Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Role of Extracellular Vesicles in Efferocytosis

Author(s): Susan Panahi, Zohreh Yazdi, Mahboubeh Sanchouli, Fatemehsadat Sajadi, Fateme Motavasselian, Hedyeh Maghareh Abed, Zahra Beygi and Seyed Mohammad Gheibihayat*

Volume 24, Issue 6, 2024

Published on: 04 October, 2023

Page: [634 - 641] Pages: 8

DOI: 10.2174/0113895575247690230926113455

Price: $65

Abstract

Efferocytosis is the physiological process of phagocytic clearance of apoptotic cells by both professional phagocytic cells, such as macrophages, and non-professional phagocytic cells, such as epithelial cells. This process is crucial for maintaining tissue homeostasis in normal physiology. Any defects in efferocytosis can lead to pathological consequences and result in inflammatory diseases. Extracellular vesicles (EVs), including exosomes, microvesicles (MVs), and apoptotic vesicles (ApoVs), play a crucial role in proper efferocytosis. These EVs can significantly impact efferocytosis by affecting the polarization of macrophages and impacting calreticulin (CRT), TAM receptors, and MFG-E8. With further knowledge of these effects, new treatment strategies can be proposed for many inflammatory diseases caused by efferocytosis disorders. This review article aims to investigate the role of EVs during efferocytosis and its potential clinical applications in inflammatory diseases.

[1]
Willms, E.; Cabañas, C.; Mäger, I.; Wood, M.J.A.; Vader, P. Extracellular vesicle heterogeneity: Subpopulations, isolation techniques, and diverse functions in cancer progression. Front. Immunol., 2018, 9, 738.
[http://dx.doi.org/10.3389/fimmu.2018.00738] [PMID: 29760691]
[2]
van der Pol, E.; Böing, A.N.; Harrison, P.; Sturk, A.; Nieuwland, R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev., 2012, 64(3), 676-705.
[http://dx.doi.org/10.1124/pr.112.005983] [PMID: 22722893]
[3]
Arandjelovic, S.; Ravichandran, K.S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol., 2015, 16(9), 907-917.
[http://dx.doi.org/10.1038/ni.3253] [PMID: 26287597]
[4]
Bianconi, E.; Piovesan, A.; Facchin, F.; Beraudi, A.; Casadei, R.; Frabetti, F.; Vitale, L.; Pelleri, M.C.; Tassani, S.; Piva, F.; Perez-Amodio, S.; Strippoli, P.; Canaider, S. An estimation of the number of cells in the human body. Ann. Hum. Biol., 2013, 40(6), 463-471.
[http://dx.doi.org/10.3109/03014460.2013.807878] [PMID: 23829164]
[5]
Vandivier, R.W.; Henson, P.M.; Douglas, I.S. Burying the dead. Chest, 2006, 129(6), 1673-1682.
[http://dx.doi.org/10.1378/chest.129.6.1673] [PMID: 16778289]
[6]
deCathelineau, A.M.; Henson, P.M.; Henson, P.M. The final step in programmed cell death: Phagocytes carry apoptotic cells to the grave. Essays Biochem., 2003, 39, 105-117.
[http://dx.doi.org/10.1042/bse0390105] [PMID: 14585077]
[7]
Gheibi Hayat, S.M.; Bianconi, V.; Pirro, M.; Sahebkar, A. Efferocytosis: Molecular mechanisms and pathophysiological perspectives. Immunol. Cell Biol., 2019, 97(2), 124-133.
[http://dx.doi.org/10.1111/imcb.12206] [PMID: 30230022]
[8]
Poon, I.K.H.; Lucas, C.D.; Rossi, A.G.; Ravichandran, K.S. Apoptotic cell clearance: Basic biology and therapeutic potential. Nat. Rev. Immunol., 2014, 14(3), 166-180.
[http://dx.doi.org/10.1038/nri3607] [PMID: 24481336]
[9]
Yáñez-Mó, M.; Siljander, P.R.M.; Andreu, Z.; Bedina Zavec, A.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; Colás, E.; Cordeiro-da Silva, A.; Fais, S.; Falcon-Perez, J.M.; Ghobrial, I.M.; Giebel, B.; Gimona, M.; Graner, M.; Gursel, I.; Gursel, M.; Heegaard, N.H.H.; Hendrix, A.; Kierulf, P.; Kokubun, K.; Kosanovic, M.; Kralj-Iglic, V.; Krämer-Albers, E.M.; Laitinen, S.; Lässer, C.; Lener, T.; Ligeti, E.; Linē, A.; Lipps, G.; Llorente, A.; Lötvall, J.; Manček-Keber, M.; Marcilla, A.; Mittelbrunn, M.; Nazarenko, I.; Nolte-’t Hoen, E.N.M.; Nyman, T.A.; O’Driscoll, L.; Olivan, M.; Oliveira, C.; Pállinger, É.; del Portillo, H.A.; Reventós, J.; Rigau, M.; Rohde, E.; Sammar, M.; Sánchez-Madrid, F.; Santarém, N.; Schallmoser, K.; Stampe Ostenfeld, M.; Stoorvogel, W.; Stukelj, R.; Van der Grein, S.G.; Helena Vasconcelos, M.; Wauben, M.H.M.; De Wever, O. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles, 2015, 4(1), 27066.
[http://dx.doi.org/10.3402/jev.v4.27066] [PMID: 25979354]
[10]
Parnaik, R.; Raff, M.C.; Scholes, J. Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr. Biol., 2000, 10(14), 857-860.
[http://dx.doi.org/10.1016/S0960-9822(00)00598-4] [PMID: 10899007]
[11]
Jurj, A.; Zanoaga, O.; Braicu, C.; Lazar, V.; Tomuleasa, C.; Irimie, A.; Berindan-Neagoe, I. A comprehensive picture of extracellular vesicles and their contents. Molecular transfer to cancer cells. Cancers, 2020, 12(2), 298.
[http://dx.doi.org/10.3390/cancers12020298] [PMID: 32012717]
[12]
Kao, C.Y.; Papoutsakis, E.T. Extracellular vesicles: Exosomes, microparticles, their parts, and their targets to enable their biomanufacturing and clinical applications. Curr. Opin. Biotechnol., 2019, 60, 89-98.
[http://dx.doi.org/10.1016/j.copbio.2019.01.005] [PMID: 30851486]
[13]
Hermann, D.M.; Xin, W.; Bähr, M.; Giebel, B.; Doeppner, T.R. Emerging roles of extracellular vesicle-associated non-coding RNAs in hypoxia: Insights from cancer, myocardial infarction and ischemic stroke. Theranostics, 2022, 12(13), 5776-5802.
[http://dx.doi.org/10.7150/thno.73931] [PMID: 35966580]
[14]
Battistelli, M.; Falcieri, E. Apoptotic bodies: Particular extracellular vesicles involved in intercellular communication. Biology, 2020, 9(1), 21.
[http://dx.doi.org/10.3390/biology9010021] [PMID: 31968627]
[15]
Trams, E.G.; Lauter, C.J.; Norman Salem, J.; Heine, U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta Biomembr., 1981, 645(1), 63-70.
[http://dx.doi.org/10.1016/0005-2736(81)90512-5] [PMID: 6266476]
[16]
Hornick, N.I.; Huan, J.; Doron, B.; Goloviznina, N.A.; Lapidus, J.; Chang, B.H.; Kurre, P. Serum exosome microRNA as a minimally-invasive early biomarker of AML. Sci. Rep., 2015, 5(1), 11295.
[http://dx.doi.org/10.1038/srep11295] [PMID: 26067326]
[17]
Akers, J.C.; Ramakrishnan, V.; Kim, R.; Skog, J.; Nakano, I.; Pingle, S.; Kalinina, J.; Hua, W.; Kesari, S.; Mao, Y.; Breakefield, X.O.; Hochberg, F.H.; Van Meir, E.G.; Carter, B.S.; Chen, C.C. MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): A platform for glioblastoma biomarker development. PLoS One, 2013, 8(10), e78115.
[http://dx.doi.org/10.1371/journal.pone.0078115] [PMID: 24205116]
[18]
Shi, R.; Wang, P.Y.; Li, X.Y.; Chen, J.X.; Li, Y.; Zhang, X.Z.; Zhang, C.G.; Jiang, T.; Li, W.B.; Ding, W.; Cheng, S.J. Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget, 2015, 6(29), 26971-26981.
[http://dx.doi.org/10.18632/oncotarget.4699] [PMID: 26284486]
[19]
Doyle, L.; Wang, M. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 2019, 8(7), 727.
[http://dx.doi.org/10.3390/cells8070727] [PMID: 31311206]
[20]
Akers, J.C.; Gonda, D.; Kim, R.; Carter, B.S.; Chen, C.C. Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neurooncol., 2013, 113(1), 1-11.
[http://dx.doi.org/10.1007/s11060-013-1084-8] [PMID: 23456661]
[21]
Borges, F.T.; Reis, L.A.; Schor, N. Extracellular vesicles: Structure, function, and potential clinical uses in renal diseases. Braz. J. Med. Biol. Res., 2013, 46(10), 824-830.
[http://dx.doi.org/10.1590/1414-431X20132964] [PMID: 24141609]
[22]
Bebelman, M.P.; Smit, M.J.; Pegtel, D.M.; Baglio, S.R. Biogenesis and function of extracellular vesicles in cancer. Pharmacol. Ther., 2018, 188, 1-11.
[http://dx.doi.org/10.1016/j.pharmthera.2018.02.013] [PMID: 29476772]
[23]
Simons, M.; Raposo, G. Exosomes - vesicular carriers for intercellular communication. Curr. Opin. Cell Biol., 2009, 21(4), 575-581.
[http://dx.doi.org/10.1016/j.ceb.2009.03.007] [PMID: 19442504]
[24]
Théry, C.; Ostrowski, M.; Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol., 2009, 9(8), 581-593.
[http://dx.doi.org/10.1038/nri2567] [PMID: 19498381]
[25]
Mathivanan, S.; Simpson, R.J. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics, 2009, 9(21), 4997-5000.
[http://dx.doi.org/10.1002/pmic.200900351] [PMID: 19810033]
[26]
Tauro, B.J.; Greening, D.W.; Mathias, R.A.; Ji, H.; Mathivanan, S.; Scott, A.M.; Simpson, R.J. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 2012, 56(2), 293-304.
[http://dx.doi.org/10.1016/j.ymeth.2012.01.002] [PMID: 22285593]
[27]
Morita, E.; Sandrin, V.; Chung, H.Y.; Morham, S.G.; Gygi, S.P.; Rodesch, C.K.; Sundquist, W.I. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J., 2007, 26(19), 4215-4227.
[http://dx.doi.org/10.1038/sj.emboj.7601850] [PMID: 17853893]
[28]
Théry, C.; Boussac, M.; Véron, P.; Ricciardi-Castagnoli, P.; Raposo, G.; Garin, J.; Amigorena, S. Proteomic analysis of dendritic cell-derived exosomes: A secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol., 2001, 166(12), 7309-7318.
[http://dx.doi.org/10.4049/jimmunol.166.12.7309] [PMID: 11390481]
[29]
Géminard, C.; de Gassart, A.; Blanc, L.; Vidal, M. Degradation of AP2 during reticulocyte maturation enhances binding of hsc70 and Alix to a common site on TFR for sorting into exosomes. Traffic, 2004, 5(3), 181-193.
[http://dx.doi.org/10.1111/j.1600-0854.2004.0167.x] [PMID: 15086793]
[30]
Trajkovic, K.; Hsu, C.; Chiantia, S.; Rajendran, L.; Wenzel, D.; Wieland, F.; Schwille, P.; Brügger, B.; Simons, M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 2008, 319(5867), 1244-1247.
[http://dx.doi.org/10.1126/science.1153124] [PMID: 18309083]
[31]
Stuffers, S.; Sem Wegner, C.; Stenmark, H.; Brech, A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic, 2009, 10(7), 925-937.
[http://dx.doi.org/10.1111/j.1600-0854.2009.00920.x] [PMID: 19490536]
[32]
Buschow, S.I.; Balkom, B.W.M.; Aalberts, M.; Heck, A.J.R.; Wauben, M.; Stoorvogel, W. MHC class II‐associated proteins in B‐cell exo-somes and potential functional implications for exosome biogenesis. Immunol. Cell Biol., 2010, 88(8), 851-856.
[http://dx.doi.org/10.1038/icb.2010.64] [PMID: 20458337]
[33]
Seo, Y.; Kim, H-S.; Hong, I-S. Stem cell-derived extracellular vesicles as immunomodulatory therapeutics. Stem Cells Int., 2019, 2019, 5126156.
[http://dx.doi.org/10.1155/2019/5126156]
[34]
Das, A.; Sinha, M.; Datta, S.; Abas, M.; Chaffee, S.; Sen, C.K.; Roy, S. Monocyte and macrophage plasticity in tissue repair and regeneration. Am. J. Pathol., 2015, 185(10), 2596-2606.
[http://dx.doi.org/10.1016/j.ajpath.2015.06.001] [PMID: 26118749]
[35]
Gómez-Ferrer, M.; Amaro-Prellezo, E.; Dorronsoro, A.; Sánchez-Sánchez, R.; Vicente, Á.; Cosín-Roger, J. HIF-overexpression and pro-inflammatory priming in human mesenchymal stromal cells improves the healing properties of extracellular vesicles in experimental crohn’s disease. Int. J. Mol. Sci., 2021, 22(20), 11269.
[36]
Wan, E.; Yeap, X.Y.; Dehn, S.; Terry, R.; Novak, M.; Zhang, S.; Iwata, S.; Han, X.; Homma, S.; Drosatos, K.; Lomasney, J.; Engman, D.M.; Miller, S.D.; Vaughan, D.E.; Morrow, J.P.; Kishore, R.; Thorp, E.B. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ. Res., 2013, 113(8), 1004-1012.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301198] [PMID: 23836795]
[37]
de Couto, G.; Gallet, R.; Cambier, L.; Jaghatspanyan, E.; Makkar, N.; Dawkins, J.F.; Berman, B.P.; Marbán, E. Exosomal microRNA transfer into macrophages mediates cellular postconditioning. Circulation, 2017, 136(2), 200-214.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024590] [PMID: 28411247]
[38]
Mentkowski, K.I.; Mursleen, A.; Snitzer, J.D.; Euscher, L.M.; Lang, J.K. CDC-derived extracellular vesicles reprogram inflammatory macrophages to an arginase 1-dependent proangiogenic phenotype. Am. J. Physiol. Heart Circ. Physiol., 2020, 318(6), H1447-H1460.
[http://dx.doi.org/10.1152/ajpheart.00155.2020] [PMID: 32330087]
[39]
Zhang, M.; Johnson-Stephenson, T.K.; Wang, W.; Wang, Y.; Li, J.; Li, L.; Zen, K.; Chen, X.; Zhu, D. Mesenchymal stem cell-derived exosome-educated macrophages alleviate systemic lupus erythematosus by promoting efferocytosis and recruitment of IL-17+ regulatory T cell. Stem Cell Res. Ther., 2022, 13(1), 484.
[http://dx.doi.org/10.1186/s13287-022-03174-7] [PMID: 36153633]
[40]
Martins, I.; Kepp, O.; Galluzzi, L.; Senovilla, L.; Schlemmer, F.; Adjemian, S.; Menger, L.; Michaud, M.; Zitvogel, L.; Kroemer, G. Surface-exposed calreticulin in the interaction between dying cells and phagocytes. Ann. N. Y. Acad. Sci., 2010, 1209(1), 77-82.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05740.x] [PMID: 20958319]
[41]
Gardai, S.J.; McPhillips, K.A.; Frasch, S.C.; Janssen, W.J.; Starefeldt, A.; Murphy-Ullrich, J.E.; Bratton, D.L.; Oldenborg, P.A.; Michalak, M.; Henson, P.M. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell, 2005, 123(2), 321-334.
[http://dx.doi.org/10.1016/j.cell.2005.08.032] [PMID: 16239148]
[42]
Hochreiter-Hufford, A.; Ravichandran, K.S. Clearing the dead: Apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol., 2013, 5(1), a008748.
[http://dx.doi.org/10.1101/cshperspect.a008748] [PMID: 23284042]
[43]
Frachet, P.; Tacnet-Delorme, P.; Gaboriaud, C.; Thielens, N. Autoimmunity-Pathogenesis, Clinical Aspects and Therapy of Specific Autoimmune Diseases; IntechOpen, 2015.
[44]
Osman, R.; Tacnet-Delorme, P.; Kleman, J.P.; Millet, A.; Frachet, P. Calreticulin release at an early stage of death modulates the clearance by macrophages of apoptotic cells. Front. Immunol., 2017, 8, 1034.
[http://dx.doi.org/10.3389/fimmu.2017.01034] [PMID: 28878781]
[45]
Zheng, C.; Sui, B.; Zhang, X.; Hu, J.; Chen, J.; Liu, J.; Wu, D.; Ye, Q.; Xiang, L.; Qiu, X.; Liu, S.; Deng, Z.; Zhou, J.; Liu, S.; Shi, S.; Jin, Y. Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes. J. Extracell. Vesicles, 2021, 10(7), e12109.
[http://dx.doi.org/10.1002/jev2.12109] [PMID: 34084287]
[46]
Lee, Y.; EL Andaloussi, S. Wood, M.J.A. Exosomes and microvesicles: Extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet., 2012, 21(R1), R125-R134.
[http://dx.doi.org/10.1093/hmg/dds317] [PMID: 22872698]
[47]
Shah, R.; Patel, T.; Freedman, J.E. Circulating extracellular vesicles in human disease. N. Engl. J. Med., 2018, 379(10), 958-966.
[http://dx.doi.org/10.1056/NEJMra1704286] [PMID: 30184457]
[48]
Lemke, G.; Rothlin, C.V. Immunobiology of the TAM receptors. Nat. Rev. Immunol., 2008, 8(5), 327-336.
[http://dx.doi.org/10.1038/nri2303] [PMID: 18421305]
[49]
Rothlin, C.V.; Lemke, G. TAM receptor signaling and autoimmune disease. Curr. Opin. Immunol., 2010, 22(6), 740-746.
[http://dx.doi.org/10.1016/j.coi.2010.10.001] [PMID: 21030229]
[50]
Scott, R.S.; McMahon, E.J.; Pop, S.M.; Reap, E.A.; Caricchio, R.; Cohen, P.L.; Earp, H.S.; Matsushima, G.K. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature, 2001, 411(6834), 207-211.
[http://dx.doi.org/10.1038/35075603] [PMID: 11346799]
[51]
Rothlin, C.V.; Ghosh, S.; Zuniga, E.I.; Oldstone, M.B.A.; Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell, 2007, 131(6), 1124-1136.
[http://dx.doi.org/10.1016/j.cell.2007.10.034] [PMID: 18083102]
[52]
Carrera Silva, E.A.; Chan, P.Y.; Joannas, L.; Errasti, A.E.; Gagliani, N.; Bosurgi, L.; Jabbour, M.; Perry, A.; Smith-Chakmakova, F.; Mucida, D.; Cheroutre, H.; Burstyn-Cohen, T.; Leighton, J.A.; Lemke, G.; Ghosh, S.; Rothlin, C.V. T cell-derived protein S engages TAM receptor signaling in dendritic cells to control the magnitude of the immune response. Immunity, 2013, 39(1), 160-170.
[http://dx.doi.org/10.1016/j.immuni.2013.06.010] [PMID: 23850380]
[53]
Camenisch, T.D.; Koller, B.H.; Earp, H.S., II; Matsushima, G.K. A novel receptor tyrosine kinase, Mer, inhibits TNF-alpha production and lipopolysaccharide-induced endotoxic shock. J. Immunol., 1999, 162(6), 3498-3503.
[http://dx.doi.org/10.4049/jimmunol.162.6.3498] [PMID: 10092806]
[54]
Graham, D.K.; Bowman, G.W.; Dawson, T.L.; Stanford, W.L.; Earp, H.S.; Snodgrass, H.R. Cloning and developmental expression analysis of the murine c-mer tyrosine kinase. Oncogene, 1995, 10(12), 2349-2359.
[PMID: 7784083]
[55]
Myers, K.V.; Amend, S.R.; Pienta, K.J. Targeting Tyro3, Axl and MerTK (TAM receptors): Implications for macrophages in the tumor microenvironment. Mol. Cancer, 2019, 18(1), 94.
[http://dx.doi.org/10.1186/s12943-019-1022-2] [PMID: 31088471]
[56]
de Couto, G.; Jaghatspanyan, E.; DeBerge, M.; Liu, W.; Luther, K.; Wang, Y.; Tang, J.; Thorp, E.B.; Marbán, E. Mechanism of enhanced MerTK-dependent macrophage efferocytosis by extracellular vesicles. Arterioscler. Thromb. Vasc. Biol., 2019, 39(10), 2082-2096.
[http://dx.doi.org/10.1161/ATVBAHA.119.313115] [PMID: 31434491]
[57]
Hanayama, R.; Tanaka, M.; Miwa, K.; Shinohara, A.; Iwamatsu, A.; Nagata, S. Identification of a factor that links apoptotic cells to phagocytes. Nature, 2002, 417(6885), 182-187.
[http://dx.doi.org/10.1038/417182a] [PMID: 12000961]
[58]
Hanayama, R.; Tanaka, M.; Miyasaka, K.; Aozasa, K.; Koike, M.; Uchiyama, Y.; Nagata, S. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science, 2004, 304(5674), 1147-1150.
[http://dx.doi.org/10.1126/science.1094359] [PMID: 15155946]
[59]
Yamaguchi, H.; Takagi, J.; Miyamae, T.; Yokota, S.; Fujimoto, T.; Nakamura, S.; Ohshima, S.; Naka, T.; Nagata, S. Milk fat globule EGF factor 8 in the serum of human patients of systemic lupus erythematosus. J. Leukoc. Biol., 2008, 83(5), 1300-1307.
[http://dx.doi.org/10.1189/jlb.1107730] [PMID: 18303131]
[60]
Dai, W.; Li, Y.; Lv, Y.; Wei, C.; Zheng, H. The roles of a novel anti-inflammatory factor, milk fat globule-epidermal growth factor 8, in patients with coronary atherosclerotic heart disease. Atherosclerosis, 2014, 233(2), 661-665.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.01.013] [PMID: 24561551]
[61]
Boddaert, J.; Kinugawa, K.; Lambert, J.C.; Boukhtouche, F.; Zoll, J.; Merval, R.; Blanc-Brude, O.; Mann, D.; Berr, C.; Vilar, J.; Garabedian, B.; Journiac, N.; Charue, D.; Silvestre, J.S.; Duyckaerts, C.; Amouyel, P.; Mariani, J.; Tedgui, A.; Mallat, Z. Evidence of a role for lactadherin in Alzheimer’s disease. Am. J. Pathol., 2007, 170(3), 921-929.
[http://dx.doi.org/10.2353/ajpath.2007.060664] [PMID: 17322377]
[62]
Hodge, S.; Hodge, G.; Scicchitano, R.; Reynolds, P.N.; Holmes, M. Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol. Cell Biol., 2003, 81(4), 289-296.
[http://dx.doi.org/10.1046/j.1440-1711.2003.t01-1-01170.x] [PMID: 12848850]
[63]
Zhang, S.; Xie, J.G.; Su, B.T.; Li, J.L.; Hu, N.; Chen, J.; Luo, G.W.; Cui, T.P. MFG-E8, a clearance glycoprotein of apoptotic cells, as a new marker of disease severity in chronic obstructive pulmonary disease. Braz. J. Med. Biol. Res., 2015, 48(11), 1032-1038.
[http://dx.doi.org/10.1590/1414-431x20154730] [PMID: 26375445]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy