Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Targeted Treatment of Lung Cancer using Nanomaterials: Prospective and Advances

Author(s): Gupta Swati Sanjay Kumar*

Volume 20, Issue 3, 2024

Published on: 04 October, 2023

Page: [252 - 262] Pages: 11

DOI: 10.2174/0115733947250534230922051549

Price: $65

Abstract

Background: Lung cancer is the second most lethal type of cancer, with a poor survival rate of 5 years. It is one of those malignant tumors that has grown most rapidly in the context of mortality and morbidity.

Aim: This review article aims to provide insight into current nanotechnological approaches taken into consideration that provide advantages over conventional chemotherapy.

Results and Discussion: After comparing conventional chemotherapy and nanotechnology-based therapies for lung cancer, the results showed that recent advances in nanomaterials proved to be more effective in lung cancer diagnosis, mitigation and treatment. Here, Surface-engineered smart nanocarrier- based inhalations, Bio-nanocarriers for lung cancer, gas plasma nanoparticles, and magnetic nanoparticles are discussed.

Conclusion: After summarizing these nanomaterials, investigators concluded that the in-vivo and invitro effectiveness of recently developed nanoparticles was found to be better than that of conventional nanoparticles.

Graphical Abstract

[1]
Kaur C, Garg U. Artificial intelligence techniques for cancer detection in medical image processing: A review. TURCOMAT 2021; 12(2): 2667-73.
[2]
Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J Cancer Res Pract 2017; 4(4): 127-9.
[http://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
[3]
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73(1): 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[4]
Cryer AM, Thorley AJ. Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol Ther 2019; 198: 189-205.
[http://dx.doi.org/10.1016/j.pharmthera.2019.02.010] [PMID: 30796927]
[5]
Lemjabbar-Alaoui H, Hassan OU, Yang YW, Buchanan P. Lung cancer: Biology and treatment options. Biochimica et Biophysica Acta (BBA)-. Rev Can 2015; 1856(2): 189-210.
[6]
Pandi A, Mamo G, Getachew D, Lemessa F, Kalappan VM, Dhiravidamani S. A brief review on lung cancer. Int J Pharm Res Health Sci 2016; 4(1): 907-14.
[7]
Rodgers K. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511(7511): 543-50.
[http://dx.doi.org/10.1038/nature13385] [PMID: 25079552]
[8]
Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun 2014; 5(1): 4846.
[http://dx.doi.org/10.1038/ncomms5846] [PMID: 25204415]
[9]
Hoadley KA, Yau C, Wolf DM, et al. Multiplatform analysis of 12 cancer type reveals molecular classification within and across tissues of origin. Cell 2014; 158(4): 929-44.
[http://dx.doi.org/10.1016/j.cell.2014.06.049] [PMID: 25109877]
[10]
Brambilla E, Gazdar A. Pathogenesis of lung cancer signalling pathways: roadmap for therapies. Eur Respir J 2009; 33(6): 1485-97.
[http://dx.doi.org/10.1183/09031936.00014009] [PMID: 19483050]
[11]
Sweis RF, Thomas S, Bank B, Fishkin P, Mooney C, Salgia R. Concurrent EGFR mutation and ALK translocation in non-small cell lung cancer. Cureus 2016; 8(2): e513.
[http://dx.doi.org/10.7759/cureus.513] [PMID: 27026837]
[12]
Punekar SR, Shum E, Grello CM, Lau SC, Velcheti V. Immunotherapy in non-small cell lung cancer: Past, present, and future directions. Front Oncol 2022; 12: 877594.
[http://dx.doi.org/10.3389/fonc.2022.877594] [PMID: 35992832]
[13]
Mondal J, Panigrahi AK, Khuda-Bukhsh AR. Conventional chemotherapy: Problems and scope for combined therapies with certain herbal products and dietary supplements. Aus J Mol Cel Biol 2014; 1(1): 10.
[14]
Tannock IF. Conventional cancer therapy: Promise broken or promise delayed? Lancet 1998; 351(S2): SII9-SII16.
[http://dx.doi.org/10.1016/S0140-6736(98)90327-0] [PMID: 9606361]
[15]
Dasari S, Bernard TP. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol 2014; 740: 364-78.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[16]
Tannock IF. The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer 1968; 22(2): 258-73.
[http://dx.doi.org/10.1038/bjc.1968.34] [PMID: 5660132]
[17]
Hirst DG, Denekamp J. Tumour cell proliferation in relation to the vasculature. Cell Prolif 1979; 12(1): 31-42.
[http://dx.doi.org/10.1111/j.1365-2184.1979.tb00111.x] [PMID: 421240]
[18]
Prabhu V, Uzzaman S, Grace VMB, Guruvayoorappan C. Nanoparticles in drug delivery and cancer therapy: The giant rats tail. J Cancer Ther 2011; 2(3): 325-34.
[http://dx.doi.org/10.4236/jct.2011.23045]
[19]
Hasan S. A review on nanoparticles: Their synthesis and types. Res J Recent Sci 2015; 4: 9-11.
[20]
Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 2010; 6(1): 9-24.
[http://dx.doi.org/10.1016/j.nano.2009.04.008] [PMID: 19447208]
[21]
Carrasco-Esteban E,. Domínguez-Rullán JA, Barrionuevo-Castillo P, et al. Current role of nanoparticles in the treatment of lung cancer. J Clin Transl Res 2021; 7(2): 140-55.
[PMID: 34104817]
[22]
Tseng CL, Wu SYH, Wang WH, et al. Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer. Biomaterials 2008; 29(20): 3014-22.
[http://dx.doi.org/10.1016/j.biomaterials.2008.03.033] [PMID: 18436301]
[23]
Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology-based inhalation treatments for lung cancer: State of the art. Nanotechnol Sci Appl 2015; 8(8): 55-66.
[PMID: 26640374]
[24]
Sukumar UK, Bhushan B, Dubey P, Matai I, Sachdev A, Packirisamy G. Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int Nano Lett 2013; 3(1): 45.
[http://dx.doi.org/10.1186/2228-5326-3-45]
[25]
Alipour S, Montaseri H, Tafaghodi M. Preparation and characterization of biodegradable paclitaxel loaded alginate microparticles for pulmonary delivery. Colloids Surf B Biointerfaces 2010; 81(2): 521-9.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.050] [PMID: 20732796]
[26]
Mangal S, Gao W, Li T, Zhou Q. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin 2017; 38(6): 782-97.
[http://dx.doi.org/10.1038/aps.2017.34] [PMID: 28504252]
[27]
Chen J, Yang X, Huang L, Lai H, Gan C, Luo X. Development of dual-drug-loaded stealth nanocarriers for targeted and synergistic anti-lung cancer efficacy. Drug Deliv 2018; 25(1): 1932-42.
[http://dx.doi.org/10.1080/10717544.2018.1477856] [PMID: 30472899]
[28]
Kaminskas LM, McLeod VM, Ryan GM, et al. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release 2014; 183: 18-26.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.012] [PMID: 24637466]
[29]
Abd Elwakil MM, Mabrouk MT, Helmy MW, et al. Inhalable lactoferrin–chondroitin nanocomposites for combined delivery of doxorubicin and ellagic acid to lung carcinoma. Nanomedicine 2018; 13(16): 2015-35.
[http://dx.doi.org/10.2217/nnm-2018-0039] [PMID: 30191764]
[30]
Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. Nano-Micro Lett 2021; 13(1): 142.
[http://dx.doi.org/10.1007/s40820-021-00630-6] [PMID: 34138386]
[31]
Gujrati V, Kim S, Kim SH, et al. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano 2014; 8(2): 1525-37.
[http://dx.doi.org/10.1021/nn405724x] [PMID: 24410085]
[32]
MacDiarmid JA, Brahmbhatt H. Minicells: Versatile vectors for targeted drug or si/shRNA cancer therapy. Curr Opin Biotechnol 2011; 22(6): 909-16.
[http://dx.doi.org/10.1016/j.copbio.2011.04.008] [PMID: 21550793]
[33]
Zhang Y, Ji W, He L, et al. E. coli Nissle 1917-derived minicells for targeted delivery of chemotherapeutic drug to hypoxic regions for cancer therapy. Theranostics 2018; 8(6): 1690-705.
[http://dx.doi.org/10.7150/thno.21575] [PMID: 29556350]
[34]
Huo M, Wang L, Chen Y, Shi J. Nanomaterials/microorganism-integrated microbiotic nanomedicine. Nano Today 2020; 32.
[35]
Constantin C, Neagu M. Bio-inspired nanomaterials - a better option for nanomedicine. Trends Tox Related Sci 2017; 1(1)
[36]
Kraśko JA, Žilionytė K, Darinskas A, et al. Bacterial ghosts as adjuvants in syngeneic tumour cell lysate-based anticancer vaccination in a murine lung carcinoma model. Oncol Rep 2017; 37(1): 171-8.
[http://dx.doi.org/10.3892/or.2016.5252] [PMID: 27878261]
[37]
Langemann T, Koller VJ, Muhammad A, Kudela P, Mayr UB, Lubitz W. The bacterial ghost platform system. Bioeng Bugs 2010; 1(5): 326-36.
[http://dx.doi.org/10.4161/bbug.1.5.12540] [PMID: 21326832]
[38]
Boucher M, Geffroy F, Prévéral S, et al. Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor. Biomaterials 2017; 121: 167-78.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.013] [PMID: 28088078]
[39]
Wang J, Geng Y, Zhang Y, et al. Bacterial magnetosomes loaded with doxorubicin and transferrin improve targeted therapy of hepatocellular carcinoma. Nanotheranostics 2019; 3(3): 284-98.
[http://dx.doi.org/10.7150/ntno.34601] [PMID: 31423412]
[40]
Sun JB, Duan JH, Dai SL, et al. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: The magnetic bio-nanoparticles as drug carriers. Cancer Lett 2007; 258(1): 109-17.
[http://dx.doi.org/10.1016/j.canlet.2007.08.018] [PMID: 17920762]
[41]
Varchulova Novakova Z, Gasparova I, Krajciova L, et al. Effect of magnetosomes on cell proliferation, apoptosis induction and expression of Bcl-2 in the human lung cancer cell line A549. Biologia 2017; 72(5): 554-60.
[http://dx.doi.org/10.1515/biolog-2017-0059]
[42]
Sabu C, Mufeedha P, Pramod K. Yeast-inspired drug delivery: Biotechnology meets bioengineering and synthetic biology. Expert Opin Drug Deliv 2019; 16(1): 27-41.
[http://dx.doi.org/10.1080/17425247.2019.1551874] [PMID: 30463446]
[43]
Roudi R, Mohammadi SR, Roudbary M, Mohsenzadegan M. Lung cancer and β-glucans: Review of potential therapeutic applications. Invest New Drugs 2017; 35(4): 509-17.
[http://dx.doi.org/10.1007/s10637-017-0449-9] [PMID: 28303529]
[44]
Hu X, Saravanakumar K, Jin T, Wang MH. Mycosynthesis, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus Talaromyces purpureogenus. Int J Nanomedicine 2019; 14: 3427-38.
[http://dx.doi.org/10.2147/IJN.S200817] [PMID: 31190801]
[45]
Majeed S, Abdullah MS, Dash GK, Ansari MT, Nanda A. Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chin J Nat Med 2016; 14(8): 615-20.
[http://dx.doi.org/10.1016/S1875-5364(16)30072-3] [PMID: 27608951]
[46]
Zhou X, Ling K, Liu M, et al. Targeted delivery of cisplatin-derived nanoprecursors via a biomimetic yeast microcapsule for tumor therapy by the oral route. Theranostics 2019; 9(22): 6568-86.
[http://dx.doi.org/10.7150/thno.35353] [PMID: 31588236]
[47]
Zhang X, Xu X, Chen Y, et al. Bioinspired yeast microcapsules loaded with self-assembled nanotherapies for targeted treatment of cardiovascular disease. Mater Today 2017; 20(6): 301-13.
[http://dx.doi.org/10.1016/j.mattod.2017.05.006]
[48]
Baskar G, Lalitha K, Aiswarya R, Naveenkumar R. Synthesis, characterization and synergistic activity of cerium-selenium nanobiocomposite of fungal l-asparaginase against lung cancer. Mater Sci Eng C 2018; 93: 809-15.
[http://dx.doi.org/10.1016/j.msec.2018.08.051] [PMID: 30274116]
[49]
Yang YJ, Gao ZF. Editorial: Bio-inspired nanomaterials in surface engineering and bioapplications. Front Chem 2022; 10: 872069.
[http://dx.doi.org/10.3389/fchem.2022.872069] [PMID: 35360536]
[50]
Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov 2010; 9(7): 537-50.
[http://dx.doi.org/10.1038/nrd3141] [PMID: 20592747]
[51]
Zhang Y, Zhao J, Sun J, Huang L, Li Q. Targeting lung cancer initiating cells by all trans retinoic acid loaded lipid PLGA nanoparticles with CD133 aptamers. Exp Ther Med 2018; 16(6): 4639-49.
[http://dx.doi.org/10.3892/etm.2018.6762] [PMID: 30542415]
[52]
Guo F, Hu Y, Yu L, et al. Enhancement of thermal damage to adenocarcinoma cells by iron nanoparticles modified with MUC1 aptamer. J Nanosci Nanotechnol 2016; 16(3): 2246-53.
[http://dx.doi.org/10.1166/jnn.2016.10941] [PMID: 27455625]
[53]
Alibolandi M, Ramezani M, Abnous K, Hadizadeh F. AS1411 aptamer-decorated biodegradable polyethylene glycol–poly(lactic-co-glycolic acid) nanopolymersomes for the targeted delivery of gemcitabine to non–small cell lung cancer in vitro. J Pharm Sci 2016; 105(5): 1741-50.
[http://dx.doi.org/10.1016/j.xphs.2016.02.021] [PMID: 27039356]
[54]
Wu SY, Wu FG, Chen X. Antibody incorporated nanomedicines for cancer therapy. Adv Mater 2022; 34(24): 2109210.
[http://dx.doi.org/10.1002/adma.202109210] [PMID: 35142395]
[55]
Adler MJ, Dimitrov DS. Therapeutic antibodies against cancer. Hematol Oncol Clin North Am 2012; 26(3): 447-81. [vii.]
[http://dx.doi.org/10.1016/j.hoc.2012.02.013] [PMID: 22520975]
[56]
Vedakumari SW, Senthil R, Sekar S, Babu CS, Sastry TP. Enhancing anti-cancer activity of erlotinib by antibody conjugated nanofibrin - in vitro studies on lung adenocarcinoma cell lines. Mater Chem Phys 2019; 224: 328-33.
[http://dx.doi.org/10.1016/j.matchemphys.2018.11.061]
[57]
Yang L, Mao H, Wang YA, et al. Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 2009; 5(2): 235-43.
[http://dx.doi.org/10.1002/smll.200800714] [PMID: 19089838]
[58]
Dai X, Bazaka K, Richard DJ, Thompson ERW, Ostrikov KK. The emerging role of gas plasma in oncotherapy. Trends Biotechnol 2018; 36(11): 1183-98.
[http://dx.doi.org/10.1016/j.tibtech.2018.06.010] [PMID: 30033340]
[59]
Rasouli M, Fallah N, Ostrikov K. Lung Cancer Oncotherapy through Novel Modalities: Gas Plasma and Nanoparticle Technologies. Modern Multidisciplinary Management. Intechopen 2021.
[60]
Schmidt A, Bekeschus S. Redox for repair: Cold physical plasmas and Nrf2 signaling promoting wound healing. Antioxidants 2018; 7(10): 146.
[http://dx.doi.org/10.3390/antiox7100146] [PMID: 30347767]
[61]
Huang J, Chen W, Li H, et al. Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle. J Appl Phys 2011; 109(5): 053305.
[http://dx.doi.org/10.1063/1.3553873]
[62]
Kim JY, Ballato J, Foy P, et al. Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma. Biosens Bioelectron 2011; 28(1): 333-8.
[http://dx.doi.org/10.1016/j.bios.2011.07.039] [PMID: 21820891]
[63]
Keidar M, Walk R, Shashurin A, et al. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer 2011; 105(9): 1295-301.
[http://dx.doi.org/10.1038/bjc.2011.386] [PMID: 21979421]
[64]
Hosu O, Tertis M, Cristea C. Implication of magnetic nanoparticles in cancer detection, screening and treatment. Magnetochemistry 2019; 5(4): 55.
[http://dx.doi.org/10.3390/magnetochemistry5040055]
[65]
Ahghari MR, Soltaninejad V, Maleki A. Synthesis of nickel nanoparticles by a green and convenient method as a magnetic mirror with antibacterial activities. Sci Rep 2020; 10(1): 12627.
[http://dx.doi.org/10.1038/s41598-020-69679-4]
[66]
Mukherjee S, Liang L, Veiseh O. Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics 2020; 12(2): 147.
[http://dx.doi.org/10.3390/pharmaceutics12020147] [PMID: 32053995]
[67]
Yu H, Wang Y, Wang S, et al. Paclitaxel loaded core shell magnetic nanoparticles and cold atmospheric plasma inhibit Non-small cell lung cancer growth. ACS Appl Mater Interfaces 2018; 10(50): 43462-71.
[http://dx.doi.org/10.1021/acsami.8b16487] [PMID: 30375840]
[68]
Chen S, Han F, Huang D, et al. Fe3O4 magnetic nanoparticle-enhanced radiotherapy for lung adenocarcinoma via delivery of siBIRC5 and AS-ODN. J Transl Med 2021; 19(1): 337.
[http://dx.doi.org/10.1186/s12967-021-02971-7] [PMID: 34372869]
[69]
Godugu C, Patel AR, Doddapaneni R, Marepally S, Jackson T, Singh M. Inhalation delivery of Telmisartan enhances intratumoral distribution of nanoparticles in lung cancer models. J Control Release 2013; 172(1): 86-95.
[http://dx.doi.org/10.1016/j.jconrel.2013.06.036] [PMID: 23838154]
[70]
Jyoti K, Kaur K, Pandey RS, Jain UK, Chandra R, Madan J. Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubulin-binding cytotoxic agent: in vitro and in vivo studies. J Colloid Interface Sci 2015; 445: 219-30.
[http://dx.doi.org/10.1016/j.jcis.2014.12.092] [PMID: 25622047]
[71]
Wittgen BPH, Kunst PWA, van der Born K, et al. Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin Cancer Res 2007; 13(8): 2414-21.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1480] [PMID: 17438100]
[72]
Choi SH, Byeon HJ, Choi JS, et al. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J Control Release 2015; 197: 199-207.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.008] [PMID: 25445703]
[73]
Meenach SA, Anderson KW, Hilt JZ, McGarry RC, Mansour HM. High-performing dry powder inhalers of paclitaxel DPPC/DPPG lung surfactant-mimic multifunctional particles in lung cancer: physicochemical characterization, in vitro aerosol dispersion, and cellular studies. AAPS PharmSciTech 2014; 15(6): 1574-87.
[http://dx.doi.org/10.1208/s12249-014-0182-z] [PMID: 25139763]
[74]
Luo Y, Cai X, Li H, Lin Y, Du D. Hyaluronic Acid-modifed multifunctional Q-graphene for targeted killing of drug resistant lung cancer cells. ACS Appl Mater Interfaces 2016; 8(6): 4048-55.
[http://dx.doi.org/10.1021/acsami.5b11471] [PMID: 26785717]
[75]
Lin C, Zhang X, Chen H, et al. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv 2018; 25(1): 256-66.
[http://dx.doi.org/10.1080/10717544.2018.1425777] [PMID: 29334814]
[76]
Chen D-W, Cheng L, Huang F, et al. GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation. Int J Nanomedicine 2014; 9: 921-35.
[http://dx.doi.org/10.2147/IJN.S53310] [PMID: 24611009]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy