Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Plant bZIP Proteins: Potential use in Agriculture - A Review

Author(s): Cláudia Regina Batista de Souza*, Cleyson Pantoja Serrão, Nicolle Louise Ferreira Barros, Sávio Pinho dos Reis and Deyvid Novaes Marques

Volume 25, Issue 2, 2024

Published on: 05 October, 2023

Page: [107 - 119] Pages: 13

DOI: 10.2174/0113892037261763230925034348

Price: $65

Abstract

With global climate changes and the increased demand for food due to expected world population growth, genetic improvement programs have aimed at producing crops with increased yield and tolerance to environmental stresses, such as drought, salinity, and pathogens. On the other hand, genetic improvement programs via biotechnology require candidate genes that confer traits of interest to be incorporated into improved crops. In this regard, genes encoding transcription factors (TFs) can be promising since they are proteins that transcriptionally regulate the expression of target genes related to the most diverse roles in the plant, including defense against stresses. Among TFs, bZIP (basic leucine zipper) proteins regulate many developmental and physiological processes in the plant, such as seed formation, fruit ripening, nutrient assimilation, and defense response to abiotic and biotic stresses. In this review, we aim to highlight the main advances in the potential use of bZIP TFs in the genetic improvement of crops. We address this potential mainly regarding crop tolerance to stresses and other agricultural traits, such as increased yield and fruit features.

Next »
Graphical Abstract

[1]
Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science, 2011, 333(6042), 616-620.
[http://dx.doi.org/10.1126/science.1204531] [PMID: 21551030]
[2]
Nykiel, M.; Gietler, M.; Fidler, J.; Prabucka, B.; Rybarczyk-Płońska, A.; Graska, J.; Boguszewska-Mańkowska, D.; Muszyńska, E.; Morkunas, I.; Labudda, M. Signal transduction in cereal plants struggling with environmental stresses: From perception to response. Plants, 2022, 11(8), 1009.
[http://dx.doi.org/10.3390/plants11081009] [PMID: 35448737]
[3]
Ji, X.; Liu, G.; Liu, Y.; Zheng, L.; Nie, X.; Wang, Y. The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis. BMC Plant Biol., 2013, 13(1), 151.
[http://dx.doi.org/10.1186/1471-2229-13-151] [PMID: 24093718]
[4]
Li, X.; Feng, B.; Zhang, F.; Tang, Y.; Zhang, L.; Ma, L.; Zhao, C.; Gao, S. Bioinformatic analyses of subgroup-A members of the wheat bZIP transcription factor family and functional identification of TabZIP174 involved in drought stress response. Front. Plant Sci., 2016, 7, 1643.
[http://dx.doi.org/10.3389/fpls.2016.01643] [PMID: 27899926]
[5]
Hsieh, T.H.; Li, C.W.; Su, R.C.; Cheng, C.P.; Sanjaya,; Tsai, Y.C.; Chan, M.T. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta, 2010, 231(6), 1459-1473.
[http://dx.doi.org/10.1007/s00425-010-1147-4] [PMID: 20358223]
[6]
Li, X.; Fan, S.; Hu, W.; Liu, G.; Wei, Y.; He, C.; Shi, H. Two cassava basic leucine zipper (bZIP) transcription factors (MebZIP3 and MebZIP5) confer disease resistance against cassava bacterial blight. Front. Plant Sci., 2017, 8, 2110.
[http://dx.doi.org/10.3389/fpls.2017.02110] [PMID: 29276527]
[7]
Marques, D.N.; Reis, S.P.; de Souza, C.R.B. Plant NAC transcription factors responsive to abiotic stresses. Plant Gene, 2017, 11, 170-179.
[http://dx.doi.org/10.1016/j.plgene.2017.06.003]
[8]
Baillo, E.H.; Kimotho, R.N.; Zhang, Z.; Xu, P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 2019, 10(10), 771.
[http://dx.doi.org/10.3390/genes10100771] [PMID: 31575043]
[9]
Chai, M.; Fan, R.; Huang, Y.; Jiang, X.; Wai, M.H.; Yang, Q.; Su, H.; Liu, K.; Ma, S.; Chen, Z.; Wang, F.; Qin, Y.; Cai, H. GmbZIP152, a soybean bZIP transcription factor, confers multiple biotic and abiotic stress responses in plant. Int. J. Mol. Sci., 2022, 23(18), 10935.
[http://dx.doi.org/10.3390/ijms231810935] [PMID: 36142886]
[10]
Yang, S.; Zhang, X.; Zhang, X.; Bi, Y.; Gao, W. A bZIP transcription factor, PqbZIP1, is involved in the plant defense response of American ginseng. PeerJ, 2022, 10, e12939.
[http://dx.doi.org/10.7717/peerj.12939] [PMID: 35282281]
[11]
Weising, K.; Kahl, G. Towards an understanding of plant gene regulation: The action of nuclear factors. Z. Naturforsch. C J. Biosci., 1991, 46(1-2), 1-11.
[http://dx.doi.org/10.1515/znc-1991-1-202]
[12]
Schwechheimer, C.; Zourelidou, M.; Bevan, M.W. Plant transcription factor studies. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49(1), 127-150.
[http://dx.doi.org/10.1146/annurev.arplant.49.1.127] [PMID: 15012230]
[13]
Gai, W.X.; Ma, X.; Qiao, Y.M.; Shi, B.H.; Ul Haq, S.; Li, Q.H.; Wei, A.M.; Liu, K.K.; Gong, Z.H. Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.): CabZIP25 positively modulates the salt tolerance. Front Plant Sci., 2020, 11, 139.
[14]
An, J.P.; Qu, F.J.; Yao, J.F.; Wang, X.N.; You, C.X.; Wang, X.F.; Hao, Y.J. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Hortic. Res., 2017, 4(1), 17023.
[http://dx.doi.org/10.1038/hortres.2017.23] [PMID: 28611922]
[15]
Pontes, L.C.G.; Cardoso, C.M.Y.; Callegari, D.M.; dos Reis, S.P.; do Socorro Alves Namias, É.; da Cunha Ferreira, S.; de Souza, C.R.B. A cassava CPRF-2-like bZIP transcription factor showed increased transcript levels during light treatment. Protein Pept. Lett., 2020, 27(9), 904-914.
[http://dx.doi.org/10.2174/0929866527666200420110338] [PMID: 32310038]
[16]
Fuhrmann-Aoyagi, M.B.; de Fátima Ruas, C.; Barbosa, E.G.G.; Braga, P.; Moraes, L.A.C.; de Oliveira, A.C.B.; Kanamori, N.; Yamaguchi-Shinozaki, K.; Nakashima, K.; Nepomuceno, A.L.; Mertz-Henning, L.M. Constitutive expression of Arabidopsis bZIP transcription factor AREB1 activates cross-signaling responses in soybean under drought and flooding stresses. J. Plant Physiol., 2021, 257, 153338.
[http://dx.doi.org/10.1016/j.jplph.2020.153338] [PMID: 33401097]
[17]
Wang, H.; Zhang, Y.; Norris, A.; Jiang, C.Z. S1-bZIP transcription factors play important roles in the regulation of fruit quality and stress response. Front. Plant Sci., 2022, 12, 802802.
[http://dx.doi.org/10.3389/fpls.2021.802802] [PMID: 35095974]
[18]
Vinson, C.R.; Sigler, P.B.; McKnight, S.L. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science, 1989, 246(4932), 911-916.
[http://dx.doi.org/10.1126/science.2683088] [PMID: 2683088]
[19]
Jakoby, M.; Weisshaar, B.; Dröge-Laser, W.; Vicente-Carbajosa, J.; Tiedemann, J.; Kroj, T.; Parcy, F. bZIP transcription factors in Arabidopsis. Trends Plant Sci., 2002, 7(3), 106-111.
[http://dx.doi.org/10.1016/S1360-1385(01)02223-3] [PMID: 11906833]
[20]
Vinson, C.R.; Hai, T.; Boyd, S.M. Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: Prediction and rational design. Genes Dev., 1993, 7(6), 1047-1058.
[http://dx.doi.org/10.1101/gad.7.6.1047] [PMID: 8504929]
[21]
Sprenger-Haussels, M.; Weisshaar, B. Transactivation properties of parsley proline-rich bZIP transcription factors. Plant J., 2000, 22(1), 1-8.
[http://dx.doi.org/10.1046/j.1365-313x.2000.00687.x] [PMID: 10792815]
[22]
Clauss, I.; Chu, M.; Zhao, J.L.; Glimcher, L.H. The basic domain/leucine zipper protein hXBP-1 preferentially binds to and transactivates CRE-like sequences containing an ACGT core. Nucleic Acids Res., 1996, 24(10), 1855-1864.
[http://dx.doi.org/10.1093/nar/24.10.1855] [PMID: 8657566]
[23]
Azeem, F.; Tahir, H.; Ijaz, U.; Shaheen, T. A genome-wide comparative analysis of bZIP transcription factors in G. arboreum and G. raimondii (Diploid ancestors of present-day cotton). Physiol. Mol. Biol. Plants, 2020, 26(3), 433-444.
[http://dx.doi.org/10.1007/s12298-020-00771-9] [PMID: 32205921]
[24]
Joo, H.; Baek, W.; Lim, C.W.; Lee, S.C. Post-translational modifications of bZIP transcription factors in abscisic acid signaling and drought responses. Curr. Genomics, 2021, 22(1), 4-15.
[http://dx.doi.org/10.2174/18755488MTEx6OTQj0] [PMID: 34045920]
[25]
Foster, R.; Izawa, T.; Chua, N.H. Plant bZIP proteins gather at ACGT elements. FASEB J., 1994, 8(2), 192-200.
[http://dx.doi.org/10.1096/fasebj.8.2.8119490] [PMID: 8119490]
[26]
Landschulz, W.H.; Johnson, P.F.; McKnight, S.L. The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins. Science, 1988, 240(4860), 1759-1764.
[http://dx.doi.org/10.1126/science.3289117] [PMID: 3289117]
[27]
Nijhawan, A.; Jain, M.; Tyagi, A.K.; Khurana, J.P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol., 2008, 146(2), 323-324.
[http://dx.doi.org/10.1104/pp.107.112821] [PMID: 18065552]
[28]
Hai, T.; Curran, T. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc. Natl. Acad. Sci. USA, 1991, 88(9), 3720-3724.
[http://dx.doi.org/10.1073/pnas.88.9.3720] [PMID: 1827203]
[29]
Ellenberger, T.E.; Brandl, C.J.; Struhl, K.; Harrison, S.C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α Helices: Crystal structure of the protein-DNA complex. Cell, 1992, 71(7), 1223-1237.
[http://dx.doi.org/10.1016/S0092-8674(05)80070-4] [PMID: 1473154]
[30]
Amoutzias, G.D.; Robertson, D.L.; Van de Peer, Y.; Oliver, S.G. Choose your partners: Dimerization in eukaryotic transcription factors. Trends Biochem. Sci., 2008, 33(5), 220-229.
[http://dx.doi.org/10.1016/j.tibs.2008.02.002] [PMID: 18406148]
[31]
Ehlert, A.; Weltmeier, F.; Wang, X.; Mayer, C.S.; Smeekens, S.; Vicente-Carbajosa, J.; Dröge-Laser, W. Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: Establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J., 2006, 46(5), 890-900.
[http://dx.doi.org/10.1111/j.1365-313X.2006.02731.x] [PMID: 16709202]
[32]
Weltmeier, F.; Ehlert, A.; Mayer, C.S.; Dietrich, K.; Wang, X.; Schütze, K.; Alonso, R.; Harter, K.; Vicente-Carbajosa, J.; Dröge-Laser, W. Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO J., 2006, 25(13), 3133-3143.
[http://dx.doi.org/10.1038/sj.emboj.7601206] [PMID: 16810321]
[33]
Feng, Y.; Wang, Y.; Zhang, G.; Gan, Z.; Gao, M.; Lv, J.; Wu, T.; Zhang, X.; Xu, X.; Yang, S.; Han, Z. Group‐C/S1 bZIP heterodimers regulate MdIPT5b to negatively modulate drought tolerance in apple species. Plant J., 2021, 107(2), 399-417.
[http://dx.doi.org/10.1111/tpj.15296] [PMID: 33905154]
[34]
Hartmann, L.; Pedrotti, L.; Weiste, C.; Fekete, A.; Schierstaedt, J.; Göttler, J.; Kempa, S.; Krischke, M.; Dietrich, K.; Mueller, M.J.; Vicente-Carbajosa, J.; Hanson, J.; Dröge-Laser, W. Crosstalk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots. Plant Cell, 2015, 27(8), 2244-2260.
[http://dx.doi.org/10.1105/tpc.15.00163] [PMID: 26276836]
[35]
Zhong, L.; Chen, D.; Min, D.; Li, W.; Xu, Z.; Zhou, Y.; Li, L.; Chen, M.; Ma, Y. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana. Biochem. Biophys. Res. Commun., 2015, 457(3), 433-439.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.009] [PMID: 25596127]
[36]
Assunção, A.G.L.; Herrero, E.; Lin, Y.F.; Huettel, B.; Talukdar, S.; Smaczniak, C.; Immink, R.G.H.; van Eldik, M.; Fiers, M.; Schat, H.; Aarts, M.G.M. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc. Natl. Acad. Sci. USA, 2010, 107(22), 10296-10301.
[http://dx.doi.org/10.1073/pnas.1004788107] [PMID: 20479230]
[37]
Luang, S.; Sornaraj, P.; Bazanova, N.; Jia, W.; Eini, O.; Hussain, S.S.; Kovalchuk, N.; Agarwal, P.K.; Hrmova, M.; Lopato, S. The wheat TabZIP2 transcription factor is activated by the nutrient starvation-responsive SnRK3/CIPK protein kinase. Plant Mol. Biol., 2018, 96(6), 543-561.
[http://dx.doi.org/10.1007/s11103-018-0713-1] [PMID: 29564697]
[38]
Chang, Y.; Nguyen, B.H.; Xie, Y.; Xiao, B.; Tang, N.; Zhu, W.; Mou, T.; Xiong, L. Co-overexpression of the constitutively active form of OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and temperature stress resistance in rice. Front. Plant Sci., 2017, 8, 1102.
[http://dx.doi.org/10.3389/fpls.2017.01102] [PMID: 28694815]
[39]
Guan, Y.; Ren, H.; Xie, H.; Ma, Z.; Chen, F. Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. Plant J., 2009, 60(2), 207-217.
[http://dx.doi.org/10.1111/j.1365-313X.2009.03948.x] [PMID: 19519801]
[40]
Abe, M.; Kobayashi, Y.; Yamamoto, S.; Daimon, Y.; Yamaguchi, A.; Ikeda, Y.; Ichinoki, H.; Notaguchi, M.; Goto, K.; Araki, T.FD a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005, 309(5737), 1052-1056.
[http://dx.doi.org/10.1126/science.1115983] [PMID: 16099979]
[41]
Iven, T.; Strathmann, A.; Böttner, S.; Zwafink, T.; Heinekamp, T.; Guivarc’h, A.; Roitsch, T.; Dröge-Laser, W. Homo- and heterodimers of tobacco bZIP proteins counteract as positive or negative regulators of transcription during pollen development. Plant J., 2010, 63(1)
[http://dx.doi.org/10.1111/j.1365-313X.2010.04230.x] [PMID: 20409000]
[42]
Huang, X.; Ouyang, X.; Yang, P.; Lau, O.S.; Li, G.; Li, J.; Chen, H.; Deng, X.W. Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell, 2012, 24(11), 4590-4606.
[http://dx.doi.org/10.1105/tpc.112.103994] [PMID: 23150635]
[43]
Smykowski, A.; Zimmermann, P.; Zentgraf, U. G-Box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. Plant Physiol., 2010, 153(3), 1321-1331.
[http://dx.doi.org/10.1104/pp.110.157180] [PMID: 20484024]
[44]
Dröge-Laser, W.; Snoek, B.L.; Snel, B.; Weiste, C. The Arabidopsis bZIP transcription factor family — an update. Curr. Opin. Plant Biol., 2018, 45(Pt A), 36-49.
[http://dx.doi.org/10.1016/j.pbi.2018.05.001] [PMID: 29860175]
[45]
Ji, Q.; Zhang, L.; Wang, Y.; Wang, J. Genome-wide analysis of basic leucine zipper transcription factor families in Arabidopsis thaliana, Oryza sativa and Populus trichocarpa. J. Shanghai Univ.(English Edition), 2009, 13(2), 174-182.
[http://dx.doi.org/10.1007/s11741-009-0216-3]
[46]
Wei, K.; Chen, J.; Wang, Y.; Chen, Y.; Chen, S.; Lin, Y.; Pan, S.; Zhong, X.; Xie, D. Genome-wide analysis of bZIP-encoding genes in maize. DNA Res., 2012, 19(6), 463-476.
[http://dx.doi.org/10.1093/dnares/dss026] [PMID: 23103471]
[47]
Zhang, M.; Liu, Y.; Shi, H.; Guo, M.; Chai, M.; He, Q.; Yan, M.; Cao, D.; Zhao, L.; Cai, H.; Qin, Y. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family. BMC Genomics, 2018, 19(1), 159.
[http://dx.doi.org/10.1186/s12864-018-4511-6] [PMID: 29471787]
[48]
Agarwal, P.; Baranwal, V.K.; Khurana, P. Genome-wide analysis of bZIP transcription factors in wheat and functional characterization of a tabzip under abiotic stress. Sci. Rep., 2019, 9(1), 4608.
[http://dx.doi.org/10.1038/s41598-019-40659-7] [PMID: 30872683]
[49]
Hu, W.; Yang, H.; Yan, Y.; Wei, Y.; Tie, W.; Ding, Z.; Zuo, J.; Peng, M.; Li, K. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Sci. Rep., 2016, 6(1), 22783.
[http://dx.doi.org/10.1038/srep22783] [PMID: 26947924]
[50]
Chang, Q.; Lu, X.; Liu, Z.; Zheng, Z.; Yu, S. Identification and characterization of the bZIP transcription factor family in yellowhorn. J. For. Res., 2021, 32(1), 273-284.
[http://dx.doi.org/10.1007/s11676-020-01129-3]
[51]
Ang, L.H.; Chattopadhyay, S.; Wei, N.; Oyama, T.; Okada, K.; Batschauer, A.; Deng, X.W. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell, 1998, 1(2), 213-222.
[http://dx.doi.org/10.1016/S1097-2765(00)80022-2] [PMID: 9659918]
[52]
Park, S.Y.; Fung, P.; Nishimura, N.; Jensen, D.R.; Fujii, H.; Zhao, Y.; Lumba, S.; Santiago, J.; Rodrigues, A.; Chow, T.F.; Alfred, S.E.; Bonetta, D.; Finkelstein, R.; Provart, N.J.; Desveaux, D.; Rodriguez, P.L.; McCourt, P.; Zhu, J.K.; Schroeder, J.I.; Volkman, B.F.; Cutler, S.R. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 2009, 324(5930), 1068-1071.
[http://dx.doi.org/10.1126/science.1173041] [PMID: 19407142]
[53]
Fujita, Y.; Nakashima, K.; Yoshida, T.; Katagiri, T.; Kidokoro, S.; Kanamori, N.; Umezawa, T.; Fujita, M.; Maruyama, K.; Ishiyama, K.; Kobayashi, M.; Nakasone, S.; Yamada, K.; Ito, T.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol., 2009, 50(12), 2123-2132.
[http://dx.doi.org/10.1093/pcp/pcp147] [PMID: 19880399]
[54]
Banerjee, A.; Roychoudhury, A. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma, 2017, 254(1), 3-16.
[http://dx.doi.org/10.1007/s00709-015-0920-4] [PMID: 26669319]
[55]
Busk, P.K.; Pagès, M. Regulation of abscisic acid-induced transcription. Plant Mol. Biol., 1998, 37(3), 425-435.
[http://dx.doi.org/10.1023/A:1006058700720] [PMID: 9617810]
[56]
Hobo, T.; Kowyama, Y.; Hattori, T. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc. Natl. Acad. Sci. USA, 1999, 96(26), 15348-15353.
[http://dx.doi.org/10.1073/pnas.96.26.15348] [PMID: 10611387]
[57]
Xiang, Y.; Tang, N.; Du, H.; Ye, H.; Xiong, L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol., 2008, 148(4), 1938-1952.
[http://dx.doi.org/10.1104/pp.108.128199] [PMID: 18931143]
[58]
Zou, M.; Guan, Y.; Ren, H.; Zhang, F.; Chen, F. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol. Biol., 2008, 66(6), 675-683.
[http://dx.doi.org/10.1007/s11103-008-9298-4] [PMID: 18236009]
[59]
Liu, C.; Wu, Y.; Wang, X. bZIP transcription factor OsbZIP52/RISBZ5: A potential negative regulator of cold and drought stress response in rice. Planta, 2012, 235(6), 1157-1169.
[http://dx.doi.org/10.1007/s00425-011-1564-z] [PMID: 22189955]
[60]
Zhang, M.; Liu, Y.; Cai, H.; Guo, M.; Chai, M.; She, Z.; Ye, L.; Cheng, Y.; Wang, B.; Qin, Y. The bZIP transcription factor GmbZIP15 negatively regulates salt- and drought-stress responses in soybean. Int. J. Mol. Sci., 2020, 21(20), 7778.
[http://dx.doi.org/10.3390/ijms21207778] [PMID: 33096644]
[61]
Sirko, A.; Wawrzyńska, A.; Brzywczy, J.; Sieńko, M. Control of ABA signaling and crosstalk with other hormones by the selective degradation of pathway components. Int. J. Mol. Sci., 2021, 22(9), 4638.
[http://dx.doi.org/10.3390/ijms22094638] [PMID: 33924944]
[62]
Salvato, F.; Loziuk, P.; Kiyota, E.; Daneluzzi, G.S.; Araújo, P.; Muddiman, D.C.; Mazzafera, P. Label-free quantitative proteomics of enriched nuclei from sugarcane (Saccharum ssp) stems in response to drought stress. Proteomics, 2019, 19(14), 1900004.
[http://dx.doi.org/10.1002/pmic.201900004] [PMID: 31172662]
[63]
Pi, E.; Qu, L.; Hu, J.; Huang, Y.; Qiu, L.; Lu, H.; Jiang, B.; Liu, C.; Peng, T.; Zhao, Y.; Wang, H.; Tsai, S.N.; Ngai, S.; Du, L. Mechanisms of soybean roots’ tolerances to salinity revealed by proteomic and phosphoproteomic comparisons between two cultivars. Mol. Cell. Proteomics, 2016, 15(1), 266-288.
[http://dx.doi.org/10.1074/mcp.M115.051961] [PMID: 26407991]
[64]
Chunduri, V.; Kaur, A.; Kaur, S.; Kumar, A.; Sharma, S.; Sharma, N.; Singh, P.; Kapoor, P.; Kaur, S.; Kumari, A.; Roy, J.; Kaur, J.; Garg, M. Gene expression and proteomics studies suggest an involvement of multiple pathways under day and day-night combined heat stresses during grain filling in wheat. Front. Plant Sci., 2021, 12, 660446.
[http://dx.doi.org/10.3389/fpls.2021.660446] [PMID: 34135923]
[65]
Marques, D.N.; Stolze, S.C.; Harzen, A.; Nogueira, M.L.; Batagin-Piotto, K.D.; Piotto, F.A.; Mason, C.; Azevedo, R.A.; Nakagami, H. Comparative phosphoproteomic analysis of tomato genotypes with contrasting cadmium tolerance. Plant Cell Rep., 2021, 40(10), 2001-2008.
[http://dx.doi.org/10.1007/s00299-021-02774-6] [PMID: 34410462]
[66]
Xu, Z.; Wang, F.; Ma, Y.; Dang, H.; Hu, X. Transcription factor SlAREB1 is involved in the antioxidant regulation under saline-alkaline stress in tomato. Antioxidants, 2022, 11(9), 1673.
[http://dx.doi.org/10.3390/antiox11091673] [PMID: 36139748]
[67]
Das, P.; Lakra, N.; Nutan, K.K.; Singla-Pareek, S.L.; Pareek, A. A unique bZIP transcription factor imparting multiple stress tolerance in Rice. Rice (N. Y.), 2019, 12(1), 58.
[http://dx.doi.org/10.1186/s12284-019-0316-8] [PMID: 31375941]
[68]
Sharma, A.; Shahzad, B.; Kumar, V.; Kohli, S.K.; Sidhu, G.P.S.; Bali, A.S.; Handa, N.; Kapoor, D.; Bhardwaj, R.; Zheng, B. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 2019, 9(7), 285.
[http://dx.doi.org/10.3390/biom9070285] [PMID: 31319576]
[69]
Wu, Q.; Meng, Y.T.; Feng, Z.H.; Shen, R.F.; Zhu, X.F. The endo‐beta mannase MAN7 contributes to cadmium tolerance by modulating root cell wall binding capacity in Arabidopsis thaliana. J. Integr. Plant Biol., 2023, 65(7), 1670-1686.
[http://dx.doi.org/10.1111/jipb.13487] [PMID: 36965189]
[70]
Lu, Z.; Qiu, W.; Jin, K.; Yu, M.; Han, X.; He, X.; Wu, L.; Wu, C.; Zhuo, R. Identification and analysis of bZIP family genes in Sedum plumbizincicola and their potential roles in response to cadmium stress. Front Plant Sci., 2022, 13, 859386.
[71]
Farinati, S.; DalCorso, G.; Varotto, S.; Furini, A. The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol., 2010, 185(4), 964-978.
[http://dx.doi.org/10.1111/j.1469-8137.2009.03132.x] [PMID: 20028476]
[72]
Cai, W.; Yang, Y.; Wang, W.; Guo, G.; Liu, W.; Bi, C. Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs. Plant Physiol. Biochem., 2018, 124, 100-111.
[http://dx.doi.org/10.1016/j.plaphy.2018.01.008] [PMID: 29351891]
[73]
Marques, D.N.; Barros, N.L.F.; de Souza, C.R.B. Does translationally controlled tumor protein (TCTP) have the potential to produce crops with increased growth and tolerance to environmental stresses? Plant Cell Rep., 2023, 42(4), 821-824.
[http://dx.doi.org/10.1007/s00299-023-02985-z] [PMID: 36723675]
[74]
Huang, X.S.; Liu, J.H.; Chen, X.J. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol., 2010, 10(1), 230.
[http://dx.doi.org/10.1186/1471-2229-10-230] [PMID: 20973995]
[75]
Asano, T.; Hayashi, N.; Kikuchi, S.; Ohsugi, R. CDPK-mediated abiotic stress signaling. Plant Signal. Behav., 2012, 7(7), 817-821.
[http://dx.doi.org/10.4161/psb.20351] [PMID: 22751324]
[76]
Lata, C.; Prasad, M. Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot., 2011, 62(14), 4731-4748.
[http://dx.doi.org/10.1093/jxb/err210] [PMID: 21737415]
[77]
Barros, N.; da Silva, D.; Marques, D.; de Brito, F.; dos Reis, S.; de Souza, C. Heterologous expression of MeLEA3: A 10 kDa late embryogenesis abundant protein of cassava, confers tolerance to abiotic stress in Escherichia coli with recombinant protein showing in vitro chaperone activity. Protein Pept. Lett., 2015, 22(8), 689-695.
[http://dx.doi.org/10.2174/0929866522666150520145302] [PMID: 25990084]
[78]
Chen, Y.; Li, C.; Zhang, B.; Yi, J.; Yang, Y.; Kong, C.; Lei, C.; Gong, M. The role of the late embryogenesis-abundant (LEA) protein family in development and the abiotic stress response: A comprehensive expression analysis of potato (Solanum Tuberosum). Genes, 2019, 10(2), 148.
[http://dx.doi.org/10.3390/genes10020148] [PMID: 30781418]
[79]
Sun, Z.; Li, S.; Chen, W.; Zhang, J.; Zhang, L.; Sun, W.; Wang, Z. Plant dehydrins: Expression, regulatory networks, and protective roles in plants challenged by abiotic stress. Int. J. Mol. Sci., 2021, 22(23), 12619.
[http://dx.doi.org/10.3390/ijms222312619] [PMID: 34884426]
[80]
Tak, H.; Mhatre, M. Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera. Protoplasma, 2013, 250(1), 333-345.
[http://dx.doi.org/10.1007/s00709-012-0417-3] [PMID: 22610648]
[81]
Savary, S.; Ficke, A.; Aubertot, J.N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur., 2012, 4(4), 519-537.
[http://dx.doi.org/10.1007/s12571-012-0200-5]
[82]
van Loon, L.C.; Rep, M.; Pieterse, C.M.J. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol., 2006, 44(1), 135-162.
[http://dx.doi.org/10.1146/annurev.phyto.44.070505.143425] [PMID: 16602946]
[83]
Bacete, L.; Mélida, H.; Miedes, E.; Molina, A. Plant cell wall-mediated immunity: Cell wall changes trigger disease resistance responses. Plant J., 2018, 93(4), 614-636.
[http://dx.doi.org/10.1111/tpj.13807] [PMID: 29266460]
[84]
Campos, M.L.; de Souza, C.M.; de Oliveira, K.B.S.; Dias, S.C.; Franco, O.L. The role of antimicrobial peptides in plant immunity. J. Exp. Bot., 2018, 69(21), 4997-5011.
[http://dx.doi.org/10.1093/jxb/ery294] [PMID: 30099553]
[85]
Nishad, R.; Ahmed, T.; Rahman, V.J.; Kareem, A. Modulation of plant defense system in response to microbial interactions. Front. Microbiol., 2020, 11, 1298.
[http://dx.doi.org/10.3389/fmicb.2020.01298] [PMID: 32719660]
[86]
Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature, 2006, 444(7117), 323-329.
[http://dx.doi.org/10.1038/nature05286] [PMID: 17108957]
[87]
Levine, A.; Tenhaken, R.; Dixon, R.; Lamb, C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 1994, 79(4), 583-593.
[http://dx.doi.org/10.1016/0092-8674(94)90544-4] [PMID: 7954825]
[88]
Durrant, W.E.; Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol., 2004, 42(1), 185-209.
[http://dx.doi.org/10.1146/annurev.phyto.42.040803.140421] [PMID: 15283665]
[89]
van Loon, L.C.; Pierpoint, W.S.; Boller, T.; Conejero, V. Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol. Report., 1994, 12(3), 245-264.
[http://dx.doi.org/10.1007/BF02668748]
[90]
Van Loon, L.C.; Van Strien, E.A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol., 1999, 55(2), 85-97.
[http://dx.doi.org/10.1006/pmpp.1999.0213]
[91]
Wei, G.; Kloepper, J.W.; Tuzun, S. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology, 1991, 81(12), 1508-1512.
[http://dx.doi.org/10.1094/Phyto-81-1508]
[92]
Ku, Y.S.; Sintaha, M.; Cheung, M.Y.; Lam, H.M. Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int. J. Mol. Sci., 2018, 19(10), 3206.
[http://dx.doi.org/10.3390/ijms19103206] [PMID: 30336563]
[93]
Meng, X.; Zhang, S. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol., 2013, 51(1), 245-266.
[http://dx.doi.org/10.1146/annurev-phyto-082712-102314] [PMID: 23663002]
[94]
Fan, W.; Dong, X. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell, 2002, 14(6), 1377-1389.
[http://dx.doi.org/10.1105/tpc.001628] [PMID: 12084833]
[95]
Shearer, H.L.; Wang, L.; DeLong, C.; Despres, C.; Fobert, P.R. NPR1 enhances the DNA binding activity of the Arabidopsis bZIP transcription factor TGA7. This paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada – Plant Biotechnology Institute. Botany, 2009, 87(6), 561-570.
[http://dx.doi.org/10.1139/B08-143]
[96]
Chen, J.; Mohan, R.; Zhang, Y.; Li, M.; Chen, H.; Palmer, I.A.; Chang, M.; Qi, G.; Spoel, S.H.; Mengiste, T.; Wang, D.; Liu, F.; Fu, Z.Q. NPR1 promotes its own and target gene expression in plant defense by recruiting CDK8. Plant Physiol., 2019, 181(1), 289-304.
[http://dx.doi.org/10.1104/pp.19.00124] [PMID: 31110139]
[97]
Moon, S.J.; Park, H.J.; Kim, T.H.; Kang, J.W.; Lee, J.Y.; Cho, J.H.; Lee, J.H.; Park, D.S.; Byun, M.O.; Kim, B.G.; Shin, D. OsTGA2 confers disease resistance to rice against leaf blight by regulating expression levels of disease related genes via interaction with NH1. PLoS One, 2018, 13(11), e0206910.
[http://dx.doi.org/10.1371/journal.pone.0206910] [PMID: 30444888]
[98]
Guo, Z.J.; Chen, X.J.; Wu, X.L.; Ling, J.Q.; Xu, P. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol. Biol., 2004, 55(4), 607-618.
[http://dx.doi.org/10.1007/s11103-004-1521-3] [PMID: 15604704]
[99]
Chen, L.; Hamada, S.; Fujiwara, M.; Zhu, T.; Thao, N.P.; Wong, H.L.; Krishna, P.; Ueda, T.; Kaku, H.; Shibuya, N.; Kawasaki, T.; Shimamoto, K. The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe, 2010, 7(3), 185-196.
[http://dx.doi.org/10.1016/j.chom.2010.02.008] [PMID: 20227662]
[100]
Zhang, M.; Liu, Y.; Li, Z.; She, Z.; Chai, M.; Aslam, M.; He, Q.; Huang, Y.; Chen, F.; Chen, H.; Song, S.; Wang, B.; Cai, H.; Qin, Y. The bZIP transcription factor GmbZIP15 facilitates resistance against Sclerotinia sclerotiorum and Phytophthora sojae infection in soybean. iScience, 2021, 24(6), 102642.
[http://dx.doi.org/10.1016/j.isci.2021.102642] [PMID: 34151234]
[101]
Orellana, S.; Yañez, M.; Espinoza, A.; Verdugo, I.; González, E.; Ruiz-Lara, S.; Casaretto, J.A. The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ., 2010, 33(12), 2191-2208.
[http://dx.doi.org/10.1111/j.1365-3040.2010.02220.x] [PMID: 20807374]
[102]
Zribi, I.; Ghorbel, M.; Brini, F. Pathogenesis related proteins (PRs): From cellular mechanisms to plant defense. Curr. Protein Pept. Sci., 2021, 22(5), 396-412.
[http://dx.doi.org/10.2174/1389203721999201231212736] [PMID: 33390143]
[103]
He, Q.; Cai, H.; Bai, M.; Zhang, M.; Chen, F.; Huang, Y.; Priyadarshani, S.V.G.N.; Chai, M.; Liu, L.; Liu, Y.; Chen, H.; Qin, Y. A soybean bZIP transcription factor GmbZIP19 confers multiple biotic and abiotic stress responses in plant. Int. J. Mol. Sci., 2020, 21(13), 4701.
[http://dx.doi.org/10.3390/ijms21134701] [PMID: 32630201]
[104]
Zhao, B.; Liu, Q.; Wang, B.; Yuan, F. Roles of phytohormones and their signaling pathways in leaf development and stress responses. J. Agric. Food Chem., 2021, 69(12), 3566-3584.
[http://dx.doi.org/10.1021/acs.jafc.0c07908] [PMID: 33739096]
[105]
Shi, Q.M.; Yang, X.; Song, L.; Xue, H.W. Arabidopsis MSBP1 is activated by HY5 and HYH and is involved in photomorphogenesis and brassinosteroid sensitivity regulation. Mol. Plant, 2011, 4(6), 1092-1104.
[http://dx.doi.org/10.1093/mp/ssr049] [PMID: 21715650]
[106]
Alonso, R.; Oñate-Sánchez, L.; Weltmeier, F.; Ehlert, A.; Diaz, I.; Dietrich, K.; Vicente-Carbajosa, J.; Dröge-Laser, W. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell, 2009, 21(6), 1747-1761.
[http://dx.doi.org/10.1105/tpc.108.062968] [PMID: 19531597]
[107]
An, P.; Li, X.; Liu, T.; Shui, Z.; Chen, M.; Gao, X.; Wang, Z. The identification of broomcorn millet bZIP transcription factors, which regulate growth and development to enhance stress tolerance and seed germination. Int. J. Mol. Sci., 2022, 23(12), 6448.
[http://dx.doi.org/10.3390/ijms23126448] [PMID: 35742892]
[108]
Yang, J.; Wang, M.; Li, W.; He, X.; Teng, W.; Ma, W.; Zhao, X.; Hu, M.; Li, H.; Zhang, Y.; Tong, Y. Reducing expression of a nitrate‐responsive BZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnol. J., 2019, 17(9), 1823-1833.
[http://dx.doi.org/10.1111/pbi.13103] [PMID: 30811829]
[109]
Lv, H.; Li, X.; Li, H.; Hu, Y.; Liu, H.; Wen, S.; Li, Y.; Liu, Y.; Huang, H.; Yu, G.; Huang, Y.; Zhang, J. Gibberellin induced transcription factor bZIP53 regulates CesA1 expression in maize kernels. PLoS One, 2021, 16(3), e0244591.
[http://dx.doi.org/10.1371/journal.pone.0244591] [PMID: 33730027]
[110]
Toledo-Ortiz, G.; Johansson, H.; Lee, K.P.; Bou-Torrent, J.; Stewart, K.; Steel, G.; Rodríguez-Concepción, M.; Halliday, K.J. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet., 2014, 10(6), e1004416.
[http://dx.doi.org/10.1371/journal.pgen.1004416] [PMID: 24922306]
[111]
Fukazawa, J.; Sakai, T.; Ishida, S.; Yamaguchi, I.; Kamiya, Y.; Takahashi, Y. Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell, 2000, 12(6), 901-915.
[http://dx.doi.org/10.1105/tpc.12.6.901] [PMID: 10852936]
[112]
Coomey, J.H.; MacKinnon, K.J-M.; Handakumbura, P.P.; McCahill, I.W.; Trabucco, G.M.; Mazzola, J.; Leblanc, N.A.; Kheam, R.; Hernandez-Romero, M.; Barry, K.; Liu, L.; Lee, J.E. Touch-triggered bZIP translocation regulates elongation and secondary wall biosynthesis. BioRxiv, 2021, 429573.
[113]
Rook, F.; Gerrits, N.; Kortstee, A.; van, M.; Borrias, M.; Weisbeek, P.; Smeekens, S. Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J., 1998, 15(2), 253-263.
[http://dx.doi.org/10.1046/j.1365-313X.1998.00205.x] [PMID: 9721683]
[114]
Wiese, A.; Elzinga, N.; Wobbes, B.; Smeekens, S. A conserved upstream open reading frame mediates sucrose-induced repression of translation. Plant Cell, 2004, 16(7), 1717-1729.
[http://dx.doi.org/10.1105/tpc.019349] [PMID: 15208401]
[115]
Jeandet, P.; Formela-Luboińska, M.; Labudda, M.; Morkunas, I. The role of sugars in plant responses to stress and their regulatory function during development. Int. J. Mol. Sci., 2022, 23(9), 5161.
[http://dx.doi.org/10.3390/ijms23095161] [PMID: 35563551]
[116]
Thalor, S.K.; Berberich, T.; Lee, S.S.; Yang, S.H.; Zhu, X.; Imai, R.; Takahashi, Y.; Kusano, T. Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves. PLoS One, 2012, 7(3), e33111.
[http://dx.doi.org/10.1371/journal.pone.0033111] [PMID: 22457737]
[117]
Shekhawat, U.K.S.; Ganapathi, T.R. Transgenic banana plants overexpressing MusabZIP53 display severe growth retardation with enhanced sucrose and polyphenol oxidase activity. Plant Cell Tissue Organ Cult., 2014, 116(3), 387-402.
[http://dx.doi.org/10.1007/s11240-013-0414-z]
[118]
Sagor, G.H.M.; Berberich, T.; Tanaka, S.; Nishiyama, M.; Kanayama, Y.; Kojima, S.; Muramoto, K.; Kusano, T. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. Plant Biotechnol. J., 2016, 14(4), 1116-1126.
[http://dx.doi.org/10.1111/pbi.12480] [PMID: 26402509]
[119]
Nguyen, N.H.; Bui, T.P.; Le, N.T.; Nguyen, C.X.; Le, M.T.T.; Dao, N.T.; Phan, Q.; Van Le, T.; To, H.M.T.; Pham, N.B.; Chu, H.H.; Do, P.T. Disrupting Sc-uORFs of a transcription factor bZIP1 using CRISPR/Cas9 enhances sugar and amino acid contents in tomato (Solanum lycopersicum). Planta, 2023, 257(3), 57.
[http://dx.doi.org/10.1007/s00425-023-04089-0] [PMID: 36795295]
[120]
Chen, Q.; Tang, Y.M.; Wang, Y.; Sun, B.; Chen, T.; Lei, D.Y.; Zhang, F.; Luo, Y.; Zhang, Y.; Wang, X.R.; Tang, H.R. Enhance sucrose accumulation in strawberry fruits by eliminating the translational repression of FabZIPs1.1. Sci. Hortic., 2020, 259, 108850.
[http://dx.doi.org/10.1016/j.scienta.2019.108850]
[121]
Shin, D.H.; Choi, M.; Kim, K.; Bang, G.; Cho, M.; Choi, S.B.; Choi, G.; Park, Y.I. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett., 2013, 587(10), 1543-1547.
[http://dx.doi.org/10.1016/j.febslet.2013.03.037] [PMID: 23583450]
[122]
Chen, X.; Yao, Q.; Gao, X.; Jiang, C.; Harberd, N.P.; Fu, X. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr. Biol., 2016, 26(5), 640-646.
[http://dx.doi.org/10.1016/j.cub.2015.12.066] [PMID: 26877080]
[123]
Chen, S.; Ma, T.; Song, S.; Li, X.; Fu, P.; Wu, W.; Liu, J.; Gao, Y.; Ye, W.; Dry, I.B.; Lu, J. Arabidopsis downy mildew effector HaRxLL470 suppresses plant immunity by attenuating the DNA‐binding activity of bZIP transcription factor HY5. New Phytol., 2021, 230(4), 1562-1577.
[http://dx.doi.org/10.1111/nph.17280] [PMID: 33586184]
[124]
Tu, M.; Fang, J.; Zhao, R.; Liu, X.; Yin, W.; Wang, Y.; Wang, X.; Wang, X.; Fang, Y. CRISPR/Cas9-mediated mutagenesis of VvbZIP36 promotes anthocyanin accumulation in grapevine (Vitis vinifera). Hortic. Res., 2022, 9, uhac022.
[http://dx.doi.org/10.1093/hr/uhac022] [PMID: 35184164]
[125]
Xu, Z.; Wang, J.; Ma, Y.; Wang, F.; Wang, J.; Zhang, Y.; Hu, X. The bZIP transcription factor SlAREB1 regulates anthocyanin biosynthesis in response to low temperature in tomato. Plant J., 2023, 115(1), 205-219.
[http://dx.doi.org/10.1111/tpj.16224] [PMID: 36999610]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy