Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

The Enzymatic Role in Honey from Honey Bees and Stingless Bees

Author(s): Saba Farooq* and Zainab Ngaini*

Volume 27, Issue 14, 2023

Published on: 04 October, 2023

Page: [1215 - 1229] Pages: 15

DOI: 10.2174/0113852728258520230921060447

Price: $65

Abstract

A variety of biomolecules known as enzymes are found in honey and originated from bees and plant nectars. The plant yields nectar that aids bees in producing honey. Diastases, invertases, glucosidases, glucose oxidases and proteases are the common enzymes present in honey and highly sensitive toward UV-vis light, heat, and microwave energy. Among all enzymes, invertase and diastase have been used for assessing the freshness of honey. The enzyme's capacity to transform amylose into glucose enhances the sweetness and flavor of honey. The role of enzymatic reactions in two types of honey, based upon bee sting morphology, namely honey from honey bees (HB) and stingless bees (SB) are discussed in this review. Enzymes that act as the main ingredient in honey production are comprehensively discussed for their significance in producing good quality and therapeutic properties of honey.

Graphical Abstract

[1]
Mohammed, M.E.A. Factors affecting the physicochemical properties and chemical composition of bee’s honey. Food Rev. Int., 2022, 38(6), 1330-1341.
[http://dx.doi.org/10.1080/87559129.2020.1810701]
[2]
Bicudo de Almeida-Muradian, L.; Monika Barth, O.; Dietemann, V.; Eyer, M.; Freitas, A. Martel, da S. de; Marcazzan, A.-C.; Marchese, G. L.; Mucignat-Caretta, C. M.; Pascual-Maté, C.; Reybroeck, A.; Sancho, W.; Gasparotto Sattler, J. A. Standard methods for Apis mellifera honey research. J. Apic. Res., 2020, 59(3), 1-62.
[http://dx.doi.org/10.1080/00218839.2020.1738135]
[3]
Nordin, A.; Omar, N.; Sainik, N.Q.A.V.; Chowdhury, S.R.; Omar, E.; Bin Saim, A.; Bt Hj Idrus, R. Low dose stingless bee honey increases viability of human dermal fibroblasts that could potentially promote wound healing. Wound Med., 2018, 23, 22-27.
[http://dx.doi.org/10.1016/j.wndm.2018.09.005]
[4]
Abd Jalil, M.A.; Kasmuri, A.R.; Hadi, H. Stingless bee honey, the natural wound healer: A review. Skin Pharmacol. Physiol., 2017, 30(2), 66-75.
[http://dx.doi.org/10.1159/000458416] [PMID: 28291965]
[5]
Daci-Ajvazi, M.; Mehmeti, A.; Zeneli, L.; Daci, N. Evaluation of antioxidant activity, heavy metals and colour intensity of honeys from different parts of KOSOVO. J. Environ. Prot. Ecol., 2017, 18(2), 737-748.
[6]
Addam, D.K.; Rifai, F.; Naous, H.; Matraji, S.; Mezher, D.B. Fallacies and behaviors of Lebanese consumers towards marketing of honey. Int. J. Commer. Manag. Res., 2017, 3(6), 177-183.
[7]
Brudzynski, K. Honey as an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee. Antibiotics, 2021, 10(5), 551.
[http://dx.doi.org/10.3390/antibiotics10050551] [PMID: 34065141]
[8]
Iorizzo, M.; Letizia, F.; Ganassi, S.; Testa, B.; Petrarca, S.; Albanese, G.; Di Criscio, D.; De Cristofaro, A. Functional properties and antimicrobial activity from lactic acid bacteria as resources to improve the health and welfare of honey bees. Insects, 2022, 13(3), 308.
[http://dx.doi.org/10.3390/insects13030308] [PMID: 35323606]
[9]
Kwakman, P.H.S.; Zaat, S.A.J. Antibacterial components of honey. IUBMB Life, 2012, 64(1), 48-55.
[http://dx.doi.org/10.1002/iub.578] [PMID: 22095907]
[10]
Jantakee, K.; Tragoolpua, Y. Activities of different types of Thai honey on pathogenic bacteria causing skin diseases, tyrosinase enzyme and generating free radicals. Biol. Res., 2015, 48(1), 4.
[http://dx.doi.org/10.1186/0717-6287-48-4] [PMID: 25654191]
[11]
Chen, X.; Liu, B.; Li, X.; An, T.T.; Zhou, Y.; Li, G.; Wu-Smart, J.; Alvarez, S.; Naldrett, M.J.; Eudy, J.; Kubik, G.; Wilson, R.A.; Kachman, S.D.; Cui, J.; Yu, J. Identification of anti-inflammatory vesicle-like nanoparticles in honey. J. Extracell. Vesicles, 2021, 10(4), e12069.
[http://dx.doi.org/10.1002/jev2.12069] [PMID: 33613874]
[12]
Navaei-Alipour, N.; Mastali, M.; Ferns, G.A.; Saberi-Karimian, M.; Ghayour-Mobarhan, M. The effects of honey on pro- and anti-inflammatory cytokines: A narrative review. Phytother. Res., 2021, 35(7), 3690-3701.
[http://dx.doi.org/10.1002/ptr.7066] [PMID: 33751689]
[13]
Erler, S.; Moritz, R.F.A. Pharmacophagy and pharmacophory: Mechanisms of self-medication and disease prevention in the honeybee colony (Apis mellifera). Apidologie., 2016, 47(3), 389-411.
[http://dx.doi.org/10.1007/s13592-015-0400-z]
[14]
Kustiawan, P.M.; Puthong, S.; Arung, E.T.; Chanchao, C. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines. Asian Pac. J. Trop. Biomed., 2014, 4(7), 549-556.
[http://dx.doi.org/10.12980/APJTB.4.2014APJTB-2013-0039] [PMID: 25183275]
[15]
Farooq, S.; Ngaini, Z. Natural and synthetic drugs as potential treatment for coronavirus disease 2019 (COVID-2019). Chem. Africa, 2021, 4(1), 1-13.
[http://dx.doi.org/10.1007/s42250-020-00203-x]
[16]
Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed., 2011, 1(2), 154-160.
[http://dx.doi.org/10.1016/S2221-1691(11)60016-6] [PMID: 23569748]
[17]
Di Girolamo, F.; D’Amato, A.; Righetti, P.G. Assessment of the floral origin of honey via proteomic tools. J. Proteomics, 2012, 75(12), 3688-3693.
[http://dx.doi.org/10.1016/j.jprot.2012.04.029] [PMID: 22571915]
[18]
Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Zakaria, Z.A.; Albujja, M.; Bakar, M.F.A. Honey and its nutritional and anti-inflammatory value. BMC Complement. Med. Ther., 2021, 21(1), 30.
[http://dx.doi.org/10.1186/s12906-020-03170-5] [PMID: 33441127]
[19]
Bijlsma, L.; de Bruijn, L.L.M.; Martens, E.P.; Sommeijer, M.J. Water content of stingless bee honeys (Apidae, Meliponini): Interspecific variation and comparison with honey of (Apis mellifera). Apidologie, 2006, 37(4), 480-486.
[http://dx.doi.org/10.1051/apido:2006034]
[20]
Monggudal, M.B. Effect of six month storage on physicochemical analysis and antioxidant activity of several types of honey. IOP Conf Ser. Mater. Sci.Eng., 2018, 440, p. 012047.
[21]
Ahmad, R.S.; Hussain, M.B.; Saeed, F.; Tufail, T. Phytochemistry, metabolism, and ethnomedical scenario of honey: A concurrent review. Int. J. Food Prop., 2017, 20(S1), S254-S269.
[22]
Halwany, W.; Hakim, S.S.; Rahmanto, B.; Wahyuningtyas, R.S.; Andriani, S.; Lestari, F. A Simple reducing water content technique for stingless bee honey (Heterotrigona itama) in South Kalimantan. Mater. Sci. Eng., 2020, 935, 012011.
[23]
Reynolds, A. Influence of microwave treatment on honey quality. Progress. Agric., 2019, 30(1), 125-140.
[http://dx.doi.org/10.3329/pa.v30i1.42219]
[24]
Syafrizal, R.; Wijaya Kusuma, I.; Egra, S.; Shimizu, K.; Kanzaki, M.; Tangkearung, E. Diversity and honey properties of stingless bees from meliponiculture in East and North Kalimantan, Indonesia. Biodiversitas., 2020, 21(10)
[http://dx.doi.org/10.13057/biodiv/d211021]
[25]
Bogdanov, S.; Ruoff, K.; Persano Oddo, L. Physico-chemical methods for the characterisation of unifloral honeys: A review. Apidologie., 2004, 35(1), S4-S17.
[http://dx.doi.org/10.1051/apido:2004047]
[26]
Ajlouni, S.; Sujirapinyokul, P. Hydroxymethylfurfuraldehyde and amylase contents in Australian honey. Food Chem., 2010, 119(3), 1000-1005.
[http://dx.doi.org/10.1016/j.foodchem.2009.07.057]
[27]
Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic compounds in honey and their relationship with antioxidant activity, botanical origin, and color. Antioxidants, 2021, 10(11), 1700.
[http://dx.doi.org/10.3390/antiox10111700] [PMID: 34829570]
[28]
Fakhlaei, R.; Selamat, J.; Khatib, A.; Razis, A.F.A.; Sukor, R.; Ahmad, S.; Babadi, A.A. The toxic impact of honey adulteration: A review. Foods, 2020, 9(11), 1538.
[http://dx.doi.org/10.3390/foods9111538] [PMID: 33114468]
[29]
Zábrodská, B.; Vorlová, L. Adulteration of honey and available methods for detection: A review. Acta Vet. Brno, 2014, 83(10), S85-S102.
[http://dx.doi.org/10.2754/avb201483S10S85]
[30]
Chin, L.N.; Sowndhararajan, K. A review on analytical methods for honey classification, identification and authentication. Honey Analysis : New Advances and Challenges; de Alencar Arnaut de Toledo, V.; Dechechi Chambó, E., Eds.; IntechOpen, 2020.
[31]
Consonni, R.; Cagliani, L.R. Recent developments in honey characterization. RSC Adv., 2015, 5(73), 59696-59714.
[32]
Eshete, Y.; Eshete, T. A review on the effect of processing temperature and time duration on commercial honey quality. Madridge J. Food Technol., 2019, 4(1), 158-162.
[http://dx.doi.org/10.18689/mjft-1000124]
[33]
Nolan, V.C.; Harrison, J.; Cox, J.A.G. Dissecting the antimicrobial composition of honey. Antibiotics, 2019, 8(4), 251.
[http://dx.doi.org/10.3390/antibiotics8040251] [PMID: 31817375]
[34]
Ngalimat, M.S.; Raja Abd Rahman, R.N.Z.; Yusof, M.T.; Amir Hamzah, A.S.; Zawawi, N.; Sabri, S. A review on the association of bacteria with stingless bees. Sains Malays., 2020, 49(8), 1853-1863.
[http://dx.doi.org/10.17576/jsm-2020-4908-08]
[35]
Portman, Z.M.; Ascher, J.S.; Cariveau, D.P. Nectar concentrating behavior by bees (Hymenoptera: Anthophila). Apidologie., 2021, 52(6), 1169-1194.
[http://dx.doi.org/10.1007/s13592-021-00895-1]
[36]
Berenbaum, M.R.; Calla, B. Honey as a functional food for Apis mellifera. Annu. Rev. Entomol., 2021, 66(1), 185-208.
[http://dx.doi.org/10.1146/annurev-ento-040320-074933] [PMID: 32806934]
[37]
Ij, F.; Ab, M.H. IS., M.L. Physicochemical characteristics of Malaysian stingless bee honey from Trigona species. IIUM Med J. Malays., 2018, 17(1)
[http://dx.doi.org/10.31436/imjm.v17i1.1030]
[38]
Mating, M.; Sharbati, S.; Einspanier, R. A detoxification enzyme for Apis mellifera newly characterized by recombinant expression: 10-formyl tetrahydrofolate dehydrogenase. Front. Insect Sci., 2022, 2, 829869.
[http://dx.doi.org/10.3389/finsc.2022.829869]
[39]
Lichtenberg-Kraag, B. Evidence for correlation between invertase activity and sucrose content during the ripening process of honey. J. Apic. Res., 2014, 53(3), 364-373.
[http://dx.doi.org/10.3896/IBRA.1.53.3.03]
[40]
Démares, F.J.; Crous, K.L.; Pirk, C.W.W.; Nicolson, S.W.; Human, H. Sucrose sensitivity of honey bees is differently affected by dietary protein and a neonicotinoid pesticide. PLoS One, 2016, 11(6), e0156584.
[http://dx.doi.org/10.1371/journal.pone.0156584] [PMID: 27272274]
[41]
Peršurić; Ž.; Pavelić; S.K. Bioactives from bee products and accompanying extracellular vesicles as novel bioactive components for wound healing. Molecules, 2021, 26(12), 3770.
[http://dx.doi.org/10.3390/molecules26123770] [PMID: 34205731]
[42]
Langowska, A.; Zawilak, M.; Sparks, T.H.; Glazaczow, A.; Tomkins, P.W.; Tryjanowski, P. Long-term effect of temperature on honey yield and honeybee phenology. Int. J. Biometeorol., 2017, 61(6), 1125-1132.
[PMID: 28013383]
[43]
Wu, F.; Zhao, H.; Zhan, Y.; Sun, J.; Ji, P.; Liu, C.; Yang, E.; Cao, W. Effect of processing steps on phenolic profile of rape honey (Brassica napus) using HPLC-ECD. Lebensm. Wiss. Technol., 2022, 172, 114183.
[http://dx.doi.org/10.1016/j.lwt.2022.114183]
[44]
Hasan, S.H. Effect of storage and processing temperatures on honey quality. J. Babylon Univ. Pure Appl. Sci, 2013, 21, 2244-2253.
[45]
Tosi, E.A.; Re, E.; Lucero, H.; Bulacio, L. Effect of honey high-temperature short-time heating on parameters related to quality, crystallisation phenomena and fungal inhibition. Lebensm. Wiss. Technol., 2004, 37(6), 669-678.
[46]
Singh, I.; Singh, S. Honey moisture reduction and its quality. J. Food Sci. Technol., 2018, 55(10), 3861-3871.
[http://dx.doi.org/10.1007/s13197-018-3341-5] [PMID: 30228384]
[47]
Subramanian, R.; Umesh Hebbar, H.; Rastogi, N.K. Processing of honey: A review. Int. J. Food Prop., 2007, 10(1), 127-143.
[http://dx.doi.org/10.1080/10942910600981708]
[48]
Souza, B.; Roubik, D.; Barth, O.; Heard, T. EnrÍquez, E.; Carvalho, C.; Villas-Bôas, J.; Marchini, L.; Locatelli, J.; Persano-Oddo, L.; Almeida-Muradian, L.; Bogdanov, S.; Vit, P. Composition of stingless bee honey: Setting quality standards. Interciencia, 2006, 31(12), 867-875.
[49]
Goodwin, R.; Cox, H.; Taylor, M.; Evans, L.; McBrydie, H. Number of honey bee visits required to fully pollinate white clover (Trifolium repens) seed crops in Canterbury, New Zealand. N. Z. J. Crop Hortic. Sci., 2011, 39(1), 7-19.
[http://dx.doi.org/10.1080/01140671.2010.520164]
[50]
Malone, L.; Aulsford, J.; Howlett, B.; Scott-Dupree, C.; Bardol, N.; Donovan, B. Observations on bee species visiting white clover in New Zealand pastures. J. Apic. Res., 2010, 49(3), 284-286.
[http://dx.doi.org/10.3896/IBRA.1.49.3.09]
[51]
Marcazzan, G.L.; Mucignat-Caretta, C.; Marina Marchese, C.; Piana, M.L. A review of methods for honey sensory analysis. J. Apic. Res., 2018, 57(1), 75-87.
[http://dx.doi.org/10.1080/00218839.2017.1357940]
[52]
Weston, R.J. The contribution of catalase and other natural products to the antibacterial activity of honey: A review. Food Chem., 2000, 71(2), 235-239.
[http://dx.doi.org/10.1016/S0308-8146(00)00162-X]
[53]
Razali, M.F.; Mohd Fauzi, N.A.; Sulaiman, A.; Rahman, A. Effect of high-pressure processing (hpp) on antioxidant, diastase activity and colour for Kelulut (Stingless bee) honey. J. Teknol., 2019, 81(3), 91-98.
[http://dx.doi.org/10.11113/jt.v81.13105]
[54]
Abbasi, K.H.; Jamal, M.; Ahmad, S.; Ghramh, H.A.; Khanum, S.; Khan, K.A.; Ullah, M.A.; Aljedani, D.M.; Zulfiqar, B. Standardization of managed honey bee (Apis Mellifera) hives for pollination of sunflower (Helianthus annuus) crop. J. King Saud Univ. Sci., 2021, 33(8), 101608.
[http://dx.doi.org/10.1016/j.jksus.2021.101608]
[55]
Popova, M.; Gerginova, D.; Trusheva, B.; Simova, S.; Tamfu, A.N.; Ceylan, O.; Clark, K.; Bankova, V. A Preliminary study of chemical profiles of honey, cerumen, and propolis of the African stingless bee Meliponula ferruginea. Foods, 2021, 10(5), 997.
[http://dx.doi.org/10.3390/foods10050997] [PMID: 34063246]
[56]
Sommeijer, M.J. Beekeeping with stingless bees: A new type of hive. Bee World, 1999, 80(2), 70-79.
[http://dx.doi.org/10.1080/0005772X.1999.11099429]
[57]
Terenzi, A.; Cecchi, S.; Spinsante, S. On the importance of the sound emitted by honey bee hives. Vet. Sci., 2020, 7(4), 168.
[http://dx.doi.org/10.3390/vetsci7040168] [PMID: 33142815]
[58]
Baloš, M.M.Ž.; Popov, N.S. Radulović J.Z.P.; Stojanov, I.M.; Jakšić S.M. Sugar profile of different floral origin honeys from Serbia. J. Apic. Res., 2020, 59(4), 398-405.
[http://dx.doi.org/10.1080/00218839.2020.1714193]
[59]
Ball, D.W. The chemical composition of honey. J. Chem. Educ., 2007, 84(10), 1643.
[http://dx.doi.org/10.1021/ed084p1643]
[60]
Al-Hatamleh, M.A.I.; Hatmal, M.M.; Sattar, K.; Ahmad, S.; Mustafa, M.Z.; Bittencourt, M.C.; Mohamud, R. Antiviral and immunomodulatory effects of phytochemicals from honey against COVID-19: Potential mechanisms of action and future directions. Molecules, 2020, 25(21), 5017.
[http://dx.doi.org/10.3390/molecules25215017] [PMID: 33138197]
[61]
Almasaudi, S. The antibacterial activities of honey. Saudi J. Biol. Sci., 2021, 28(4), 2188-2196.
[http://dx.doi.org/10.1016/j.sjbs.2020.10.017] [PMID: 33911935]
[62]
Majtan, J.; Kumar, P.; Majtan, T.; Walls, A.F.; Klaudiny, J. Effect of honey and its major royal jelly protein 1 on cytokine and MMP-9 mRNA transcripts in human keratinocytes. Exp. Dermatol., 2010, 19(8), e73-e79.
[http://dx.doi.org/10.1111/j.1600-0625.2009.00994.x] [PMID: 19845754]
[63]
Nweze, J.A.; Okafor, J.I.; Nweze, E.I.; Nweze, J.E. Evaluation of physicochemical and antioxidant properties of two stingless bee honeys: A comparison with Apis mellifera honey from Nsukka, Nigeria. BMC Res. Notes, 2017, 10(1), 566.
[http://dx.doi.org/10.1186/s13104-017-2884-2] [PMID: 29110688]
[64]
da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem., 2016, 196, 309-323.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.051] [PMID: 26593496]
[65]
Gasparrini, M.; Afrin, S.; Forbes-Hernández, T.Y.; Cianciosi, D.; Reboredo-Rodriguez, P.; Amici, A.; Battino, M.; Giampieri, F. Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 2: Control of oxidative stress induced damage, increase of antioxidant enzyme activities and attenuation of inflammation. Food Chem. Toxicol., 2018, 120, 578-587.
[http://dx.doi.org/10.1016/j.fct.2018.08.001] [PMID: 30077706]
[66]
Biluca, F.C.; da Silva, B.; Caon, T.; Mohr, E.T.B.; Vieira, G.N.; Gonzaga, L.V.; Vitali, L.; Micke, G.; Fett, R.; Dalmarco, E.M.; Costa, A.C.O. Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res. Int., 2020, 129, 108756.
[http://dx.doi.org/10.1016/j.foodres.2019.108756] [PMID: 32036884]
[67]
Torres, A.; Garedew, A.; Schmolz, E.; Lamprecht, I. Calorimetric investigation of the antimicrobial action and insight into the chemical properties of “angelita” honey: A product of the stingless bee Tetragonisca angustula from Colombia. Thermochim. Acta, 2004, 415(1–2), 107-113.
[http://dx.doi.org/10.1016/j.tca.2003.06.005]
[68]
Ngaini, Z.; Kelabo, E.; Hussain, H.; Wahi, R. High therapeutic properties of honey from the borneo stingless bee, Heterotrigona itama. Int. J. Curr. Res. Rev., 2021, 100-107.
[http://dx.doi.org/10.31782/IJCRR.2021.SP131]
[69]
Nascimento, A.; Marchini, L.; Carvalho, C.; Araújo, D.; Olinda, R.; Silveira, T. Physical-chemical parameters of honey of stingless bee (Hymenoptera: Apidae). Am. Chem. Sci. J., 2015, 7(3), 139-149.
[http://dx.doi.org/10.9734/ACSJ/2015/17547]
[70]
Lee, F.J.; Rusch, D.B.; Stewart, F.J.; Mattila, H.R.; Newton, I.L.G. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ. Microbiol., 2015, 17(3), 796-815.
[http://dx.doi.org/10.1111/1462-2920.12526] [PMID: 24905222]
[71]
Zhang, G-Z.; Tian, J.; Zhang, Y-Z.; Li, S-S.; Zheng, H-Q.; Hu, F-L. Investigation of the maturity evaluation indicator of honey in natural ripening process: The case of rape honey. Foods, 2021, 10(11), 2882.
[http://dx.doi.org/10.3390/foods10112882] [PMID: 34829164]
[72]
Sajid, M. Changes in HMF content and diastase activity in honey after heating treatment. Pure Appl. Biol., 2019, 8(2), 1668-1674.
[http://dx.doi.org/10.19045/bspab.2019.80109]
[73]
Mackert, A.; Hartfelder, K.; Bitondi, M.M.G.; Simões, Z.L.P. The juvenile hormone (JH) epoxide hydrolase gene in the honey bee (Apis mellifera) genome encodes a protein which has negligible participation in JH degradation. J. Insect Physiol., 2010, 56(9), 1139-1146.
[http://dx.doi.org/10.1016/j.jinsphys.2010.03.007] [PMID: 20230830]
[74]
Souza, E.C.A.; Menezes, C.; Flach, A. Stingless bee honey (Hymenoptera, Apidae, Meliponini): A review of quality control, chemical profile, and biological potential. Apidologie., 2021, 52(1), 113-132.
[http://dx.doi.org/10.1007/s13592-020-00802-0]
[75]
Yap, S.K.; Chin, N.L.; Yusof, Y.A.; Chong, K.Y. Quality characteristics of dehydrated raw Kelulut honey. Int. J. Food Prop., 2019, 22(1), 556-571.
[http://dx.doi.org/10.1080/10942912.2019.1590398]
[76]
Chidi, O.H.; Odo, P.E. Meliponiculture for sustainable economy. Proc. 4th Delta State Univ. Fac. Sci. Int. Conf., 2017, 131-137.
[77]
Gill, R.S.; Hans, V.S.; Singh, S.; Pal Singh, P.; Dhaliwal, S.S. A small scale honey dehydrator. J. Food Sci. Technol., 2015, 52(10), 6695-6702.
[http://dx.doi.org/10.1007/s13197-015-1760-0] [PMID: 26396418]
[78]
Baroyi, S.A.H.M.; Yusof, Y.A.; Ghazali, H.M.; Chin, N.L.; Othman, S.H.; Chang, L.S.; Ghazali, N.S.M. A Novel method based on passive diffusion that reduces the moisture content of stingless bee (Heterotrigona itama) Honey. J. Food Process Eng., 2019, 42(6), e13221.
[http://dx.doi.org/10.1111/jfpe.13221]
[79]
Chen, Y.H.; Chuah, W.C.; Chye, F.Y. Effect of drying on physicochemical and functional properties of stingless bee honey. J. Food Process. Preserv., 2021, 45(4), e15328.
[http://dx.doi.org/10.1111/jfpp.15328]
[80]
Abdul Halim, F.; Basrawi, F.; Ramli, A.S.; Oumer, A.N.; Azman, N.A. Effect of surface roughness and temperature on the performance of low-temperature vacuum drying with induced nucleation boiling method in dewatering stingless bees honey. Dry. Technol., 2022, 1-13.
[http://dx.doi.org/10.1080/07373937.2022.2065297]
[81]
Quezada-Euán, J.J.G. Managing and preserving stingless bees: In collaboration with humberto moo-valle. In: In Stingless Bees of Mexico; Springer, 2018, pp. 193-242.
[82]
Weirich, G.F.; Collins, A.M.; Williams, V.P. Antioxidant enzymes in the honey bee. Apis mellifera. Apidologie., 2002, 33(1), 3-14.
[http://dx.doi.org/10.1051/apido:2001001]
[83]
Dżugan, M.; Grabek-Lejko, D.; Sidor, E.; Tomczyk, M. The impact of ultrasound decrystallization on enzymatic, antioxidant and antibacterial properties of honey. Innov. Food Sci. Emerg. Technol., 2021, 71, 102709.
[http://dx.doi.org/10.1016/j.ifset.2021.102709]
[84]
Huidobro, J.F.; Santana, F.J.; Sanchez, M.P.; Sancho, M.T.; Muniategui, S.; Simal-Lozano, J. Diastase, invertase and β-glucosidase activities in fresh honey from North-West Spain. J. Apic. Res., 1995, 34(1), 39-44.
[http://dx.doi.org/10.1080/00218839.1995.11100884]
[85]
Ngaini, Z.; Hussain, H.; Kelabo, E.S.; Wahi, R.; Farooq, S. Chemical profiling, biological properties and environmental contaminants of stingless bee honey and propolis. J. Apic. Res., 2023, 62(1), 137-147.
[http://dx.doi.org/10.1080/00218839.2021.1948745]
[86]
Costa, R.A.C.; da Cruz-Landim, C. Hydrolases in the hypopharyngeal glands of workers of Scaptotrigona postica and Apis mellifera (Hymenoptera, apinae). Genet. Mol. Res., 2005, 4(4), 616-623.
[PMID: 16475106]
[87]
Farjan, M. Żółtowska, K.; Lipiński, Z.; Łopieńska-Biernat, E.; Dmitryjuk, M. The effect of dietary vitamin C on carbohydrate concentrations and hydrolase activity, during the development of honey bee worker brood. J. Apic. Sci., 2015, 59(1), 5-16.
[http://dx.doi.org/10.1515/jas-2015-0001]
[88]
Oddo, L.P.; Piazza, M.G.; Pulcini, P. Invertase activity in honey. Apidologie., 1999, 30(1), 57-65.
[http://dx.doi.org/10.1051/apido:19990107]
[89]
Huang, Z.; Liu, L.; Li, G.; Li, H.; Ye, D.; Li, X. Nondestructive determination of diastase activity of honey based on visible and near-infrared spectroscopy. Molecules, 2019, 24(7), 1244.
[http://dx.doi.org/10.3390/molecules24071244] [PMID: 30934979]
[90]
Ganeshprasad, D.N.; Khan, K.A.; Ghramh, H.A. AL-Shehri, B. M.; Sneharani, A. H. Purification and characterization of pectinase from gut-associated Klebsiella oxytoca Af-G4 of dwarf honey bee, Apis florea. J. King Saud Univ. Sci., 2022, 34(8), 102301.
[http://dx.doi.org/10.1016/j.jksus.2022.102301]
[91]
Ganeshprasad, D.N.; Karthik, Y.; Sachin, H.R.; Sneharani, A.H. Polysaccharide hydrolyzing enzyme activity of bacteria, native to Apis florea gut. Biomedicine, 2021, 41(4), 768-775.
[http://dx.doi.org/10.51248/.v41i4.1013]
[92]
Stuchi, A.L.P.B.; de Toledo, V.D.A.A.; Lopes, D.A.; Cantagalli, L.B.; Ruvolo-Takasusuki, M.C.C. Molecular marker to identify two stingless bee species: Tetragonisca angustula and Tetragonisca fiebrigi (Hymenoptera, meliponinae). Sociobiology, 2014, 59(1), 123.
[http://dx.doi.org/10.13102/sociobiology.v59i1.671]
[93]
Al-Sherif, A.; Mazeed, A.; Hagag, E-S. Activity of hypopharengeal gland in secreting honey-elaborating enzymes in Carniolan and Egyptian honeybees. Egypt. Acad. J. Biol. Sci. Entomol., 2012, 5(2), 167-173.
[http://dx.doi.org/10.21608/eajbsa.2012.14827]
[94]
Jimenez, D.R.; Gilliam, M. Ultrastructure of the ventriculus of the honey bee, Apis mellifera (L.): Cytochemical localization of acid phosphatase, alkaline phosphatase, and nonspecific esterase. Cell Tissue Res., 1990, 261(3), 431-443.
[http://dx.doi.org/10.1007/BF00313521]
[95]
Nishio, E.K.; Ribeiro, J.M.; Oliveira, A.G.; Andrade, C.G.T.J.; Proni, E.A.; Kobayashi, R.K.T.; Nakazato, G. Antibacterial synergic effect of honey from two stingless bees: Scaptotrigona bipunctata Lepeletier, 1836, and S. postica Latreille, 1807. Sci. Rep., 2016, 6(1), 21641.
[http://dx.doi.org/10.1038/srep21641] [PMID: 26869239]
[96]
Manoochehri, H.; Hosseini, N.F.; Saidijam, M.; Taheri, M.; Rezaee, H.; Nouri, F. A review on invertase: Its potentials and applications. Biocatal. Agric. Biotechnol., 2020, 25, 101599.
[http://dx.doi.org/10.1016/j.bcab.2020.101599]
[97]
Petreanu, D. The effect of heating on honey HMF and invertase. Apiacta, 2001, 36(4), 177-181.
[98]
Nadeem, H.; Rashid, M.H.; Siddique, M.H.; Azeem, F.; Muzammil, S.; Javed, M.R.; Ali, M.A.; Rasul, I.; Riaz, M. Microbial invertases: A review on kinetics, thermodynamics, physiochemical properties. Process Biochem., 2015, 50(8), 1202-1210.
[http://dx.doi.org/10.1016/j.procbio.2015.04.015]
[99]
Amanati, L.; Winarno, J. Measurement of diastase enzymes on honey which is circular in East Java. Proceedings of the Seminar Nasional 1 Baristand Industri Padang - SNIIBIPD, 2020, pp. 39-43.
[100]
Seow, E-K.; Tan, T-C.; Easa, A.M. Role of honey diastase on textural, thermal, microstructural, chemical, and sensory properties of different dodols. Lebensm. Wiss. Technol., 2021, 148, 111715.
[http://dx.doi.org/10.1016/j.lwt.2021.111715]
[101]
Bauer, J.A.; Zámocká, M.; Majtán, J.; Bauerová-Hlinková, V. Glucose oxidase, an enzyme “Ferrari”: Its structure, function, production and properties in the light of various industrial and biotechnological applications. Biomolecules, 2022, 12(3), 472.
[http://dx.doi.org/10.3390/biom12030472] [PMID: 35327664]
[102]
Qiu, Y.; Lei, P.; Zhang, Y.; Sha, Y.; Zhan, Y.; Xu, Z.; Li, S.; Xu, H.; Ouyang, P. Recent advances in bio-based multi-products of agricultural Jerusalem artichoke resources. Biotechnol. Biofuels, 2018, 11(1), 151.
[http://dx.doi.org/10.1186/s13068-018-1152-6] [PMID: 29881456]
[103]
Franchini, R.A.; de Souza, C.F.; Colombara, R.; Matos, M.A.; Matos, R.C. Rapid determination of hydrogen peroxide using peroxidase immobilized on Amberlite IRA-743 and minerals in honey. J. Agric. Food Chem., 2007, 55(17), 6885-6890.
[http://dx.doi.org/10.1021/jf071062c] [PMID: 17661489]
[104]
Korayem, A.M.; Khodairy, M.M.; Abdel-Aal, A-A.A.; El-Sonbaty, A.A.M. The protective strategy of antioxidant enzymes against hydrogen peroxide in honey bee, Apis mellifera during two different seasons. Biology, 2012, 2(2), 18.
[105]
Schepartz, A.I. Honey catalase: Occurrence and some kinetic properties. J. Apic. Res., 1966, 5(3), 167-176.
[http://dx.doi.org/10.1080/00218839.1966.11100150]
[106]
Schepartz, A.I.; Subers, M.H. Catalase in honey. J. Apic. Res., 1966, 5(1), 37-43.
[http://dx.doi.org/10.1080/00218839.1966.11100130]
[107]
Theantana, T.; Chantawannakul, P. protease and β-n-acetylglucosaminidase of honey bee chalkbrood pathogen Ascosphaera apis. J. Apic. Res., 2008, 47(1), 68-76.
[http://dx.doi.org/10.1080/00218839.2008.11101426]
[108]
Innocenti, A.; Scozzafava, A.; Parkkila, S.; Puccetti, L.; De Simone, G.; Supuran, C.T. Investigations of the esterase, phosphatase, and sulfatase activities of the cytosolic mammalian carbonic anhydrase isoforms I, II, and XIII with 4-nitrophenyl esters as substrates. Bioorg. Med. Chem. Lett., 2008, 18(7), 2267-2271.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.012] [PMID: 18353640]
[109]
Dickson, D.W.; Huisingh, D.; Sasser, J.N. Dehydrogenases, acid and alkaline phosphatases, and esterases for chemotaxonomy of selected meloidogyne, ditylenchus, Heterodera and Aphelenchus spp. J. Nematol., 1971, 3(1), 1-16.
[PMID: 19322334]
[110]
Wollman, S.H.; Spicer, S.S.; Burstone, M.S. Localization of esterase and acid phosphatase in granules and colloid droplets in rat thyroid epithelium. J. Cell Biol., 1964, 21(2), 191-201.
[http://dx.doi.org/10.1083/jcb.21.2.191] [PMID: 14153481]
[111]
Nikolić T.V.; Purać J.; Orčić S.; Kojić D.; Vujanović D.; Stanimirović Z.; Gržetić I.; Ilijević K.; Šikoparija, B.; Blagojević D.P. Environmental effects on superoxide dismutase and catalase activity and expression in honey bee: Environmental effect on SOD and CAT in honey bee. Arch. Insect Biochem. Physiol., 2015, 90(4), 181-194.
[http://dx.doi.org/10.1002/arch.21253] [PMID: 26314562]
[112]
Chitgar, M.G.; Ahsaei, S.M.; Ghadamyari, M.; Sharifi, M.; Naveh, V.H.; Sheikhnejad, H. Biochemical characterization of digestive carbohydrases in the rose sawfly, arge rosae linnaeus (Hymenoptera: Argidae). J. Crop Prot., 2013, 2(3), 305-318.
[113]
Won, S-R.; Lee, D-C.; Ko, S.H.; Kim, J-W.; Rhee, H-I. Honey major protein characterization and its application to adulteration detection. Food Res. Int., 2008, 41(10), 952-956.
[http://dx.doi.org/10.1016/j.foodres.2008.07.014]
[114]
Xia, W.; Sheng, L.; Mu, W.; Shi, Y.; Wu, J. Enzymatic preparation of gentiooligosaccharides by a thermophilic and thermostable β-glucosidase at a high substrate concentration. Foods, 2022, 11(3), 357.
[http://dx.doi.org/10.3390/foods11030357] [PMID: 35159507]
[115]
Lewkowski, O. Mureșan, C.I.; Dobritzsch, D.; Fuszard, M.; Erler, S. The effect of diet on the composition and stability of proteins secreted by honey bees in honey. Insects, 2019, 10(9), 282.
[http://dx.doi.org/10.3390/insects10090282] [PMID: 31480801]
[116]
White, J.W. The role of HMF and diastase assays in honey quality evaluation. Bee World, 1994, 75(3), 104-117.
[http://dx.doi.org/10.1080/0005772X.1994.11099213]
[117]
Kostić D.; Arsić B.; Mrmošanin, J.; Spasić S.; Georgijev, A. Determination of the invertase activity in honey samples as the indicator of the authenticity of honey by UV/VIS spectrophotometric method. SHORT Commun., 2021, 4(2), 93-103.
[118]
Parvanov, P.; Dinkov, D.; Tananaki, C. Invertase activity and carbohydrate spectrum of organic acacia and polyfloral honey after one-year storage. Bulg. J. Vet. Med., 2012, 15(3), 198-205.
[119]
Pita-Calvo, C.; Guerra-Rodriguez, M.E.; Vazquez, M. A review of the analytical methods used in the quality control of honey. J. Agric. Food Chem., 2017, 58.
[120]
Os, O.; As, O.; Aa, O. Comparative studies of the physicochemical properties and mineral elements of honey produced in the guinea savannah zones of Nigeria. Biomed. J. Sci. Tech. Res., 2020, 24(5), 18548-18561.
[http://dx.doi.org/10.26717/BJSTR.2020.24.004105]
[121]
Sahin, H.; Kolayli, S.; Beykaya, M. Investigation of variations of invertase and glucose oxidase degrees against heating and timing options in raw honeys. J. Chem., 2020, 2020, 1-7.
[http://dx.doi.org/10.1155/2020/5398062]
[122]
Alaerjani, W.M.A.; Abu-Melha, S.; Alshareef, R.M.H.; Al-Farhan, B.S.; Ghramh, H.A.; Al-Shehri, B.M.A.; Bajaber, M.A.; Khan, K.A.; Alrooqi, M.M.; Modawe, G.A.; Mohammed, M.E.A. Biochemical reactions and their biological contributions in honey. Molecules, 2022, 27(15), 4719.
[http://dx.doi.org/10.3390/molecules27154719] [PMID: 35897895]
[123]
Chua, L.S.; Adnan, N.A. Biochemical and nutritional components of selected honey samples. Acta Sci. Pol. Technol. Aliment., 2014, 13(2), 169-179.
[http://dx.doi.org/10.17306/J.AFS.2014.2.6] [PMID: 24876312]
[124]
Babacan, S.; Rand, A.G. Purification of amylase from honey. J. Food Sci., 2006, 70(6), c413-c418.
[http://dx.doi.org/10.1111/j.1365-2621.2005.tb11439.x]
[125]
Voldřich, M.; Rajchl, A.; Čížková, H.; Cuhra, P. Detection of foreign enzyme addition into the adulterated honey. Czech J. Food Sci., 2009, 27((Special Issue 1)), S280-S282.
[126]
Samborska, K.; Wasilewska, A.; Gondek, E.; Jakubczyk, E. Kamińska-Dwórznicka, A. Diastase activity retention and physical properties of honey/arabic gum mixtures after spray drying and storage. Int. J. Food Eng., 2017, 13(6), 20160320.
[http://dx.doi.org/10.1515/ijfe-2016-0320]
[127]
Makhloufi, C.; Taïbi, K.; Ait Abderrahim, L. Characterization of invertase and diastase activities, 5-hydroxymethylfurfural content and hydrogen peroxide production of some Algerian honeys. Iran. J. Sci. Technol. Trans. Sci., 2020, 44(5), 1295-1302.
[http://dx.doi.org/10.1007/s40995-020-00936-x]
[128]
Hoxha, F.; Kongoli, R.; Malollari, I.; Tosti, T.; Milojkovic-Opsenica, D.; Tesic, Z. Analysis of some Albanian market honey based on 5-hydroxymethylfurfural (hmf) content with its impact on human health. J. Environ. Prot. Ecol., 2019, 20(1), 496-504.
[129]
Sakač N.; Sak-Bosnar, M. A rapid method for the determination of honey diastase activity. Talanta, 2012, 93, 135-138.
[http://dx.doi.org/10.1016/j.talanta.2012.01.063] [PMID: 22483889]
[130]
Kanelis, D.; Liolios, V.; Tananaki, C.; Rodopoulou, M-A. Determination of the carbohydrate profile and invertase activity of adulterated honeys after bee feeding. Appl. Sci., 2022, 12(7), 3661.
[http://dx.doi.org/10.3390/app12073661]
[131]
Fanjul-Bolado, P.; González-García, M.B.; Costa-García, A. Flow screen-printed amperometric detection of p-nitrophenol in alkaline phosphatase-based assays. Anal. Bioanal. Chem., 2006, 385(7), 1202-1208.
[http://dx.doi.org/10.1007/s00216-006-0367-8] [PMID: 16532307]
[132]
Sereia, M.J.; Março, P.H.; Perdoncini, M.R.G.; Parpinelli, R.S.; de Lima, E.G.; Anjo, F.A. Techniques for the evaluation of physicochemical quality and bioactive compounds in honey. Honey Analysis; Toledo, V.; de, de A. A., Eds.; InTechopen,; , 2017.
[http://dx.doi.org/10.5772/66839]
[133]
Dicle, S. KÜPLÜLÜ, K. Effects of storage temperature on hmf and diastase activity of strained honeys. Ankara Univ. Vet. Fak. Derg., 2017, 64(4), 281-287.
[http://dx.doi.org/10.1501/Vetfak_0000002811]
[134]
Shamsudin, S.; Selamat, J.; Sanny, M. Abd. Razak, S.-B.; Jambari, N. N.; Mian, Z.; Khatib, A. Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. Int. J. Food Prop., 2019, 22(1), 239-264.
[http://dx.doi.org/10.1080/10942912.2019.1576730]
[135]
Qamer, S.; Muzaffar, N.; Shahid, S.; Shakoori, A.R. Effect of storage on various honey quality parameters of unifloral sidder honey from Pakistan. Pak. J. Zool., 2009, 41(4), 313-316.
[136]
Kowalski, S.; Lukasiewicz, M. Diastase and invertase activity changes and 5-hydroxymethyl-2-furfural formation in honeys under influence of microwave irradiation: HMF, enzymes activity under influence of microwave. J. Food Process Eng., 2017, 40(2), e12410.
[http://dx.doi.org/10.1111/jfpe.12410]
[137]
Bhalchandra, W.; Joshi, M.A.; Jawalkar, N. Effect of storage on various honey quality parameters of Apis mellifera honey harvested from Kannad region. Aurangabad. J. Pharmacogn. Phytochem., 2022, 11(1), 239-246.
[http://dx.doi.org/10.22271/phyto.2022.v11.i1d.14352]
[138]
Babacan, S.; Rand, A.G. Characterization of honey amylase. J. Food Sci., 2007, 72(1), C050-C055.
[http://dx.doi.org/10.1111/j.1750-3841.2006.00215.x] [PMID: 17995872]
[139]
Sharin, S.N.; Sani, M.S.A.; Jaafar, M.A.; Yuswan, M.H.; Kassim, N.K.; Manaf, Y.N.; Wasoh, H.; Zaki, N.N.M.; Hashim, A.M. Discrimination of Malaysian stingless bee honey from different entomological origins based on physicochemical properties and volatile compound profiles using chemometrics and machine learning. Food Chem., 2021, 346, 128654.
[http://dx.doi.org/10.1016/j.foodchem.2020.128654] [PMID: 33461823]
[140]
Kek, S.P.; Chin, N.L.; Tan, S.W.; Yusof, Y.A.; Chua, L.S. Classification of honey from its bee origin via chemical profiles and mineral content. Food Anal. Methods, 2017, 10(1), 19-30.
[http://dx.doi.org/10.1007/s12161-016-0544-0]
[141]
Nordin, A.; Sainik, N.Q.A.V.; Chowdhury, S.R.; Saim, A.B.; Idrus, R.B.H. Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. J. Food Compos. Anal., 2018, 73, 91-102.
[http://dx.doi.org/10.1016/j.jfca.2018.06.002]
[142]
Imtiazah, S.Z.; Zaharah, H.; Murni, I.; Tufail Ahmad, F.; Yusof, H.M. Honeybee honey and stingless bee honey quality characteristics and their anticancer potential in hela cells. Food Res., 2021, 5(3), 413-422.
[http://dx.doi.org/10.26656/fr.2017.5(3).651]
[143]
Julika, W.N.; Ajit, A.; Ismail, N.; Aqilah, N.; Naila, A.; Sulaiman, A.Z. Sugar profile and enzymatic analysis of stingless bee honey collected from local market in Malaysia. IOP Conf. Ser. Mater. Sci. Eng., 2020, 736(6), p. 062001.
[144]
Kamboj, R.; Bera, M.; Nanda, V. Chemometric classification of Northern India unifloral honey. Acta Aliment., 2013, 42(4), 540-551.
[http://dx.doi.org/10.1556/AAlim.42.2013.4.9]
[145]
Belay, A.; Haki, G.D.; Birringer, M.; Borck, H.; Lee, Y-C.; Kim, K-T.; Baye, K.; Melaku, S. Enzyme activity, amino acid profiles and hydroxymethylfurfural content in Ethiopian monofloral honey. J. Food Sci. Technol., 2017, 54(9), 2769-2778.
[http://dx.doi.org/10.1007/s13197-017-2713-6] [PMID: 28928516]
[146]
Debela, H.; Belay, A. Caffeine, invertase enzyme and triangle test sensory panel used to differentiate Coffea arabica and Vernonia amygdalina honey. Food Control, 2021, 123, 107857.
[http://dx.doi.org/10.1016/j.foodcont.2020.107857]
[147]
Nayik, G.; Nanda, V. Physico-chemical, enzymatic, mineral and colour characterization of three different varieties of honeys from Kashmir valley of India with a multivariate approach. Pol. J. Food Nutr. Sci., 2015, 65(2), 101-108.
[http://dx.doi.org/10.1515/pjfns-2015-0022]
[148]
Chicas-Mosier, A.M.; Black, T.E.; Hester, K.P.; Belzunces, L.P.; Abramson, C.I. Honey bee (Apis mellifera ligustica) acetylcholinesterase enzyme activity and aversive conditioning following aluminum trichloride exposure. BMC Zool., 2022, 7(1), 5.
[http://dx.doi.org/10.1186/s40850-021-00103-8] [PMID: 37170318]
[149]
Moloudian, H.; Abbasian, S.; Nassiri-Koopaei, N.; Tahmasbi, M.R.; Alsadat Afzal, G.; Ahosseini, M.S.; Yunesian, M.; Khoshayand, M.R. Characterization and classification of Iranian honey based on physicochemical properties and antioxidant activities, with chemometrics approach. Iran. J. Pharm. Res., 2018, 17(2), 708-725.
[PMID: 29881428]
[150]
Al-Farsi, M.; Al-Belushi, S.; Al-Amri, A.; Al-Hadhrami, A.; Al-Rusheidi, M.; Al-Alawi, A. Quality evaluation of Omani honey. Food Chem., 2018, 262, 162-167.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.104] [PMID: 29751904]
[151]
Chuttong, B.; Chanbang, Y.; Sringarm, K.; Burgett, M. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem., 2016, 192, 149-155.
[http://dx.doi.org/10.1016/j.foodchem.2015.06.089] [PMID: 26304332]
[152]
Šarić G.; Marković K.; Major, N.; Krpan, M.; Uršulin-Trstenjak, N.; Hruškar, M.; Vahčić N. Changes of antioxidant activity and phenolic content in acacia and multifloral honey during storage. Food Technol. Biotechnol., 2012, 50(4), 434-441.
[153]
Akgün, N.; Çelik, Ö.F.; Kelebekli, L. Physicochemical properties, total phenolic content, and antioxidant activity of chestnut, rhododendron, acacia and multifloral honey. J. Food Meas. Charact., 2021, 15(4), 3501-3508.
[http://dx.doi.org/10.1007/s11694-021-00937-3]
[154]
Manolova, V.; Parvina, I.; Yankovska-Stefanova, T.; Balkanska, R. Determination of C4 sugars and invertase of multifloral honey samples from bulgaria. Bulg. J. Agric. Sci., 2018, 24(5), 875-878.
[155]
Bhalchandra, W.; Joshi, M.A.; Jawalkar, N. Enzyme activity of raw honey harvested from different localities of Kannad region, Aurangabad district (M. S.), India. J. Entomol. Zool. Stud., 2022, 10(1), 306-311.
[http://dx.doi.org/10.22271/j.ento.2022.v10.i1d.8950]
[156]
Kang, L.; Huang, F.; Wu, F.; Zhao, Q. Transcription analysis of the beta-glucosidase precursor in wild-type and l-4i mutant bombyx mori (Lepidoptera: Bombycidae). J. Insect Sci., 2015, 15(1), 79.
[http://dx.doi.org/10.1093/jisesa/iev065] [PMID: 26113511]
[157]
Low, N.H.; Va Vong, K.; Sporns, P. A new enzyme, β-glucosidase, in honey. J. Apic. Res., 1986, 25(3), 178-181.
[http://dx.doi.org/10.1080/00218839.1986.11100713]
[158]
Wu, W.; Gu, D.; Yan, S.; Li, Z. RNA interference of endoglucanases in the formosan subterranean termite Coptotermes formosanus shiraki (Blattodea: Rhinotermitidae) by dsRNA injection or ingestion. J. Insect Physiol., 2019, 112, 15-22.
[http://dx.doi.org/10.1016/j.jinsphys.2018.11.007] [PMID: 30472007]
[159]
Zheng, H.; Perreau, J.; Powell, J.E.; Han, B.; Zhang, Z.; Kwong, W.K.; Tringe, S.G.; Moran, N.A. Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proc. Natl. Acad. Sci., 2019, 116(51), 25909-25916.
[http://dx.doi.org/10.1073/pnas.1916224116] [PMID: 31776248]
[160]
Ricigliano, V.A.; Fitz, W.; Copeland, D.C.; Mott, B.M.; Maes, P.; Floyd, A.S.; Dockstader, A.; Anderson, K.E. The impact of pollen consumption on honey bee (Apis mellifera) digestive physiology and carbohydrate metabolism. Arch. Insect Biochem. Physiol., 2017, 96(2)
[http://dx.doi.org/10.1002/arch.21406] [PMID: 28833462]
[161]
Dehghanikhah, F.; Kazzazi, M.; Madadi, H. Biochemical characterization of digestive β-glucosidase from midgut of leiptinotarsa decemlineata (Coleoptera: Chrysomelidae). JCP, 2014, 3(2), 181-189.
[162]
Chahed, H.; Ezzine, A.; Mlouka, M.A.B.; Rihouey, C.; Hardouin, J.; Jouenne, T.; Marzouki, M.N. A novel three domains glycoside hydrolase family 3 from Sclerotinia sclerotiorum exhibits β-glucosidase and exoglucanase activities: Molecular, biochemical, and transglycosylation potential analysis. Mol. Biotechnol., 2015, 57(11-12), 993-1002.
[http://dx.doi.org/10.1007/s12033-015-9892-z] [PMID: 26385478]
[163]
Ahmed, A. Microbial β-glucosidase: Sources, production and applications. Environ. Microbiol., 2017, 5(1), 31-46.
[164]
Raymann, K.; Moran, N.A. The role of the gut microbiome in health and disease of adult honey bee workers. Curr. Opin. Insect Sci., 2018, 26, 97-104.
[http://dx.doi.org/10.1016/j.cois.2018.02.012] [PMID: 29764668]
[165]
Nowak, A.; Szczuka, D. Górczyńska, A.; Motyl, I.; Kręgiel, D. Characterization of Apis mellifera gastrointestinal microbiota and lactic acid bacteria for honeybee protection: A review. Cells, 2021, 10(3), 701.
[http://dx.doi.org/10.3390/cells10030701] [PMID: 33809924]
[166]
de Ovalle, S.; Brena, B.; González-Pombo, P. Influence of beta glucosidases from native yeast on the aroma of Muscat and Tannat wines. Food Chem., 2021, 346, 128899.
[http://dx.doi.org/10.1016/j.foodchem.2020.128899] [PMID: 33401089]
[167]
Hu, Y.; Luan, H.; Hao, D.; Xiao, H.; Yang, S.; Yang, L. Purification and characterization of a novel ginsenoside-hydrolyzing β-d-glucosidase from the china white jade snail (Achatina fulica). Enzyme Microb. Technol., 2007, 40(5), 1358-1366.
[http://dx.doi.org/10.1016/j.enzmictec.2006.10.011]
[168]
Pontoh, J.; Low, N.H. Purification and characterization of β-glucosidase from honey bees (Apis mellifera). Insect Biochem. Mol. Biol., 2002, 32(6), 679-690.
[http://dx.doi.org/10.1016/S0965-1748(01)00147-3] [PMID: 12020842]
[169]
Bakour, M.; Laaroussi, H.; Ousaaid, D.; El Ghouizi, A.; Es-Safi, I.; Mechchate, H.; Lyoussi, B. Bee bread as a promising source of bioactive molecules and functional properties: An up-to-date review. Antibiotics, 2022, 11(2), 203.
[http://dx.doi.org/10.3390/antibiotics11020203] [PMID: 35203806]
[170]
Gonçalves, J.; Ribeiro, I.; Marçalo, J.; Rijo, P.; Faustino, C.; Pinheiro, L. Physicochemical, antioxidant and antimicrobial properties of selected Portuguese commercial monofloral honeys. J. Food Nutr. Res., 2018, 6(10), 645-654.
[http://dx.doi.org/10.12691/jfnr-6-10-5]
[171]
Brudzynski, K.; Abubaker, K.; St-Martin, L.; Castle, A. Re-examining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey. Front. Microbiol., 2011, 2, 213.
[http://dx.doi.org/10.3389/fmicb.2011.00213] [PMID: 22046173]
[172]
Mohammed, M.E.A.; Alargani, W.; Suleiman, M.A.A.; Al-Gramah, H.A. Hydrogen peroxide and dicarbonyl compounds concentration in honey samples from different botanical origins and altitudes in the South of Saudi Arabia. Curr. Res. Nutr. Food Sci. J., 2019, 7(1), 150-160.
[http://dx.doi.org/10.12944/CRNFSJ.7.1.15]
[173]
Godfrey, N. Anthropogenic and climatic factors affecting honey production: The case of selected villages in manyoni district, Tanzania. J. Agric. Biotechnol. Sustain. Dev., 2018, 10(3), 45-57.
[http://dx.doi.org/10.5897/JABSD2017.0292]
[174]
Bomtorin, A.D.; Mackert, A.; Rosa, G.C.C.; Moda, L.M.; Martins, J.R.; Bitondi, M.M.G.; Hartfelder, K.; Simões, Z.L.P. Juvenile hormone biosynthesis gene expression in the corpora allata of honey bee (Apis mellifera L.) female castes. PLoS One, 2014, 9(1), e86923.
[http://dx.doi.org/10.1371/journal.pone.0086923] [PMID: 24489805]
[175]
Al-Sherif, A.A.; Mazeed, A.M.; Ewis, M.A.; Nafea, E.A.; Hagag, E-S.E.; Kamel, A.A. Activity of salivary glands in secreting honey-elaborating enzymes in two subspecies of honeybee (Apis mellifera L): Honey-elaborating enzymes in salivary glands. Physiol. Entomol., 2017, 42(4), 397-403.
[http://dx.doi.org/10.1111/phen.12213]
[176]
López-Otín, C.; Bond, J.S. Proteases: Multifunctional enzymes in life and disease. J. Biol. Chem., 2008, 283(45), 30433-30437.
[http://dx.doi.org/10.1074/jbc.R800035200] [PMID: 18650443]
[177]
Rossano, R.; Larocca, M.; Polito, T.; Perna, A.M.; Padula, M.C.; Martelli, G.; Riccio, P. What are the proteolytic enzymes of honey and what they do tell us? A fingerprint analysis by 2-D zymography of unifloral honeys. PLoS One, 2012, 7(11), e49164.
[http://dx.doi.org/10.1371/journal.pone.0049164] [PMID: 23145107]
[178]
Tavano, O.L.; Berenguer-Murcia, A.; Secundo, F.; Fernandez-Lafuente, R. Biotechnological applications of proteases in food technology. Compr. Rev. Food Sci. Food Saf., 2018, 17(2), 412-436.
[http://dx.doi.org/10.1111/1541-4337.12326] [PMID: 33350076]
[179]
Ibrahim, H.R.; Nanbu, F.; Miyata, T. Potent antioxidant peptides derived from honey major protein enhance tolerance of eukaryotic cells toward oxidative stress. Food Prod. Process. Nutr., 2021, 3(1), 11.
[http://dx.doi.org/10.1186/s43014-021-00052-2]
[180]
Bíliková, K.; Simúth, J. New criterion for evaluation of honey: Quantification of royal jelly protein apalbumin 1 in honey by ELISA. J. Agric. Food Chem., 2010, 58(15), 8776-8781.
[http://dx.doi.org/10.1021/jf101583s] [PMID: 20681666]
[181]
Chua, L.S.; Lee, J.Y.; Chan, G.F. Honey protein extraction and determination by mass spectrometry. Anal. Bioanal. Chem., 2013, 405(10), 3063-3074.
[http://dx.doi.org/10.1007/s00216-012-6630-2] [PMID: 23292042]
[182]
Borutinskait, V.; Kurtinaitien, B. Proteomic identification and enzymatic activity of buckwheat (Fagopyrum esculentum) honey based on different assays. J. Food Nutr. Res., 2018, 57, 13.
[183]
Hayashi, T.; Takamatsu, N.; Nakashima, T.; Arita, T. Immunological characterization of honey proteins and identification of MRJP 1 as an IgE-binding protein. Biosci. Biotechnol. Biochem., 2011, 75(3), 556-560.
[http://dx.doi.org/10.1271/bbb.100778] [PMID: 21389615]
[184]
Zhang, Y.; Wang, Y.; Zhao, H.; Zhang, G.; Peng, D.; Cao, W. Characterization of novel protein component as marker for floral origin of jujube (Ziziphus jujuba Mill.) honey. J. Agric. Food Chem., 2019, 67(44), 12255-12263.
[http://dx.doi.org/10.1021/acs.jafc.9b05190] [PMID: 31618580]
[185]
Matkawala, F.; Nighojkar, S.; Kumar, A.; Nighojkar, A. Microbial alkaline serine proteases: Production, properties and applications. World J. Microbiol. Biotechnol., 2021, 37(4), 63.
[http://dx.doi.org/10.1007/s11274-021-03036-z] [PMID: 33730214]
[186]
Rawlings, N.D. Twenty-five years of nomenclature and classification of proteolytic enzymes. Biochim. Biophys. Acta BBA: Prot. Proteo., 2020, 1866(2), 140345.
[http://dx.doi.org/10.1016/j.bbapap.2019.140345]
[187]
Burgess, E.P.J.; Malone, L.A.; Christeller, J.T. Effects of two proteinase inhibitors on the digestive enzymes and survival of honey bees (Apis mellifera). J. Insect Physiol., 1996, 42(9), 823-828.
[http://dx.doi.org/10.1016/0022-1910(96)00045-5]
[188]
Zou, Z.; Lopez, D.L.; Kanost, M.R.; Evans, J.D.; Jiang, H. Comparative analysis of serine protease-related genes in the honey bee genome: Possible involvement in embryonic development and innate immunity. Insect Mol. Biol., 2006, 15(5), 603-614.
[http://dx.doi.org/10.1111/j.1365-2583.2006.00684.x] [PMID: 17069636]
[189]
Matsuoka, T.; Takasaki, A.; Mishima, T.; Kawashima, T.; Kanamaru, Y.; Nakamura, T.; Yabe, T. Expression and characterization of honeybee, Apis mellifera, larva chymotrypsin-like protease. Apidologie., 2015, 46(2), 167-176.
[http://dx.doi.org/10.1007/s13592-014-0313-2]
[190]
Krunić T.Ž.; Rakin, M.B. Enriching alginate matrix used for probiotic encapsulation with whey protein concentrate or its trypsin-derived hydrolysate: Impact on antioxidant capacity and stability of fermented whey-based beverages. Food Chem., 2022, 370, 130931.
[http://dx.doi.org/10.1016/j.foodchem.2021.130931] [PMID: 34509939]
[191]
Aditi, P.; Srivastava, S.; Pandey, H.; Tripathi, Y.B. Toxicity profile of honey and ghee, when taken together in equal ratio. Toxicol. Rep., 2020, 7, 624-636.
[http://dx.doi.org/10.1016/j.toxrep.2020.04.002] [PMID: 32455119]
[192]
Chua, L.S.; Lee, J.Y.; Chan, G.F. Characterization of the proteins in honey. Anal. Lett., 2015, 48(4), 697-709.
[http://dx.doi.org/10.1080/00032719.2014.952374]
[193]
Won, S-R.; Li, C-Y.; Kim, J-W.; Rhee, H-I. Immunological characterization of honey major protein and its application. Food Chem., 2009, 113(4), 1334-1338.
[http://dx.doi.org/10.1016/j.foodchem.2008.08.082]
[194]
Chan, Q.W.; Foster, L.J. Changes in protein expression during honey bee larval development. Genome Biol., 2008, 9(10), R156.
[http://dx.doi.org/10.1186/gb-2008-9-10-r156] [PMID: 18959778]
[195]
Schmehl, D.R.; Teal, P.E.A.; Frazier, J.L.; Grozinger, C.M. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). J. Insect Physiol., 2014, 71, 177-190.
[http://dx.doi.org/10.1016/j.jinsphys.2014.10.002] [PMID: 25450567]
[196]
Zhu, Y.C.; Caren, J.; Reddy, G.V.P.; Li, W.; Yao, J. Effect of age on insecticide susceptibility and enzymatic activities of three detoxification enzymes and one invertase in honey bee workers (Apis mellifera). Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2020, 238, 108844.
[http://dx.doi.org/10.1016/j.cbpc.2020.108844] [PMID: 32777468]
[197]
Sérgio, D.M. Maturation of stingless bee pot-honey: A new frontier of the gastronomical market. Academia., 2013, 1-9.
[198]
Ribeiro, G.P.; Villas-Bôas, J.K.; Spinosa, W.A.; Prudencio, S.H. Influence of freezing, pasteurization and maturation on tiúba honey quality. Lebensm. Wiss. Technol., 2018, 90, 607-612.
[http://dx.doi.org/10.1016/j.lwt.2017.12.072]
[199]
Kamboj, U.; Mishra, S. Prediction of adulteration in honey using rheological parameters. Int. J. Food Prop., 2015, 18(9), 2056-2063.
[http://dx.doi.org/10.1080/10942912.2014.962656]
[200]
El-Bialee, N.M.; Sorour, M.A. Effect of adulteration on honey properties. Int. J. Appl. Sci. Technol., 2011, 1(6), 12.
[201]
Samat, S.; Enchang, F.K.; Razak, A.A.; Hussein, F.N.; Ismail, W.I.W. Adulterated honey consumption can induce obesity, increase blood glucose level and demonstrate toxicity effects. Sains Malays., 2018, 47(2), 353-365.
[202]
Guler, A.; Garipoglu, A.V.; Onder, H.; Biyik, S.; Kocaokutgen, H.; Ekinci, D. Comparing biochemical properties of pure and adulterated honeys produced by feeding honeybees (Apis mellifera L.) colonies with different levels of industrial commercial sugars. Kafkas Univ. Vet. Fak. Derg., 2017, 23(2)
[http://dx.doi.org/10.9775/kvfd.2016.16373]
[203]
Du, B.; Wu, L.; Xue, X.; Chen, L.; Li, Y.; Zhao, J.; Cao, W. Rapid screening of multiclass syrup adulterants in honey by ultrahigh-performance liquid chromatography/quadrupole time of flight mass spectrometry. J. Agric. Food Chem., 2015, 63(29), 6614-6623.
[http://dx.doi.org/10.1021/acs.jafc.5b01410] [PMID: 26151590]
[204]
Kozłowicz, K.; Różyło, R.; Gładyszewska, B.; Matwijczuk, A.; Gładyszewski, G.; Chocyk, D.; Samborska, K.; Piekut, J.; Smolewska, M. Identification of sugars and phenolic compounds in honey powders with the use of GC-MS, FTIR spectroscopy, and X-ray diffraction. Sci. Rep., 2020, 10(1), 16269.
[http://dx.doi.org/10.1038/s41598-020-73306-7] [PMID: 33004933]
[205]
Siddiqui, A.J.; Musharraf, S.G.; Choudhary, M.I.; Rahman, A.U. Application of analytical methods in authentication and adulteration of honey. Food Chem., 2017, 217, 687-698.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.001] [PMID: 27664687]
[206]
Posudin, Y. Spectroscopic analysis of honey. Ukr. Food J., 2016, 5(3), 437-450.
[http://dx.doi.org/10.24263/2304-974X-2016-5-3-3]
[207]
Skaff, W.; El Hajj, R. Hanna‐Wakim, L.; Estephan, N. Detection of adulteration in honey by infrared spectroscopy and chemometrics: Effect on human health. J. Food Process. Preserv., 2021, 46(10), e15438.
[http://dx.doi.org/10.1111/jfpp.15438]
[208]
Se, K.W.; Wahab, R.A.; Syed Yaacob, S.N.; Ghoshal, S.K. Detection techniques for adulterants in honey: Challenges and recent trends. J. Food Compos. Anal., 2019, 80, 16-32.
[http://dx.doi.org/10.1016/j.jfca.2019.04.001]
[209]
Simúth, J.; Bíliková, K.; Kovácová, E.; Kuzmová, Z.; Schroder, W. Immunochemical approach to detection of adulteration in honey: Physiologically active royal jelly protein stimulating TNF-α release is a regular component of honey. J. Agric. Food Chem., 2004, 52(8), 2154-2158.
[http://dx.doi.org/10.1021/jf034777y] [PMID: 15080614]
[210]
Ruiz-Matute, A.I.; Weiss, M.; Sammataro, D.; Finely, J.; Sanz, M.L. Carbohydrate composition of high-fructose corn syrups (HFCS) used for bee feeding: Effect on honey composition. J. Agric. Food Chem., 2010, 58(12), 7317-7322.
[http://dx.doi.org/10.1021/jf100758x] [PMID: 20491475]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy