Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Thymol-based Dual Chemosensor for Optical Detection of Cu2+ and Pb2+ ions and Evaluation of its Toxicity Against Plant Growth Promoting Rhizobacteria

Author(s): Ramneet Kaur, Jyoti Gaba*, Suman Kumari and Ruhi Midha

Volume 21, Issue 3, 2024

Published on: 05 October, 2023

Page: [260 - 270] Pages: 11

DOI: 10.2174/0115701786263410230928114953

Price: $65

Abstract

Thymol is a naturally occurring monoterpenoid phenol, and its derivatives may emerge as eco-friendly materials for the development of chemosensing probes. To prepare a non-toxic chemosensing probe based on thymol moiety for the detection of metal ions.

A chemosensor (TPC) based on thymol was afforded by the reaction of thymol and piperidine in methanol. The structure elucidation of TPC was carried out with UV-Vis, 1H-NMR, 13C-NMR, and FT-IR analysis. The chemosensing properties of the synthesized probe were determined with UVvisible spectroscopy, and further, it was exploited for the determination of the concentration of Cu2+ and Pb2+ ions in spiked tap water samples. The toxicity studies of the chemosensing probe were conducted against the plant growth-promoting rhizobacteria (PGPR), i.e., Rhizobium sp., Pseudomonas sp., and Azospirillum sp. The absorption spectrum of TPC showed a band at 277 nm. The presence of Cu2+ and Pb2+ ions induced an increase in the absorption intensity at 277 nm by 2-fold and 1.5-fold, respectively. The binding constant for both TPC-Cu2+ and TPC-Pb2+ was calculated as 1.55 × 105 M-1 and 1.47 × 105 M-1, respectively. The respective limit of detection (LOD) and limit of quantification (LOQ) for Cu2+ were 623.64 × 10-6 mol L-1 and 1889.85 × 10-6 mol L-1. For Pb2+ ions, LOD and LOQ were calculated as 676.70 × 10-6 mol L-1 and 2050.60 × 10-6 mol L-1, respectively. In spiked tap water samples, percent recovery was observed in the range of 80.1 to 81.0 % and 80.1 to 81.9 % for Cu2+ and Pb2+ ions, respectively. Toxicity studies of the synthesized probe inferred that TPC was non-toxic against the tested PGPR at all the tested concentrations. In this work, we have synthesized a thymolbased chemosensor, which has been evaluated as a non-toxic sensor for Pb2+ and Cu2+ ions.

Graphical Abstract

[1]
Babu, S.M.O.F.; Hossain, M.B.; Rahman, M.S.; Rahman, M.; Ahmed, A.S.S.; Hasan, M.M.; Rakib, A.; Emran, T.B.; Xiao, J.; Simal-Gandara, J. Appl. Sci., 2021, 11(21), 10348.
[http://dx.doi.org/10.3390/app112110348]
[2]
Zoghi, A.; Massoud, R.; Todorov, S.D.; Chikindas, M.L.; Popov, I.; Smith, S.; Khosravi-Darani, K. Enzyme Microb. Technol., 2021, 150, 109861.
[http://dx.doi.org/10.1016/j.enzmictec.2021.109861] [PMID: 34489020]
[3]
Lee, J.C.; Son, Y.O.; Pratheeshkumar, P.; Shi, X. Free Radic. Biol. Med., 2012, 53(4), 742-757.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.002] [PMID: 22705365]
[4]
Mishra, A.; Malik, A. Crit. Rev. Environ. Sci. Technol., 2013, 43(11), 1162-1222.
[http://dx.doi.org/10.1080/10934529.2011.627044]
[5]
He, Z.L.; Yang, X.E.; Stoffella, P.J. J. Trace Elem. Med. Biol., 2005, 19(2-3), 125-140.
[http://dx.doi.org/10.1016/j.jtemb.2005.02.010] [PMID: 16325528]
[6]
Koedrith, P.; Seo, Y.R. Int. J. Mol. Sci., 2011, 12(12), 9576-9595.
[http://dx.doi.org/10.3390/ijms12129576] [PMID: 22272150]
[7]
Montes-Castro, N.; Alvarado-Cruz, I.; Torres-Sánchez, L.; García-Aguiar, I.; Barrera-Hernández, A.; Escamilla-Núñez, C.; Del Razo, L.M.; Quintanilla-Vega, B. J. Trace Elem. Med. Biol., 2019, 55, 110-120.
[http://dx.doi.org/10.1016/j.jtemb.2019.06.014] [PMID: 31345348]
[8]
Wise, J.T.F.; Wang, L.; Zhang, Z.; Shi, X. Toxicol. Appl. Pharmacol., 2017, 331, 1-5.
[http://dx.doi.org/10.1016/j.taap.2017.04.007] [PMID: 28412307]
[9]
Samadhiya, K.; Ghosh, A.; Bhatnagar, A.; Bala, K. Int. J. Mol. Sci., 2023, 227, 416-423.
[10]
Liu, Z.C.; Gao, L.M.; Liu, N.; Zhang, X.X.; Chen, L.L. Adv. Mat. Res., 2015, 1092, 701-708.
[11]
A El-Meligi, A. Corros. Sci., 2011, 1(2), 144-155.
[12]
Alvarado-Cruz, I.; Alegría-Torres, J.A.; Montes-Castro, N.; Jiménez-Garza, O.; Quintanilla-Vega, B. Ann. Glob. Health, 2018, 84(2), 212-224.
[http://dx.doi.org/10.29024/aogh.909] [PMID: 30873799]
[13]
Rao, J.V.B.; Vengamma, B.; Naveen, T.; Naveen, V. J. Neurosci. Rural Pract., 2014, 5(2), 161-163.
[http://dx.doi.org/10.4103/0976-3147.131665] [PMID: 24966557]
[14]
Liu, J.; Xue, J.; Yuan, D.; Wei, X.; Su, H. Recent Innov. Chem. Eng., 2020, 13(1), 3-16.
[http://dx.doi.org/10.2174/2405520412666190912151737]
[15]
Flora, S.J.S.; Mittal, M.; Mehta, A. Indian J. Med. Res., 2008, 128(4), 501-523.
[PMID: 19106443]
[16]
Tullius Scotti, M.; Scotti, L.; Ishiki, H.; Fávaro Ribeiro, F.; Marques Duarte da Cruz, R.; Pedrosa de Oliveira, M.; Jaime Bezerra Mendonça, F. Comb. Chem. High Throughput Screen., 2016, 19(7), 537-553.
[http://dx.doi.org/10.2174/1386207319666160506123921] [PMID: 27682867]
[17]
Goyer, R.A. Environ. Health Perspect., 1993, 100, 177-187.
[http://dx.doi.org/10.1289/ehp.93100177] [PMID: 8354166]
[18]
Waalkes, M.P.; Diwan, B.A.; Ward, J.M.; Devor, D.E.; Goyer, R.A. Cancer Res., 1995, 55(22), 5265-5271.
[PMID: 7585586]
[19]
Waalkes, M.P.; Misra, R.R.; Chang, L.W. Boca Raton; CRC: FL, 1996.
[20]
Yasuda, H.; Yonashiro, T.; Yoshida, K.; Shibazaki, T.; Ishii, T.; Tsutsui, T. Biol. Trace Elem. Res., 2005, 16(1), 39-45.
[21]
Das, K.; Jargar, J.; Saha, S.; Yendigeri, S.; Singh, S. Indian J. Pharmacol., 2015, 47(3), 285-291.
[http://dx.doi.org/10.4103/0253-7613.157126] [PMID: 26069366]
[22]
Du, Y.; Gao, F.; Zhou, Y.; Yi, H.; Tang, X.; Qi, Z. J. Environ. Chem. Eng., 2021, 9(6), 106372.
[http://dx.doi.org/10.1016/j.jece.2021.106372]
[23]
Borkow, G.; Zatcoff, R.C.; Gabbay, J. Med. Hypotheses, 2009, 73(6), 883-886.
[http://dx.doi.org/10.1016/j.mehy.2009.02.050] [PMID: 19559540]
[24]
Gerosa, C.; Fanni, D.; Congiu, T.; Piras, M.; Cau, F.; Moi, M.; Faa, G. J. Inorg. Biochem., 2019, 193, 106-111.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.01.008] [PMID: 30703747]
[25]
Emila, S.; Swaminathan, S. J. Exp. Sci, 2013, 4(2), 32-43.
[26]
Naqib, S.A.; Jahan, M.S. J. Agric. Res., 2017, 2(3), 2474-8846.
[27]
Schomburg, L.; Köhrle, J. Mol. Nutr. Food Res., 2008, 52(11), 1235-1246.
[http://dx.doi.org/10.1002/mnfr.200700465] [PMID: 18686295]
[28]
Wintergerst, E.S.; Maggini, S.; Hornig, D.H. Ann. Nutr. Metab., 2007, 51(4), 301-323.
[http://dx.doi.org/10.1159/000107673] [PMID: 17726308]
[29]
Ilich, J.Z. Proc. Nutr. Soc., 2021, 80(3), 344-355.
[http://dx.doi.org/10.1017/S0029665121000586] [PMID: 33745471]
[30]
Jansen, J.; Karges, W.; Rink, L. J. Nutr. Biochem., 2009, 20(6), 399-417.
[http://dx.doi.org/10.1016/j.jnutbio.2009.01.009] [PMID: 19442898]
[31]
Cunha, T.A.; Vermeulen-Serpa, K.M.; Grilo, E.C.; Leite-Lais, L.; Brandão-Neto, J.; Vale, S.H.L. J. Trace Elem. Med. Biol., 2022, 71, 126940.
[http://dx.doi.org/10.1016/j.jtemb.2022.126940] [PMID: 35121408]
[32]
Ribeiro, M.; Simões, M. Environ. Chem. Lett., 2019, 17(4), 1485-1494.
[http://dx.doi.org/10.1007/s10311-019-00887-9]
[33]
Harvey, L.J.; McArdle, H.J. Br. J. Nutr., 2008, 99(S3)(Suppl. 3), S10-S13.
[http://dx.doi.org/10.1017/S0007114508006806] [PMID: 18598583]
[34]
van Dam, J.W.; Negri, A.P.; Uthicke, S.; Mueller, J.F. Eco. Imp. toxic. Chem, 2011, 9, 187-211.
[35]
Baltaci, A.K.; Yuce, K.; Mogulkoc, R. Biol. Trace Elem. Res., 2018, 183, 22-31.
[http://dx.doi.org/10.1007/s12011-017-1119-7] [PMID: 28812260]
[36]
Dorsey, A.; Ingerman, L. Centers for disease control and prevention, 2004.
[37]
Tchounwou, P.B.; Newsome, C.; Williams, J.; Glass, K. International Symposium on Metal Ions in Biology and Medicine held...= Les ions metalliques en biologie et en medecine:... Symposium international sur les ions metalliques., 2008, Vol. 10, p. 285.
[38]
Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M. Mol. Cell. Biochem., 2010, 345(1-2), 91-104.
[http://dx.doi.org/10.1007/s11010-010-0563-x] [PMID: 20730621]
[39]
Kim, J.J.; Kim, Y.S.; Kumar, V. J. Trace Elem. Med. Biol., 2019, 54, 226-231.
[http://dx.doi.org/10.1016/j.jtemb.2019.05.003] [PMID: 31109617]
[40]
Sharma, A.; Sharma, A.; Arya, R.K. Sep. Sci. Technol., 2015, 50(9), 1310-1320.
[http://dx.doi.org/10.1080/01496395.2014.968261]
[41]
Fan, G.; Yang, L.; Chen, Z. Front. Chem. Sci. Eng., 2014, 8(4), 405-417.
[http://dx.doi.org/10.1007/s11705-014-1445-7]
[42]
Massoud, R.; Zoghi, A. J. Appl. Microbiol., 2022, 133(3), 1288-1307.
[http://dx.doi.org/10.1111/jam.15685] [PMID: 35751476]
[43]
Yin, K.; Wang, Q.; Lv, M.; Chen, L. Chem. Eng. J., 2019, 360, 1553-1563.
[http://dx.doi.org/10.1016/j.cej.2018.10.226]
[44]
Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Ecotoxicol. Environ. Saf., 2018, 148, 702-712.
[http://dx.doi.org/10.1016/j.ecoenv.2017.11.034] [PMID: 29174989]
[45]
Andersen, O.; Aaseth, J. J. Trace Elem. Med. Biol., 2016, 38, 74-80.
[http://dx.doi.org/10.1016/j.jtemb.2016.03.013] [PMID: 27150911]
[46]
Aaseth, J.; Skaug, M.A.; Cao, Y.; Andersen, O. J. Trace Elem. Med. Biol., 2015, 31, 260-266.
[http://dx.doi.org/10.1016/j.jtemb.2014.10.001] [PMID: 25457281]
[47]
Dongare, P.; Kolekar, G.; Gore, A. Current Chinese Science, 2021, 1(5), 494-512.
[http://dx.doi.org/10.2174/2210298101666210831162500]
[48]
Xu, W.J.; Qi, D.Q.; You, J.Z.; Hu, F.F.; Bian, J.Y.; Yang, C.X.; Huang, J. J. Mol. Struct., 2015, 1091, 133-137.
[http://dx.doi.org/10.1016/j.molstruc.2015.02.083]
[49]
Moragues, M.E.; Martínez-Máñez, R.; Sancenón, F. Chem. Soc. Rev., 2011, 40(5), 2593-2643.
[http://dx.doi.org/10.1039/c0cs00015a] [PMID: 21279197]
[50]
Momidi, B.K.; Tekuri, V.; Trivedi, D.R. Inorg. Chem. Commun., 2016, 74, 1-5.
[http://dx.doi.org/10.1016/j.inoche.2016.10.017]
[51]
Upadhyay, S.; Singh, A.; Sinha, R.; Omer, S.; Negi, K. J. Mol. Struct., 2019, 1193, 89-102.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.007]
[52]
Aydın, E.; Turkez, H.; Tasdemir, S.; Hacımuftuoglu, F. Cent. Nerv. Syst. Agents Med. Chem., 2017, 17(2), 116-122.
[http://dx.doi.org/10.2174/1871524916666160823121854] [PMID: 27554922]
[53]
Escobar, A.; Pérez, M.; Romanelli, G.; Blustein, G. Arab. J. Chem., 2020, 13(12), 9243-9269.
[http://dx.doi.org/10.1016/j.arabjc.2020.11.009]
[54]
Sabour, A. Mor. J. Chem, 2019, 7(4), 7-4.
[55]
Lv, R.; Chen, Z. Trop. J. Pharm. Res., 2018, 16(12), 2895-2901.
[http://dx.doi.org/10.4314/tjpr.v16i12.13]
[56]
Roney, M.; Aluwi, M.F.F.M.; Laman, F.; Bhuiyan, M.A.; Huq, A.K.M.M. Journal of Computational Biophysics and Chemistry, 2022, 21(5), 499-513.
[http://dx.doi.org/10.1142/S2737416522500168]
[57]
Liu, T.; Ni, Y.; Zhong, L.; Huang, H.; Hu, W.; Xu, T.; Tan, C. Youji Huaxue, 2015, 35(2), 422.
[http://dx.doi.org/10.6023/cjoc201406017]
[58]
Ghobadloo, P.A.; Hamidi, S.; Nemati, M.; Jahed, F.S. Curr. Pharm. Anal., 2020, 16(5), 578-584.
[http://dx.doi.org/10.2174/1573412915666190220102628]
[59]
Khan, E.; Ahmad, I.Z. J. Mol. Model., 2022, 28(7), 191.
[http://dx.doi.org/10.1007/s00894-022-05170-3] [PMID: 35711004]
[60]
Pandey, S.; Pandey, P.; Gautam, S.S.; Singh, J. J. Pharm. Technol., 2021, 14(1), 275-279.
[61]
Diasa, R.J.; Havaldara, V.D.; Ghorpadea, V.S.; Malia, K.K.; Gaikwadb, V.K.; Kumbhara, D.M. J. Appl. Pharm. Sci., 2016, 6(10), 200-209.
[http://dx.doi.org/10.7324/JAPS.2016.601028]
[62]
Tasli, P.T.; Atay, Ç.K.; Demirturk, T.; Tilki, T. J. Mol. Struct., 2020, 1201, 127098.
[http://dx.doi.org/10.1016/j.molstruc.2019.127098]
[63]
Kumar, C.; Akhtar, M.N.S.; Chand, P.; Choudhary, C.S. J. Pharmacogn. Phytochem., 2019, 8(6), 1553-1559.
[64]
Howse, G.L.; Bovill, R.A.; Stephens, P.J.; Osborn, H.M.I. Eur. J. Med. Chem., 2019, 162, 51-58.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.053] [PMID: 30408748]
[65]
Inci Gul, H.; Yamali, C.; Tugce Yasa, A.; Unluer, E.; Sakagami, H.; Tanc, M.; Supuran, C.T. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1375-1380.
[http://dx.doi.org/10.3109/14756366.2016.1140755] [PMID: 26850788]
[66]
Suganya, S.; Velmathi, S. J. Mol. Recognit., 2013, 26(6), 259-267.
[http://dx.doi.org/10.1002/jmr.2268] [PMID: 23595807]
[67]
Santos-Figueroa, L.E.; Moragues, M.E.; Climent, E.; Agostini, A.; Martínez-Máñez, R.; Sancenón, F. Chem. Soc. Rev., 2013, 42(8), 3489-3613.
[http://dx.doi.org/10.1039/c3cs35429f] [PMID: 23400370]
[68]
Srisuwan, P.; Sappasombut, A.; Thongyod, W.; Jantarat, T.; Tipmanee, V.; Leesakul, N.; Sooksawat, D. J. Photochem. Photobiol. Chem., 2022, 427, 113841.
[http://dx.doi.org/10.1016/j.jphotochem.2022.113841]
[69]
Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Chem. Soc. Rev., 2017, 46(23), 7105-7123.
[http://dx.doi.org/10.1039/C7CS00240H] [PMID: 29019488]
[70]
Devaraj, S.; Saravanakumar, D.; Kandaswamy, M. Sens. Actuators B Chem., 2009, 136(1), 13-19.
[http://dx.doi.org/10.1016/j.snb.2008.11.018]
[71]
Shimizu, S.; Murayama, A.; Haruyama, T.; Iino, T.; Mori, S.; Furuta, H.; Kobayashi, N. Chemistry, 2015, 21(37), 12996-13003.
[http://dx.doi.org/10.1002/chem.201501464] [PMID: 26212774]
[72]
Udhayakumari, D. Innovations in Chemical Engineering, 2020, 13(4), 262-289.
[73]
Wu, Z.Y.; Fang, H.; Xu, W.F. Youji Huaxue, 2007, 27(07), 830.
[74]
Utreja, D.; Singh, K. J. Photochem. Photobiol. Chem., 2022, 426, 113784.
[http://dx.doi.org/10.1016/j.jphotochem.2022.113784]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy