibitors, in silico studies and DFT based stereochemical predictions. Bioorg. Chem., 2015, 63, 24-35.
[http://dx.doi.org/10.1016/j.bioorg.2015.09.001] [PMID: 26398141]
[67]
Zawawi, N.K.N.A.; Taha, M.; Ahmat, N.; Wadood, A.; Ismail, N.H.; Rahim, F.; Azam, S.S.; Abdullah, N. Benzimidazole derivatives as new α-glucosidase inhibitors and in silico studies. Bioorg. Chem., 2016, 64, 29-36.
[http://dx.doi.org/10.1016/j.bioorg.2015.11.006] [PMID: 26637946]
[68]
Rafique, B.; Kalsoom, S.; Sajini, A.A.; Ismail, H.; Iqbal, M. Synthesis, Characterization, Biological Evaluation and DNA Interaction Studies of 4-Aminophenol Derivatives: Theoretical and Experimental Approach. Molecules, 2022, 27(4), 1352.
[http://dx.doi.org/10.3390/molecules27041352] [PMID: 35209141]
[69]
Nasli-Esfahani, E.; Mohammadi-Khanaposhtani, M.; Rezaei, S.; Sarrafi, Y.; Sharafi, Z.; Samadi, N.; Faramarzi, M.A.; Bandarian, F.; Hamedifar, H.; Larijani, B.; Hajimiri, M.; Mahdavi, M. A new series of Schiff base derivatives bearing 1,2,3‐triazole: Design, synthesis, molecular docking, and α‐glucosidase inhibition. Arch. Pharm. (Weinheim), 2019, 352(8), 1900034.
[http://dx.doi.org/10.1002/ardp.201900034] [PMID: 31330079]
[70]
Saeedi, M.; Mohammadi-Khanaposhtani, M.; Asgari, M.S.; Eghbalnejad, N.; Imanparast, S.; Faramarzi, M.A.; Larijani, B.; Mahdavi, M.; Akbarzadeh, T. Design, synthesis, in vitro, and in silico studies of novel diarylimidazole-1,2,3-triazole hybrids as potent α-glucosidase inhibitors. Bioorg. Med. Chem., 2019, 27(23), 115148.
[http://dx.doi.org/10.1016/j.bmc.2019.115148] [PMID: 31679980]
[71]
Das, D.; Sikdar, P.; Bairagi, M. Recent developments of 2-aminothiazoles in medicinal chemistry. Eur. J. Med. Chem., 2016, 109, 89-98.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.022] [PMID: 26771245]
[72]
Guo, Y.; Hou, E.; Ma, N.; Liu, Z.; Fan, J.; Yang, R. Discovery, biological evaluation and docking studies of novel N-acyl-2-aminothiazoles fused (+)-nootkatone from Citrus paradisi Macf. as potential α-glucosidase inhibitors. Bioorg. Chem., 2020, 104, 104294.
[http://dx.doi.org/10.1016/j.bioorg.2020.104294] [PMID: 32987307]
[73]
Hussain, F.; Khan, Z.; Jan, M.S.; Ahmad, S.; Ahmad, A.; Rashid, U.; Ullah, F.; Ayaz, M.; Sadiq, A. Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione derivatives. Bioorg. Chem., 2019, 91, 103128.
[http://dx.doi.org/10.1016/j.bioorg.2019.103128] [PMID: 31369977]
[74]
Abdellatif, K.R.A.; Fadaly, W.A.A.; Kamel, G.M.; Elshaier, Y.A.M.M.; El-Magd, M.A. Design, synthesis, modeling studies and biological evaluation of thiazolidine derivatives containing pyrazole core as potential anti-diabetic PPAR-γ agonists and anti-inflammatory COX-2 selective inhibitors. Bioorg. Chem., 2019, 82, 86-99.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.034] [PMID: 30278282]
[75]
Huneif, M.A.; Alshehri, D.B.; Alshaibari, K.S.; Dammaj, M.Z.; Mahnashi, M.H.; Majid, S.U.; Javed, M.A.; Ahmad, S.; Rashid, U.; Sadiq, A. Design, synthesis and bioevaluation of new vanillin hybrid as multitarget inhibitor of α-glucosidase, α-amylase, PTP-1B and DPP4 for the treatment of type-II diabetes. Biomed. Pharmacother., 2022, 150, 113038.
[http://dx.doi.org/10.1016/j.biopha.2022.113038] [PMID: 35658208]
[76]
Pattan, S.R.; Suresh, C.; Pujar, V.D.; Reddy, V.V.K.; Rasal, V.P.; Koti, B.C. Synthesis and Antidiabetic Activity of 2-Amino [5′(4-Sulfonylbenzylidine)-2,4-thiazolidinedione] -7-chloro-6-fluorobenzothiazole. ChemInform, 2006, 37(9), 2404-2408.
[http://dx.doi.org/10.1002/chin.200609134]
[77]
Gong, Z.; Peng, Y.; Qiu, J.; Cao, A.; Wang, G.; Peng, Z. Synthesis, in vitro α-Glucosidase Inhibitory Activity and Molecular Docking Studies of Novel Benzothiazole-Triazole Derivatives. Molecules, 2017, 22(9), 1555.
[http://dx.doi.org/10.3390/molecules22091555] [PMID: 28914795]
[78]
Shah, S.; Arshia; Javaid, K.; Zafar, H.; Mohammed Khan, K.; Khalil, R.; Ul-Haq, Z.; Perveen, S.; Iqbal Choudhary, M. Synthesis, and in vitro and in silico α-Glucosidase Inhibitory Studies of 5-Chloro-2-Aryl Benzo[d]thiazoles. Bioorg. Chem., 2018, 78, 269-279.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.013] [PMID: 29614438]
[79]
Puranik, N.V.; Puntambekar, H.M.; Srivastava, P. Antidiabetic potential and enzyme kinetics of benzothiazole derivatives and their non-bonded interactions with α-glucosidase and α-amylase. Med. Chem. Res., 2016, 25(4), 805-816.
[http://dx.doi.org/10.1007/s00044-016-1520-3]
[80]
Gollapalli, M.; Taha, M.; Javid, M.T.; Almandil, N.B.; Rahim, F.; Wadood, A.; Mosaddik, A.; Ibrahim, M.; Alqahtani, M.A.; Bamarouf, Y.A. Synthesis of benzothiazole derivatives as a potent α-glucosidase inhibitor. Bioorg. Chem., 2019, 85, 33-48.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.021] [PMID: 30599411]
[81]
Khanam, H.; Shamsuzzaman Bioactive Benzofuran derivatives: A review. Eur. J. Med. Chem., 2015, 97, 483-504.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.039] [PMID: 25482554]
[82]
Guo, F.; Zhang, S.; Yan, X.; Dan, Y.; Wang, J.; Zhao, Y.; Yu, Z. Bioassay-guided isolation of antioxidant and α-glucosidase inhibitory constituents from stem of Vigna angularis. Bioorg. Chem., 2019, 87, 312-320.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.041] [PMID: 30913466]
[83]
Spasov, A.A.; Babkov, D.A.; Prokhorova, T.Y.; Sturova, E.A.; Muleeva, D.R.; Demidov, M.R.; Osipov, D.V.; Osyanin, V.A.; Klimochkin, Y.N. Synthesis and biological evaluation of 2-acylbenzofuranes as novel α-glucosidase inhibitors with hypoglycemic activity. Chem. Biol. Drug Des., 2017, 90(6), 1184-1189.
[http://dx.doi.org/10.1111/cbdd.13038] [PMID: 28585419]
[84]
Mphahlele, M.J.; Choong, Y.S.; Maluleka, M.M.; Gildenhuys, S. Synthesis, in vitro Evaluation and Molecular Docking of the 5-Acetyl-2-aryl-6-hydroxybenzo[b]furans against Multiple Targets Linked to Type 2 Diabetes. Biomolecules, 2020, 10(3), 418.
[http://dx.doi.org/10.3390/biom10030418] [PMID: 32156083]
[85]
Azimi, F.; Azizian, H.; Najafi, M.; Khodarahmi, G.; Saghaei, L.; Hassanzadeh, M.; Ghasemi, J.B.; Faramarzi, M.A.; Larijani, B.; Hassanzadeh, F.; Mahdavi, M. Design, synthesis, biological evaluation, and molecular modeling studies of pyrazole-benzofuran hybrids as new α-glucosidase inhibitor. Sci. Rep., 2021, 11(1), 20776.
[http://dx.doi.org/10.1038/s41598-021-99899-1] [PMID: 34675367]
[86]
Delogu, G.L.; Era, B.; Floris, S.; Medda, R.; Sogos, V.; Pintus, F.; Gatto, G.; Kumar, A.; Westermark, G.T.; Fais, A. A new biological prospective for the 2-phenylbenzofurans as inhibitors of α-glucosidase and of the islet amyloid polypeptide formation. Int. J. Biol. Macromol., 2021, 169, 428-435.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.117] [PMID: 33347933]
[87]
Philip, J.E.; Shahid, M.; Prathapachandra Kurup, M.R.; Velayudhan, M.P. Metal based biologically active compounds: Design, synthesis, DNA binding and antidiabetic activity of 6-methyl-3-formyl chromone derived hydrazones and their metal (II) complexes. J. Photochem. Photobiol. B, 2017, 175, 178-191.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.09.003] [PMID: 28892754]
[88]
Khan, S.; Tariq, M.; Ashraf, M.; Abdullah, S.; al-Rashida, M.; Khalid, M.; Taslimi, P.; Fatima, M.; Zafar, R.; Shafiq, Z. Probing 2-acetylbenzofuran hydrazones and their metal complexes as α-glucosidase inhibitors. Bioorg. Chem., 2020, 102, 104082.
[http://dx.doi.org/10.1016/j.bioorg.2020.104082] [PMID: 32717690]
[89]
Olomola, T.O.; Mphahlele, M.J.; Gildenhuys, S. Benzofuran-selenadiazole hybrids as novel α-glucosidase and cyclooxygenase-2 inhibitors with antioxidant and cytotoxic properties. Bioorg. Chem., 2020, 100, 103945.
[http://dx.doi.org/10.1016/j.bioorg.2020.103945] [PMID: 32450390]
[90]
Niaz, H.; Kashtoh, H.; Khan, J.A.J.; Khan, A.; Wahab, A.; Alam, M.T.; Khan, K.M.; Perveen, S.; Choudhary, M.I. Synthesis of diethyl 4-substituted-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylates as a new series of inhibitors against yeast α-glucosidase. Eur. J. Med. Chem., 2015, 95, 199-209.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.018] [PMID: 25817770]
[91]
Ali, M.; Khan, K.M.; Mahdavi, M.; Jabbar, A.; Shamim, S.; Salar, U.; Taha, M.; Perveen, S.; Larijani, B.; Faramarzi, M.A. Synthesis, in vitro and in silico screening of 2-amino-4-aryl-6-(phenylthio) pyridine-3,5-dicarbonitriles as novel α-glucosidase inhibitors. Bioorg. Chem., 2020, 100, 103879.
[http://dx.doi.org/10.1016/j.bioorg.2020.103879] [PMID: 32413625]
[92]
Luthra, T.; Banothu, V.; Adepally, U.; Kumar, K.M.S.; Chakrabarti, S.; Maddi, S.R.; Sen, S. Discovery of novel pyrido-pyrrolidine hybrid compounds as alpha-glucosidase inhibitors and alternative agent for control of type 1 diabetes. Eur. J. Med. Chem., 2020, 188, 112034.
[http://dx.doi.org/10.1016/j.ejmech.2020.112034] [PMID: 31927314]
[93]
Yousuf, H.; Shamim, S.; Khan, K.M.; Chigurupati, S.; Kanwal; Hameed, S.; Khan, M.N.; Taha, M.; Arfeen, M. Dihydropyridines as potential α-amylase and α-glucosidase inhibitors: Synthesis, in vitro and in silico studies. Bioorg. Chem., 2020, 96, 103581.
[http://dx.doi.org/10.1016/j.bioorg.2020.103581] [PMID: 31978686]
[94]
Chaudhry, F.; Naureen, S.; Choudhry, S.; Huma, R.; Ashraf, M.; al-Rashida, M.; Jahan, B.; Hyder Khan, M.; Iqbal, F.; Ali Munawar, M.; Ain Khan, M. Evaluation of α-glucosidase inhibiting potentials with docking calculations of synthesized arylidene-pyrazolones. Bioorg. Chem., 2018, 77, 507-514.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.002] [PMID: 29454828]
[95]
Balestri, F.; Quattrini, L.; Coviello, V.; Sartini, S.; Da Settimo, F.; Cappiello, M.; Moschini, R.; Del Corso, A.; Mura, U.; La Motta, C. Acid Derivatives of Pyrazolo[1,5-a]pyrimidine as Aldose Reductase Differential Inhibitors. Cell Chem. Biol., 2018, 25(11), 1414-1418.e3.
[http://dx.doi.org/10.1016/j.chembiol.2018.07.008] [PMID: 30122369]
[96]
Peytam, F.; Adib, M.; Shourgeshty, R.; Firoozpour, L.; Rahmanian-Jazi, M.; Jahani, M.; Moghimi, S.; Divsalar, K.; Faramarzi, M.A.; Mojtabavi, S.; Safari, F.; Mahdavi, M.; Foroumadi, A. An efficient and targeted synthetic approach towards new highly substituted 6-amino-pyrazolo[1,5-a]pyrimidines with α-glucosidase inhibitory activity. Sci. Rep., 2020, 10(1), 2595.
[http://dx.doi.org/10.1038/s41598-020-59079-z] [PMID: 32054916]
[97]
Chen, Y.L.; Chen, I.L.; Lu, C.M.; Tzeng, C.C.; Tsao, L.T.; Wang, J.P. Synthesis and anti-inflammatory evaluation of 4-anilinofuro[2,3- b]quinoline and 4-phenoxyfuro[2,3- b]quinoline derivatives. Part 3. Bioorg. Med. Chem., 2004, 12(2), 387-392.
[http://dx.doi.org/10.1016/j.bmc.2003.10.051] [PMID: 14723957]
[98]
Taha, M.; Sultan, S.; Imran, S.; Rahim, F.; Zaman, K.; Wadood, A.; Ur Rehman, A.; Uddin, N.; Mohammed Khan, K. Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies. Bioorg. Med. Chem., 2019, 27(18), 4081-4088.
[http://dx.doi.org/10.1016/j.bmc.2019.07.035] [PMID: 31378594]
[99]
Heydari, Z.; Mohammadi-Khanaposhtani, M.; Imanparast, S.; Faramarzi, M.A.; Mahdavi, M.; Ranjbar, P.R.; Larijani, B. Pyrano[3,2-c]quinoline Derivatives as New Class of α-glucosidase Inhibitors to Treat Type 2 Diabetes: Synthesis, in vitro Biological Evaluation and Kinetic Study. Med. Chem., 2019, 15(1), 8-16.
[http://dx.doi.org/10.2174/1573406414666180528110104] [PMID: 29807519]
[100]
Lavanya, G.; Venkatapathy, K.; Magesh, C.J.; Ramanathan, M.; Jayasudha, R. The first target specific, highly diastereoselective synthesis, design and characterization of pyranoquinolinyl acrylic acid diastereomers as potential α-glucosidase inhibitors. Bioorg. Chem., 2019, 84, 125-136.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.026] [PMID: 30500522]
[101]
Noori, M.; Davoodi, A.; Iraji, A.; Dastyafteh, N.; Khalili, M.; Asadi, M.; Mohammadi Khanaposhtani, M.; Mojtabavi, S.; Dianatpour, M.; Faramarzi, M.A.; Larijani, B.; Amanlou, M.; Mahdavi, M. Design, synthesis, and in silico studies of quinoline-based-benzo[d]imidazole bearing different acetamide derivatives as potent α-glucosidase inhibitors. Sci. Rep., 2022, 12(1), 14019.
[http://dx.doi.org/10.1038/s41598-022-18455-7] [PMID: 35982225]
[102]
Sharma, P.; Dayma, V.; Dwivedi, A.; Baroliya, P.K.; Tripathi, I.P.; Vanangamudi, M.; Chauhan, R.S.; Goswami, A.K. Synthesis of sulpha drug based hydroxytriazene derivatives: Anti-diabetic, antioxidant, anti-inflammatory activity and their molecular docking studies. Bioorg. Chem., 2020, 96, 103642.
[http://dx.doi.org/10.1016/j.bioorg.2020.103642] [PMID: 32062065]
[103]
Thakral, S.; Singh, V. 2,4-Dichloro-5-[(N-aryl/alkyl)sulfamoyl]benzoic Acid Derivatives: In vitro Antidiabetic Activity, Molecular Modeling and in silico ADMET Screening. Med. Chem., 2019, 15(2), 186-195.
[http://dx.doi.org/10.2174/1573406414666180924164327] [PMID: 30251608]
[104]
Abbasi, M.A.; Rehman, A.; Siddiqui, S.Z.; Hadi, N.; Mumtaz, A.; Shah, S.A.A.; Ashraf, M.; Abbasi, G.H. Synthesis of some new N-(alkyl/aralkyl)-N-(2,3-dihydro-1,4-benzodioxan-6-yl)-4-chlorobenzenesulfonamides as possible therapeutic agents for Alzheimer’s disease and Type-2 Diabetes. Pak. J. Pharm. Sci., 2019, 32(1), 61-68.
[PMID: 30772791]
[105]
Askarzadeh, M.; Azizian, H.; Adib, M.; Mohammadi-Khanaposhtani, M.; Mojtabavi, S.; Faramarzi, M.A.; Sajjadi-Jazi, S.M.; Larijani, B.; Hamedifar, H.; Mahdavi, M. Design, synthesis, in vitro α-glucosidase inhibition, docking, and molecular dynamics of new phthalimide-benzenesulfonamide hybrids for targeting type 2 diabetes. Sci. Rep., 2022, 12(1), 10569.
[http://dx.doi.org/10.1038/s41598-022-14896-2] [PMID: 35732907]
[106]
Kumar, R.; Singh, A.; Singh, J.; Singh, H.; Roy, R.K.; Chaudhary, A. 1,2,3-Triazine scaffold as a potent biologically active moiety: A mini review. Mini Rev. Med. Chem., 2014, 14(1), 72-83.
[http://dx.doi.org/10.2174/1389557513666140103111017] [PMID: 24387709]
[107]
Shamim, S.; Khan, K.M.; Ullah, N.; Chigurupati, S.; Wadood, A.; Ur Rehman, A.; Ali, M.; Salar, U.; Alhowail, A.; Taha, M.; Perveen, S. Synthesis and screening of (E)-3-(2-benzylidenehydrazinyl)-5,6-diphenyl-1,2,4-triazine analogs as novel dual inhibitors of α-amylase and α-glucosidase. Bioorg. Chem., 2020, 101, 103979.
[http://dx.doi.org/10.1016/j.bioorg.2020.103979] [PMID: 32544738]
[108]
Wang, G.; Peng, Z.; Wang, J.; Li, X.; Li, J. Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors. Eur. J. Med. Chem., 2017, 125, 423-429.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.067] [PMID: 27689725]
[109]
Wang, G.; Li, X.; Wang, J.; Xie, Z.; Li, L.; Chen, M.; Chen, S.; Peng, Y. Synthesis, molecular docking and α-glucosidase inhibition of 2-((5,6-diphenyl-1,2,4-triazin-3-yl)thio)-N-arylacetamides. Bioorg. Med. Chem. Lett., 2017, 27(5), 1115-1118.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.094] [PMID: 28189421]
[110]
Rahim, F.; Ullah, K.; Ullah, H.; Wadood, A.; Taha, M.; Rehman, A.U.; uddin, I.; Ashraf, M.; Shaukat, A.; Rehman, W.; Hussain, S.; Khan, K.M. Triazinoindole analogs as potent inhibitors of α-glucosidase: Synthesis, biological evaluation and molecular docking studies. Bioorg. Chem., 2015, 58, 81-87.
[http://dx.doi.org/10.1016/j.bioorg.2014.12.001] [PMID: 25528720]
[111]
Moghimi, S.; Toolabi, M.; Salarinejad, S.; Firoozpour, L.; Sadat Ebrahimi, S.E.; Safari, F.; Mojtabavi, S.; Faramarzi, M.A.; Foroumadi, A. Design and synthesis of novel pyridazine N-aryl acetamides: In-vitro evaluation of α-glucosidase inhibition, docking, and kinetic studies. Bioorg. Chem., 2020, 102, 104071.
[http://dx.doi.org/10.1016/j.bioorg.2020.104071] [PMID: 32688112]
[112]
Xie, H.X.; Zhang, J.; Li, Y.; Zhang, J.H.; Liu, S.K.; Zhang, J.; Zheng, H.; Hao, G.Z.; Zhu, K.K.; Jiang, C.S. Novel tetrahydrobenzo[b]thiophen-2-yl)urea derivatives as novel α-glucosidase inhibitors: Synthesis, kinetics study, molecular docking, and in vivo anti-hyperglycemic evaluation. Bioorg. Chem., 2021, 115, 105236.
[http://dx.doi.org/10.1016/j.bioorg.2021.105236] [PMID: 34411978]
[113]
Zhang, J.H.; Xie, H.X.; Li, Y.; Wang, K.M.; Song, Z.; Zhu, K.K.; Fang, L.; Zhang, J.; Jiang, C.S. Design, synthesis and biological evaluation of novel (E)-2-benzylidene-N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)hydrazine-1-carboxamide derivatives as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2021, 52, 128413.
[http://dx.doi.org/10.1016/j.bmcl.2021.128413] [PMID: 34634473]
[114]
Akhter, S.; Ullah, S.; Yousuf, S. Atia-tul-Wahab.; Siddiqui, H.; Choudhary, M.I. Synthesis, crystal structure and Hirshfeld Surface analysis of benzamide derivatives of thiourea as potent inhibitors of α-glucosidase in-vitro. Bioorg. Chem., 2021, 107, 104531.
[http://dx.doi.org/10.1016/j.bioorg.2020.104531] [PMID: 33339666]
[115]
Wan, J.X.; Lim, G.; Lee, J.; Sun, X.B.; Gao, D.Y.; Si, Y.X.; Shi, X.L.; Qian, G.Y.; Wang, Q.; Park, Y.D. Inhibitory effect of phloroglucinol on α-glucosidase: Kinetics and molecular dynamics simulation integration study. Int. J. Biol. Macromol., 2019, 124, 771-779.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.268] [PMID: 30503787]
[116]
Yu, X.; Zhang, F.; Liu, T.; Liu, Z.; Dong, Q.; Li, D. Exploring efficacy of natural-derived acetylphenol scaffold inhibitors for α-glucosidase: Synthesis, in vitro and in vivo biochemical studies. Bioorg. Med. Chem. Lett., 2020, 30(23), 127528.
[http://dx.doi.org/10.1016/j.bmcl.2020.127528] [PMID: 32920141]
[117]
Duong, T.H.; Paramita Devi, A.; Tran, N.M.A.; Phan, H.V.T.; Huynh, N.V.; Sichaem, J.; Tran, H.D.; Alam, M.; Nguyen, T.P.; Nguyen, H.H.; Chavasiri, W.; Nguyen, T.C. Synthesis, α-glucosidase inhibition, and molecular docking studies of novel N-substituted hydrazide derivatives of atranorin as antidiabetic agents. Bioorg. Med. Chem. Lett., 2020, 30(17), 127359.
[http://dx.doi.org/10.1016/j.bmcl.2020.127359] [PMID: 32738998]
[118]
Zhang, J.; Ge, Y.X.; Fang, L.; Zhu, K.K.; Liu, S.K.; Wang, K.M.; Jiang, C.S. Discovery of 3-(1H-indol-5-yl)-1,2,4-oxidizable derivatives as non-competitive α-glucosidase inhibitors. Chem. Pap., 2021, 75(9), 4661-4667.
[http://dx.doi.org/10.1007/s11696-021-01687-8]
[119]
Iftikhar, M.; Shahnawaz; Saleem, M.; Riaz, N.; Aziz-ur-Rehman; Ahmed, I.; Rahman, J.; Ashraf, M.; Sharif, M.S.; Khan, S.U.; Htar, T.T. A novel five‐step synthetic route to 1,3,4‐oxadiazole derivatives with potent α‐glucosidase inhibitory potential and their in silico studies. Arch. Pharm. (Weinheim), 2019, 352(12), 1900095.
[http://dx.doi.org/10.1002/ardp.201900095] [PMID: 31544284]
[120]
Zawawi, N.K.N.A.; Taha, M.; Ahmat, N.; Ismail, N.H.; Wadood, A.; Rahim, F.; Rehman, A.U. Synthesis, in vitro evaluation and molecular docking studies of biscoumarin thiourea as a new inhibitor of α-glucosidases. Bioorg. Chem., 2015, 63, 36-44.
[http://dx.doi.org/10.1016/j.bioorg.2015.09.004] [PMID: 26432614]
[121]
Kalaiselvan, V.; Kalaivani, M.; Vijayakumar, A.; Sureshkumar, K.; Venkateskumar, K. Current knowledge and future direction of research on soy isoflavones as a therapeutic agents. Pharmacogn. Rev., 2010, 4(8), 111-117.
[http://dx.doi.org/10.4103/0973-7847.70900] [PMID: 22228950]
[122]
Hu, Y.; Wang, B.; Yang, J.; Liu, T.; Sun, J.; Wang, X. Synthesis and biological evaluation of 3-arylcoumarin derivatives as potential anti-diabetic agents. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 15-30.
[http://dx.doi.org/10.1080/14756366.2018.1518958] [PMID: 30362362]
[123]
Cui, Y.; Hu, Y.H.; Yu, F.; Zheng, J.; Chen, L.S.; Chen, Q.X.; Wang, Q. Inhibition kinetics and molecular simulation of p-substituted cinnamic acid derivatives on tyrosinase. Int. J. Biol. Macromol., 2017, 95, 1289-1297.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.027] [PMID: 27840215]
[124]
Xu, X.T.; Deng, X.Y.; Chen, J.; Liang, Q.M.; Zhang, K.; Li, D.L.; Wu, P.P.; Zheng, X.; Zhou, R.P.; Jiang, Z.Y.; Ma, A.J.; Chen, W.H.; Wang, S.H. Synthesis and biological evaluation of coumarin derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem., 2020, 189, 112013.
[http://dx.doi.org/10.1016/j.ejmech.2019.112013] [PMID: 31972390]
[125]
Menteşe, E.; Baltaş N.; Bekircan, O. Synthesis and kinetics studies of N′ -(2-(3,5-disubstituted-4 H -1,2,4-triazol-4-yl)acetyl)-6/7/8-substituted-2-oxo-2 H -chromen-3-carbohydrazide derivatives as potent antidiabetic agents. Arch. Pharm. (Weinheim), 2019, 352(12), 1900227.
[http://dx.doi.org/10.1002/ardp.201900227] [PMID: 31609028]
[126]
Asgari, M.S.; Mohammadi-Khanaposhtani, M.; Kiani, M.; Ranjbar, P.R.; Zabihi, E.; Pourbagher, R.; Rahimi, R.; Faramarzi, M.A.; Biglar, M.; Larijani, B.; Mahdavi, M.; Hamedifar, H.; Hajimiri, M.H. Biscoumarin-1,2,3-triazole hybrids as novel anti-diabetic agents: Design, synthesis, in vitro α-glucosidase inhibition, kinetic, and docking studies. Bioorg. Chem., 2019, 92, 103206.
[http://dx.doi.org/10.1016/j.bioorg.2019.103206] [PMID: 31445191]
[127]
Meena, S.N.; kumar, U.; Naik, M.M.; Ghadi, S.C.; Tilve, S.G. α-Glucosidase inhibition activity and in silico study of 2-(benzo[d][1,3]dioxol-5-yl)-4H-chromen-4-one, a synthetic derivative of flavone. Bioorg. Med. Chem., 2019, 27(12), 2340-2344.
[http://dx.doi.org/10.1016/j.bmc.2018.12.021] [PMID: 30594450]
[128]
Ye, G.J.; Lan, T.; Huang, Z.X.; Cheng, X.N.; Cai, C.Y.; Ding, S.M.; Xie, M.L.; Wang, B. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion. Eur. J. Med. Chem., 2019, 177, 362-373.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.045] [PMID: 31158750]
[129]
Tahir, T.; Shahzad, M.I.; Tabassum, R.; Rafiq, M.; Ashfaq, M.; Hassan, M.; Kotwica-Mojzych, K.; Mojzych, M. Diaryl azo derivatives as anti-diabetic and antimicrobial agents: synthesis, in vitro, kinetic and docking studies. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1508-1519.
[http://dx.doi.org/10.1080/14756366.2021.1929949] [PMID: 34238110]
[130]
Shahzad, D.; Saeed, A.; Larik, F.A.; Channar, P.A.; Abbas, Q.; Alajmi, M.F.; Arshad, M.I.; Erben, M.F.; Hassan, M.; Raza, H.; Seo, S.Y.; El-Seedi, H.R. Novel C-2 Symmetric Molecules as α-Glucosidase and α-Amylase Inhibitors: Design, Synthesis, Kinetic Evaluation, Molecular Docking and Pharmacokinetics. Molecules, 2019, 24(8), 1511.
[http://dx.doi.org/10.3390/molecules24081511] [PMID: 30999646]
[131]
Hatano, A.; Kanno, Y.; Kondo, Y.; Sunaga, Y.; Umezawa, H.; Fukui, K. Use of a deoxynojirimycin-fluorophore conjugate as a cell-specific imaging probe targeting α-glucosidase on cell membranes. Bioorg. Med. Chem., 2019, 27(5), 859-864.
[http://dx.doi.org/10.1016/j.bmc.2019.01.032] [PMID: 30712980]
[132]
Rawlings, A.J.; Lomas, H.; Pilling, A.W.; Lee, M.J.R.; Alonzi, D.S.; Rountree, J.S.S.; Jenkinson, S.F.; Fleet, G.W.J.; Dwek, R.A.; Jones, J.H.; Butters, T.D. Synthesis and biological characterisation of novel N-alkyl-deoxynojirimycin alpha-glucosidase inhibitors. ChemBioChem, 2009, 10(6), 1101-1105.
[http://dx.doi.org/10.1002/cbic.200900025] [PMID: 19294724]
[133]
Lin, P.; Zeng, J.C.; Chen, J.G.; Nie, X.L.; Yuan, E.; Wang, X.Q.; Peng, D.Y.; Yin, Z.P. Synthesis, in vitro inhibitory activity, kinetic study and molecular docking of novel N -alkyl-deoxynojirimycin derivatives as potential α-glucosidase inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1879-1890.
[http://dx.doi.org/10.1080/14756366.2020.1826941] [PMID: 33003963]
[134]
Zeng, F.; Yin, Z.; Chen, J.; Nie, X.; Lin, P.; lu, T.; Wang, M.; Peng, D. Design, Synthesis, and Activity Evaluation of Novel N-benzyl Deoxynojirimycin Derivatives for Use as α-Glucosidase Inhibitors. Molecules, 2019, 24(18), 3309.
[http://dx.doi.org/10.3390/molecules24183309] [PMID: 31514404]
[135]
Kowalski, R. Studies of selected plant raw materials as alternative sources of triterpenes of oleanolic and ursolic acid types. J. Agric. Food Chem., 2007, 55(3), 656-662.
[http://dx.doi.org/10.1021/jf0625858] [PMID: 17263457]
[136]
Tang, C.; Chen, Y.; Bai, S.; Yang, G. Advances in the Study of Structural Modification and Biological Activities of Oleanolic Acid. Youji Huaxue, 2013, 33(1), 46.
[http://dx.doi.org/10.6023/cjoc201207019]
[137]
Wang, Z.; Hsu, C.; Huang, C.; Yin, M. Anti-glycative effects of oleanolic acid and ursolic acid in kidney of diabetic mice. Eur. J. Pharmacol., 2010, 628(1-3), 255-260.
[http://dx.doi.org/10.1016/j.ejphar.2009.11.019] [PMID: 19917277]
[138]
Ding, H; Hu, X; Xu, X; Zhang, G; Gong, D Inhibitory mechanism of two allosteric inhibitors, oleanolic acid and ursolic acid on α- glucosidase. Int J Biol Macromol., 2018, 6107(Pt B), 1844-1855.
[139]
Zhong, Y.Y.; Chen, H.S.; Wu, P.P.; Zhang, B.J.; Yang, Y.; Zhu, Q.Y.; Zhang, C.G.; Zhao, S.Q. Synthesis and biological evaluation of novel oleanolic acid analogues as potential α-glucosidase inhibitors. Eur. J. Med. Chem., 2019, 164, 706-716.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.046] [PMID: 30677669]
[140]
Deng, X.Y.; Ke, J.J.; Zheng, Y.Y.; Li, D.L.; Zhang, K.; Zheng, X.; Wu, J.Y.; Xiong, Z.; Wu, P.P.; Xu, X.T. Synthesis and bioactivities evaluation of oleanolic acid oxime ester derivatives as α -glucosidase and α -amylase inhibitors. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 451-461.
[http://dx.doi.org/10.1080/14756366.2021.2018682] [PMID: 35012401]
[141]
Liu, J.; Wang, X.; Chen, Y.P.; Mao, L.F.; Shang, J.; Sun, H.B.; Zhang, L.Y. Maslinic acid modulates glycogen metabolism by enhancing the insulin signaling pathway and inhibiting glycogen phosphorylase. Chin. J. Nat. Med., 2014, 12(4), 259-265.
[http://dx.doi.org/10.1016/S1875-5364(14)60052-2] [PMID: 24863350]
[142]
Wen, X.; Xia, J.; Cheng, K.; Zhang, L.; Zhang, P.; Liu, J.; Zhang, L.; Ni, P.; Sun, H. Pentacyclic triterpenes. Part 5: Synthesis and SAR study of corosolic acid derivatives as inhibitors of glycogen phosphorylases. Bioorg. Med. Chem. Lett., 2007, 17(21), 5777-5782.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.057] [PMID: 17869102]
[143]
Liu, X.; Zang, X.; Yin, X.; Yang, W.; Huang, J.; Huang, J.; Yu, C.; Ke, C.; Hong, Y. Semi-synthesis of C28-modified triterpene acid derivatives from maslinic acid or corosolic acid as potential α-glucosidase inhibitors. Bioorg. Chem., 2020, 97, 103694.
[http://dx.doi.org/10.1016/j.bioorg.2020.103694] [PMID: 32120080]
[144]
Kwon, Y.I.; Vattem, D.A.; Shetty, K. Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pac. J. Clin. Nutr., 2006, 15(1), 107-118.
[PMID: 16500886]
[145]
McCue, P.P.; Shetty, K. Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pac. J. Clin. Nutr., 2004, 13(1), 101-106.
[PMID: 15003922]
[146]
Zhu, F.; Wang, J.; Takano, H.; Xu, Z.; Nishiwaki, H.; Yonekura, L.; Yang, R.; Tamura, H. Rosmarinic acid and its ester derivatives for enhancing antibacterial, α-glucosidase inhibitory, and lipid accumulation suppression activities. J. Food Biochem., 2019, 43(2), e12719.
[http://dx.doi.org/10.1111/jfbc.12719] [PMID: 31353663]
[147]
Kwon, Y.I.; Jang, H.D.; Shetty, K. Evaluation of Rhodiola crenulata and Rhodiola rosea for management of type II diabetes and hypertension. Asia Pac. J. Clin. Nutr., 2006, 15(3), 425-432.
[PMID: 16837437]
[148]
Chandramohan, R.; Saravanan, S.; Pari, L. Beneficial effects of tyrosol on altered glycoprotein components in streptozotocin-induced diabetic rats. Pharm. Biol., 2017, 55(1), 1631-1637.
[http://dx.doi.org/10.1080/13880209.2017.1315603] [PMID: 28427293]
[149]
Zhang, L.; Xu, Q.; Zhu, J.; Xia, G.; Zang, H. Synthesis, α -Glucosidase inhibition and molecular docking studies of tyrosol derivatives. Nat. Prod. Res., 2021, 35(10), 1596-1604.
[http://dx.doi.org/10.1080/14786419.2019.1628750] [PMID: 31204495]
[150]
Saddique, F.A.; Aslam, S.; Ahmad, M.; Ashfaq, U.A.; Muddassar, M.; Sultan, S.; Taj, S.; Hussain, M.; Sung Lee, D.; Zaki, M.E.A. Synthesis and α-Glucosidase Inhibition Activity of 2-[3-(Benzoyl/4-bromobenzoyl)-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl]-N-arylacetamides: An in silico and Biochemical Approach. Molecules, 2021, 26(10), 3043.
[http://dx.doi.org/10.3390/molecules26103043] [PMID: 34065194]
[151]
Xiao, J.B.; Högger, P. Dietary polyphenols and type 2 diabetes: Current insights and future perspectives. Curr. Med. Chem., 2014, 22(1), 23-38.
[http://dx.doi.org/10.2174/0929867321666140706130807] [PMID: 25005188]
[152]
Dan, W.J.; Zhang, Q.; Zhang, F.; Wang, W.W.; Gao, J.M. Benzonate derivatives of acetophenone as potent α -glucosidase inhibitors: Synthesis, structure-activity relationship and mechanism. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 937-945.
[http://dx.doi.org/10.1080/14756366.2019.1604519] [PMID: 31072245]
[153]
Burmaoglu, S.; Yilmaz, A.O.; Polat, M.F.; Kaya, R. Gulcin, İ.; Algul, O. Synthesis and biological evaluation of novel tris-chalcones as potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibitors. Bioorg. Chem., 2019, 85, 191-197.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.035] [PMID: 30622011]
[154]
Abdullah, M.A.; Lee, Y.R.; Mastuki, S.N.; Leong, S.W.; Wan Ibrahim, W.N.; Mohammad Latif, M.A.; Ramli, A.N.M.; Mohd Aluwi, M.F.F.; Mohd Faudzi, S.M.; Kim, C.H. Development of diarylpentadienone analogues as alpha-glucosidase inhibitor: Synthesis, in vitro biological and in vivo toxicity evaluations, and molecular docking analysis. Bioorg. Chem., 2020, 104, 104277.
[http://dx.doi.org/10.1016/j.bioorg.2020.104277] [PMID: 32971414]
[155]
Wang, H.; Tang, S.; Zhang, G.; Pan, Y.; Jiao, W.; Shao, H. Synthesis of N-Substituted Iminosugar C-Glycosides and Evaluation as Promising α-Glucosidase Inhibitors. Molecules, 2022, 27(17), 5517.
[http://dx.doi.org/10.3390/molecules27175517] [PMID: 36080282]
[156]
Barakat, A.; Ali, M.; Mohammed Al-Majid, A.; Yousuf, S.; Iqbal Choudhary, M.; Khalil, R.; Ul-Haq, Z. Synthesis of thiobarbituric acid derivatives: In vitro α -glucosidase inhibition and molecular docking studies. Bioorg. Chem., 2017, 75, 99-105.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.003] [PMID: 28926784]
[157]
Ali, M.; Barakat, A.; El-Faham, A.; Al-Rasheed, H.H.; Dahlous, K.; Al-Majid, A.M.; Sharma, A.; Yousuf, S.; Sanam, M.; Ul-Haq, Z.; Choudhary, M.I.; de la Torre, B.G.; Albericio, F. Synthesis and characterisation of thiobarbituric acid enamine derivatives, and evaluation of their α-glucosidase inhibitory and anti-glycation activity. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 692-701.
[http://dx.doi.org/10.1080/14756366.2020.1737045] [PMID: 32156165]
[158]
Naik, S.R.; Niture, N.T.; Ansari, A.A.; Shah, P.D. Anti-diabetic activity of embelin: Involvement of cellular inflammatory mediators, oxidative stress and other biomarkers. Phytomedicine, 2013, 20(10), 797-804.
[http://dx.doi.org/10.1016/j.phymed.2013.03.003] [PMID: 23597490]
[159]
Mahendran, S.; Badami, S.; Maithili, V. Evaluation of antidiabetic effect of embelin from Embelia ribes in alloxan induced diabetes in rats. Biomedicine & Preventive Nutrition, 2011, 1(1), 25-31.
[http://dx.doi.org/10.1016/j.bionut.2010.08.002]
[160]
Chen, X.; Gao, M.; Jian, R.; Hong, W.D.; Tang, X.; Li, Y.; Zhao, D.; Zhang, K.; Chen, W.; Zheng, X.; Sheng, Z.; Wu, P. Design, synthesis and α-glucosidase inhibition study of novel embelin derivatives. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 565-573.
[http://dx.doi.org/10.1080/14756366.2020.1715386] [PMID: 31969031]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy