Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Generating Retinas through Guided Pluripotent Stem Cell Differentiation and Direct Somatic Cell Reprogramming

Author(s): Ke Zhang, Wenwen Cai, Leyi Hu and Shuyi Chen*

Volume 19, Issue 9, 2024

Published on: 02 October, 2023

Page: [1251 - 1262] Pages: 12

DOI: 10.2174/011574888X255496230923164547

Price: $65

Abstract

Retinal degeneration diseases affect millions of people worldwide but are among the most difficult eye diseases to cure. Studying the mechanisms and developing new therapies for these blinding diseases requires researchers to have access to many retinal cells. In recent years there has been substantial advances in the field of biotechnology in generating retinal cells and even tissues in vitro, either through programmed sequential stem cell differentiation or direct somatic cell lineage reprogramming. The resemblance of these in vitro-generated retinal cells to native cells has been increasingly utilized by researchers. With the help of these in vitro retinal models, we now have a better understanding of human retinas and retinal diseases. Furthermore, these in vitro-generated retinal cells can be used as donor cells which solves a major hurdle in the development of cell replacement therapy for retinal degeneration diseases, while providing a promising option for patients suffering from these diseases. In this review, we summarize the development of pluripotent stem cell-to-retinal cell differentiation methods, the recent advances in generating retinal cells through direct somatic cell reprogramming, and the translational applications of retinal cells generated in vitro. Finally, we discuss the limitations of the current protocols and possible future directions for improvement.

Graphical Abstract

[1]
Assi L, Chamseddine F, Ibrahim P, et al. A global assessment of eye health and quality of life. JAMA Ophthalmol 2021; 139(5): 526-41.
[http://dx.doi.org/10.1001/jamaophthalmol.2021.0146] [PMID: 33576772]
[2]
Burton MJ, Ramke J, Marques AP, et al. The lancet global health commission on global eye health: Vision beyond 2020. Lancet Glob Health 2021; 9(4): e489-551.
[http://dx.doi.org/10.1016/S2214-109X(20)30488-5] [PMID: 33607016]
[3]
Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration. Nat Rev Dis Primers 2021; 7(1): 31.
[http://dx.doi.org/10.1038/s41572-021-00265-2] [PMID: 33958600]
[4]
Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet 2017; 390(10108): 2183-93.
[http://dx.doi.org/10.1016/S0140-6736(17)31469-1] [PMID: 28577860]
[5]
German OL, Vallese-Maurizi H, Soto TB, Rotstein NP, Politi LE. Retina stem cells, hopes and obstacles. World J Stem Cells 2021; 13(10): 1446-79.
[http://dx.doi.org/10.4252/wjsc.v13.i10.1446] [PMID: 34786153]
[6]
Jeon S, Oh IH. Regeneration of the retina: Toward stem cell therapy for degenerative retinal diseases. BMB Rep 2015; 48(4): 193-9.
[http://dx.doi.org/10.5483/BMBRep.2015.48.4.276] [PMID: 25560700]
[7]
Ramsden CM, Powner MB, Carr AJF, Smart MJK, da Cruz L, Coffey PJ. Stem cells in retinal regeneration: Past, present and future. Development 2013; 140(12): 2576-85.
[http://dx.doi.org/10.1242/dev.092270] [PMID: 23715550]
[8]
Singh MS, Park SS, Albini TA, et al. Retinal stem cell transplantation: Balancing safety and potential. Prog Retin Eye Res 2020; 75: 100779.
[http://dx.doi.org/10.1016/j.preteyeres.2019.100779] [PMID: 31494256]
[9]
Sanes JR, Zipursky SL. Design principles of insect and vertebrate visual systems. Neuron 2010; 66(1): 15-36.
[http://dx.doi.org/10.1016/j.neuron.2010.01.018] [PMID: 20399726]
[10]
Chow RL, Lang RA. Early eye development in vertebrates. Annu Rev Cell Dev Biol 2001; 17(1): 255-96.
[http://dx.doi.org/10.1146/annurev.cellbio.17.1.255] [PMID: 11687490]
[11]
Fuhrmann S. Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol 2010; 93: 61-84.
[http://dx.doi.org/10.1016/B978-0-12-385044-7.00003-5] [PMID: 20959163]
[12]
Martinez-Morales JR, Wittbrodt J. Shaping the vertebrate eye. Curr Opin Genet Dev 2009; 19(5): 511-7.
[http://dx.doi.org/10.1016/j.gde.2009.08.003] [PMID: 19819125]
[13]
Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D. Cell fate determination in the vertebrate retina. Proc Natl Acad Sci 1996; 93(2): 589-95.
[http://dx.doi.org/10.1073/pnas.93.2.589] [PMID: 8570600]
[14]
Heavner W, Pevny L. Eye development and retinogenesis. Cold Spring Harb Perspect Biol 2012; 4(12): a008391.
[http://dx.doi.org/10.1101/cshperspect.a008391] [PMID: 23071378]
[15]
Adler R, Canto-Soler MV. Molecular mechanisms of optic vesicle development: Complexities, ambiguities and controversies. Dev Biol 2007; 305(1): 1-13.
[http://dx.doi.org/10.1016/j.ydbio.2007.01.045] [PMID: 17335797]
[16]
Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P. Pax6 is required for the multipotent state of retinal progenitor cells. Cell 2001; 105(1): 43-55.
[http://dx.doi.org/10.1016/S0092-8674(01)00295-1] [PMID: 11301001]
[17]
Horsford DJ, Nguyen MTT, Sellar GC, Kothary R, Arnheiter H, McInnes RR. Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development 2005; 132(1): 177-87.
[http://dx.doi.org/10.1242/dev.01571] [PMID: 15576400]
[18]
Hatakeyama J, Kageyama R. Retinal cell fate determination and bHLH factors. Semin Cell Dev Biol 2004; 15(1): 83-9.
[http://dx.doi.org/10.1016/j.semcdb.2003.09.005] [PMID: 15036211]
[19]
Harada T, Harada C, Parada LF. Molecular regulation of visual system development: More than meets the eye. Genes Dev 2007; 21(4): 367-78.
[http://dx.doi.org/10.1101/gad.1504307] [PMID: 17322396]
[20]
Swaroop A, Kim D, Forrest D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Rev Neurosci 2010; 11(8): 563-76.
[http://dx.doi.org/10.1038/nrn2880] [PMID: 20648062]
[21]
Mu X, Klein WH. A gene regulatory hierarchy for retinal ganglion cell specification and differentiation. Semin Cell Dev Biol 2004; 15(1): 115-23.
[http://dx.doi.org/10.1016/j.semcdb.2003.09.009] [PMID: 15036214]
[22]
Nguyen-Ba-Charvet KT, Rebsam A. Neurogenesis and specification of retinal ganglion cells. Int J Mol Sci 2020; 21(2): 451.
[http://dx.doi.org/10.3390/ijms21020451] [PMID: 31936811]
[23]
Yang XJ. Roles of cell-extrinsic growth factors in vertebrate eye pattern formation and retinogenesis. Semin Cell Dev Biol 2004; 15(1): 91-103.
[http://dx.doi.org/10.1016/j.semcdb.2003.09.004] [PMID: 15036212]
[24]
Kumar JP. Signalling pathways in Drosophila and vertebrate retinal development. Nat Rev Genet 2001; 2(11): 846-57.
[http://dx.doi.org/10.1038/35098564] [PMID: 11715040]
[25]
Esteve P, Bovolenta P. Secreted inducers in vertebrate eye development: More functions for old morphogens. Curr Opin Neurobiol 2006; 16(1): 13-9.
[http://dx.doi.org/10.1016/j.conb.2006.01.001] [PMID: 16413771]
[26]
Pittack C, Grunwald GB, Reh TA. Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development 1997; 124(4): 805-16.
[http://dx.doi.org/10.1242/dev.124.4.805] [PMID: 9043062]
[27]
Neumann CJ, Nuesslein-Volhard C. Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 2000; 289(5487): 2137-9.
[http://dx.doi.org/10.1126/science.289.5487.2137]
[28]
Jadhav AP, Cho SH, Cepko CL. Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property. Proc Natl Acad Sci 2006; 103(50): 18998-9003.
[http://dx.doi.org/10.1073/pnas.0608155103] [PMID: 17148603]
[29]
Jadhav AP, Mason HA, Cepko CL. Notch 1 inhibits photoreceptor production in the developing mammalian retina. Development 2006; 133(5): 913-23.
[http://dx.doi.org/10.1242/dev.02245] [PMID: 16452096]
[30]
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci 1981; 78(12): 7634-8.
[http://dx.doi.org/10.1073/pnas.78.12.7634] [PMID: 6950406]
[31]
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819): 154-6.
[http://dx.doi.org/10.1038/292154a0] [PMID: 7242681]
[32]
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145-7.
[http://dx.doi.org/10.1126/science.282.5391.1145]
[33]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[34]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[http://dx.doi.org/10.1016/j.cell.2007.11.019] [PMID: 18035408]
[35]
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells Science 2007; 318(5858): 1917-20.
[http://dx.doi.org/10.1126/science.1151526]
[36]
Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 2016; 17(3): 183-93.
[http://dx.doi.org/10.1038/nrm.2016.8]
[37]
Mertens J, Marchetto MC, Bardy C, Gage FH. Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat Rev Neurosci 2016; 17(7): 424-37.
[http://dx.doi.org/10.1038/nrn.2016.46] [PMID: 27194476]
[38]
Muñoz-Sanjuán I, Brivanlou AH. Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 2002; 3(4): 271-80.
[http://dx.doi.org/10.1038/nrn786] [PMID: 11967557]
[39]
Kawasaki H, Mizuseki K, Nishikawa S, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 2000; 28(1): 31-40.
[http://dx.doi.org/10.1016/S0896-6273(00)00083-0] [PMID: 11086981]
[40]
Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D. Direct neural fate specification from embryonic stem cells: A primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 2001; 30(1): 65-78.
[http://dx.doi.org/10.1016/S0896-6273(01)00263-X] [PMID: 11343645]
[41]
Ying QL, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003; 21(2): 183-6.
[http://dx.doi.org/10.1038/nbt780] [PMID: 12524553]
[42]
Reubinoff BE, Itsykson P, Turetsky T, et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol 2001; 19(12): 1134-40.
[http://dx.doi.org/10.1038/nbt1201-1134] [PMID: 11731782]
[43]
Watanabe K, Kamiya D, Nishiyama A, et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 2005; 8(3): 288-96.
[http://dx.doi.org/10.1038/nn1402] [PMID: 15696161]
[44]
Ikeda H, Osakada F, Watanabe K, et al. Generation of Rx +/Pax6 + neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci 2005; 102(32): 11331-6.
[http://dx.doi.org/10.1073/pnas.0500010102] [PMID: 16076961]
[45]
Lamba DA, Karl MO, Ware CB, Reh TA. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci 2006; 103(34): 12769-74.
[http://dx.doi.org/10.1073/pnas.0601990103] [PMID: 16908856]
[46]
Osakada F, Ikeda H, Mandai M, et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 2008; 26(2): 215-24.
[http://dx.doi.org/10.1038/nbt1384] [PMID: 18246062]
[47]
Osakada F, Ikeda H, Sasai Y, Takahashi M. Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc 2009; 4(6): 811-24.
[http://dx.doi.org/10.1038/nprot.2009.51] [PMID: 19444239]
[48]
Osakada F, Jin ZB, Hirami Y, et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 2009; 122(17): 3169-79.
[http://dx.doi.org/10.1242/jcs.050393] [PMID: 19671662]
[49]
Hirami Y, Osakada F, Takahashi K, et al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 2009; 458(3): 126-31.
[http://dx.doi.org/10.1016/j.neulet.2009.04.035] [PMID: 19379795]
[50]
Zhou S, Flamier A, Abdouh M, et al. Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFβ and Wnt signaling. Development 2015; 142(19): 3294-306.
[http://dx.doi.org/10.1242/dev.125385] [PMID: 26443633]
[51]
Mellough CB, Sernagor E, Moreno-Gimeno I, Steel DHW, Lako M. Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells. Stem Cells 2012; 30(4): 673-86.
[http://dx.doi.org/10.1002/stem.1037] [PMID: 22267304]
[52]
Hirano M, Yamamoto A, Yoshimura N, et al. Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells. Dev Dyn 2003; 228(4): 664-71.
[http://dx.doi.org/10.1002/dvdy.10425] [PMID: 14648843]
[53]
Meyer JS, Shearer RL, Capowski EE, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci 2009; 106(39): 16698-703.
[http://dx.doi.org/10.1073/pnas.0905245106] [PMID: 19706890]
[54]
Tucker BA, Mullins RF, Streb LM, et al. Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. eLife 2013; 2: e00824.
[http://dx.doi.org/10.7554/eLife.00824] [PMID: 23991284]
[55]
Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 2008; 3(5): 519-32.
[http://dx.doi.org/10.1016/j.stem.2008.09.002] [PMID: 18983967]
[56]
Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011; 472(7341): 51-6.
[http://dx.doi.org/10.1038/nature09941] [PMID: 21475194]
[57]
Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 2012; 10(6): 771-85.
[http://dx.doi.org/10.1016/j.stem.2012.05.009] [PMID: 22704518]
[58]
Lancaster MA, Knoblich JA. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science 2014; 345(6194): 1247125.
[59]
Schutgens F, Clevers H. Human organoids: Tools for understanding biology and treating diseases. Annu Rev Pathol 2020; 15(1): 211-34.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012419-032611] [PMID: 31550983]
[60]
Zhong X, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 2014; 5(1): 4047.
[http://dx.doi.org/10.1038/ncomms5047] [PMID: 24915161]
[61]
Capowski EE, Samimi K, Mayerl SJ, et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development 2019; 146(1): dev171686.
[PMID: 30567931]
[62]
Lowe A, Harris R, Bhansali P, Cvekl A, Liu W. Intercellular adhesion-dependent cell survival and rock-regulated actomyosin-driven forces mediate self-formation of a retinal organoid. Stem Cell Reports 2016; 6(5): 743-56.
[http://dx.doi.org/10.1016/j.stemcr.2016.03.011] [PMID: 27132890]
[63]
Reichman S, Terray A, Slembrouck A, et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci 2014; 111(23): 8518-23.
[http://dx.doi.org/10.1073/pnas.1324212111] [PMID: 24912154]
[64]
Li J, Chen Y, Ouyang S, et al. Generation and staging of human retinal organoids based on self-formed ectodermal autonomous multi-zone system. Front Cell Dev Biol 2021; 9: 732382.
[http://dx.doi.org/10.3389/fcell.2021.732382] [PMID: 34631711]
[65]
Li G, Xie B, He L, et al. Generation of retinal organoids with mature rods and cones from urine-derived human induced pluripotent stem cells. Stem Cells Int 2018; 2018: 1-12.
[http://dx.doi.org/10.1155/2018/4968658] [PMID: 30008752]
[66]
Kim S, Lowe A, Dharmat R, et al. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proc Natl Acad Sci 2019; 116(22): 10824-33.
[http://dx.doi.org/10.1073/pnas.1901572116] [PMID: 31072937]
[67]
Hiler D, Chen X, Hazen J, et al. Quantification of retinogenesis in 3d cultures reveals epigenetic memory and higher efficiency in ipscs derived from rod photoreceptors. Cell Stem Cell 2015; 17(1): 101-15.
[http://dx.doi.org/10.1016/j.stem.2015.05.015] [PMID: 26140606]
[68]
Strauss O. The retinal pigment epithelium in visual function. Physiol Rev 2005; 85(3): 845-81.
[http://dx.doi.org/10.1152/physrev.00021.2004] [PMID: 15987797]
[69]
Kawasaki H, Suemori H, Mizuseki K, et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci 2002; 99(3): 1580-5.
[http://dx.doi.org/10.1073/pnas.032662199] [PMID: 11818560]
[70]
Aoki H, Hara A, Nakagawa S, et al. Embryonic stem cells that differentiate into RPE cell precursors in vitro develop into RPE cell monolayers in vivo. Exp Eye Res 2006; 82(2): 265-74.
[http://dx.doi.org/10.1016/j.exer.2005.06.021] [PMID: 16150443]
[71]
Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 2004; 6(3): 217-45.
[http://dx.doi.org/10.1089/clo.2004.6.217] [PMID: 15671670]
[72]
Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 2009; 5(4): 396-408.
[http://dx.doi.org/10.1016/j.stem.2009.07.002] [PMID: 19796620]
[73]
Buchholz DE, Hikita ST, Rowland TJ, et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 2009; 27(10): 2427-34.
[http://dx.doi.org/10.1002/stem.189] [PMID: 19658190]
[74]
Leach LL, Buchholz DE, Nadar VP, Lowenstein SE, Clegg DO. Canonical/β-catenin Wnt pathway activation improves retinal pigmented epithelium derivation from human embryonic stem cells. Invest Ophthalmol Vis Sci 2015; 56(2): 1002-13.
[http://dx.doi.org/10.1167/iovs.14-15835] [PMID: 25604686]
[75]
Maruotti J, Sripathi SR, Bharti K, et al. Small-molecule–directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. Proc Natl Acad Sci 2015; 112(35): 10950-5.
[http://dx.doi.org/10.1073/pnas.1422818112] [PMID: 26269569]
[76]
Luo Z, Chang KC, Wu S, et al. Directly induced human retinal ganglion cells mimic fetal RGCs and are neuroprotective after transplantation in vivo. Stem Cell Reports 2022; 17(12): 2690-703.
[http://dx.doi.org/10.1016/j.stemcr.2022.10.011] [PMID: 36368332]
[77]
Wang H, Yang Y, Liu J, Qian L. Direct cell reprogramming: Approaches, mechanisms and progress. Nature rev 2021; 22(6): 410-24.
[http://dx.doi.org/10.1038/s41580-021-00335-z]
[78]
Xu J, Du Y, Deng H. Direct lineage reprogramming: Strategies, mechanisms, and applications. Cell Stem Cell 2015; 16(2): 119-34.
[http://dx.doi.org/10.1016/j.stem.2015.01.013] [PMID: 25658369]
[79]
Vierbuchen T, Wernig M. Direct lineage conversions: unnatural but useful? Nat Biotechnol 2011; 29(10): 892-907.
[http://dx.doi.org/10.1038/nbt.1946] [PMID: 21997635]
[80]
Wapinski OL, Vierbuchen T, Qu K, et al. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 2013; 155(3): 621-35.
[http://dx.doi.org/10.1016/j.cell.2013.09.028] [PMID: 24243019]
[81]
Meng F, Wang X, Gu P, Wang Z, Guo W. Induction of retinal ganglion-like cells from fibroblasts by adenoviral gene delivery. Neuroscience 2013; 250: 381-93.
[http://dx.doi.org/10.1016/j.neuroscience.2013.07.001] [PMID: 23856066]
[82]
Wang J, He Q, Zhang K, et al. Quick commitment and efficient reprogramming route of direct induction of retinal ganglion cell-like neurons. Stem Cell Reports 2020; 15(5): 1095-110.
[http://dx.doi.org/10.1016/j.stemcr.2020.09.008] [PMID: 33096050]
[83]
Mahato B, Kaya KD, Fan Y, et al. Pharmacologic fibroblast reprogramming into photoreceptors restores vision. Nature 2020; 581(7806): 83-8.
[http://dx.doi.org/10.1038/s41586-020-2201-4] [PMID: 32376950]
[84]
Zhang K, Liu GH, Yi F, et al. Direct conversion of human fibroblasts into retinal pigment epithelium-like cells by defined factors. Protein Cell 2014; 5(1): 48-58.
[http://dx.doi.org/10.1007/s13238-013-0011-2] [PMID: 24474194]
[85]
Woogeng IN, Kaczkowski B, Abugessaisa I, et al. Inducing human retinal pigment epithelium-like cells from somatic tissue. Stem Cell Reports 2022; 17(2): 289-306.
[http://dx.doi.org/10.1016/j.stemcr.2021.12.008] [PMID: 35030321]
[86]
Zhu X, Chen Z, Wang L, et al. Direct conversion of human umbilical cord mesenchymal stem cells into retinal pigment epithelial cells for treatment of retinal degeneration. Cell Death Dis 2022; 13(9): 785.
[http://dx.doi.org/10.1038/s41419-022-05199-5] [PMID: 36096985]
[87]
Takata N, Miska JM, Morgan MA, et al. Lactate-dependent transcriptional regulation controls mammalian eye morphogenesis. Nat Commun 2023; 14(1): 4129.
[http://dx.doi.org/10.1038/s41467-023-39672-2] [PMID: 37452018]
[88]
Prameela Bharathan S, Ferrario A, Stepanian K, et al. Characterization and staging of outer plexiform layer development in human retina and retinal organoids. Development 2021; 148(23): dev199551.
[http://dx.doi.org/10.1242/dev.199551] [PMID: 34738615]
[89]
Cowan CS, Renner M, De Gennaro M, et al. Cell types of the human retina and its organoids at single-cell resolution. Cell 2020; 182(6): 1623-1640.e34.
[http://dx.doi.org/10.1016/j.cell.2020.08.013] [PMID: 32946783]
[90]
Finkbeiner C, Ortuño-Lizarán I, Sridhar A, Hooper M, Petter S, Reh TA. Single-cell ATAC-seq of fetal human retina and stem-cell-derived retinal organoids shows changing chromatin landscapes during cell fate acquisition. Cell Rep 2022; 38(4): 110294.
[http://dx.doi.org/10.1016/j.celrep.2021.110294] [PMID: 35081356]
[91]
Sridhar A, Hoshino A, Finkbeiner CR, et al. Single-cell transcriptomic comparison of human fetal retina, hpsc-derived retinal organoids, and long-term retinal cultures. Cell Rep 2020; 30(5): 1644-1659.e4.
[http://dx.doi.org/10.1016/j.celrep.2020.01.007] [PMID: 32023475]
[92]
Xie H, Zhang W, Zhang M, et al. Chromatin accessibility analysis reveals regulatory dynamics of developing human retina and hiPSC-derived retinal organoids. Sci Adv 2020; 6(6): eaay5247.
[http://dx.doi.org/10.1126/sciadv.aay5247] [PMID: 32083182]
[93]
Lu Y, Shiau F, Yi W, et al. Single-cell analysis of human retina identifies evolutionarily conserved and species-specific mechanisms controlling development. Dev Cell 2020; 53(4): 473-491.e9.
[http://dx.doi.org/10.1016/j.devcel.2020.04.009] [PMID: 32386599]
[94]
Thomas ED, Timms AE, Giles S, et al. Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids. Dev Cell 2022; 57(6): 820-836.e6.
[http://dx.doi.org/10.1016/j.devcel.2022.02.018] [PMID: 35303433]
[95]
Dorgau B, Collin J, Rozanska A, Boczonadi V, Moya-Molina M, Hussain R, et al. Deciphering the spatio-temporal transcriptional and chromatin accessibility of human retinal organoid development at the single cell level. biorxiv 2023.
[http://dx.doi.org/10.1101/2023.07.19.549507]
[96]
Phillips MJ, Perez ET, Martin JM, et al. Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2. Stem Cells 2014; 32(6): 1480-92.
[http://dx.doi.org/10.1002/stem.1667] [PMID: 24532057]
[97]
Ferda Percin E, Ploder LA, Yu JJ, et al. Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nat Genet 2000; 25(4): 397-401.
[http://dx.doi.org/10.1038/78071] [PMID: 10932181]
[98]
Eldred KC, Hadyniak SE, Hussey KA, Brenerman B, Zhang PW, Chamling X, et al. Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science 2018; 362(6411): eaau6348.
[http://dx.doi.org/10.1126/science.aau6348]
[99]
Schwarz N, Carr AJ, Lane A, et al. Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells. Hum Mol Genet 2015; 24(4): 972-86.
[http://dx.doi.org/10.1093/hmg/ddu509] [PMID: 25292197]
[100]
Parfitt DA, Lane A, Ramsden CM, et al. Identification and correction of mechanisms underlying inherited blindness in human ipsc-derived optic cups. Cell Stem Cell 2016; 18(6): 769-81.
[http://dx.doi.org/10.1016/j.stem.2016.03.021] [PMID: 27151457]
[101]
Dulla K, Aguila M, Lane A, et al. Splice-modulating oligonucleotide qr-110 restores cep290 mrna and function in human c.2991+1655A>G LCA10 Models. Mol Ther Nucleic Acids 2018; 12: 730-40.
[http://dx.doi.org/10.1016/j.omtn.2018.07.010] [PMID: 30114557]
[102]
Khan M, Arno G, Fakin A, et al. Detailed phenotyping and therapeutic strategies for intronic ABCA4 variants in stargardt disease. Mol Ther Nucleic Acids 2020; 21: 412-27.
[http://dx.doi.org/10.1016/j.omtn.2020.06.007] [PMID: 32653833]
[103]
Liu H, Zhang Y, Zhang YY, et al. Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin. Proc Natl Acad Sci 2020; 117(52): 33628-38.
[http://dx.doi.org/10.1073/pnas.2011780117] [PMID: 33318192]
[104]
Mullin NK, Bohrer LR, Voigt AP, Lozano LP, Wright A, Mullins RF, et al. Loss of NR2E3 disrupts rod photoreceptor cell maturation causing a fate switch late in human retinal development. biorxiv 2023.
[http://dx.doi.org/10.1101/2023.06.30.547279]
[105]
Völkner M, Wagner F, Steinheuer LM, et al. HBEGF-TNF induce a complex outer retinal pathology with photoreceptor cell extrusion in human organoids. Nat Commun 2022; 13(1): 6183.
[http://dx.doi.org/10.1038/s41467-022-33848-y] [PMID: 36261438]
[106]
MacLaren RE, Pearson RA, MacNeil A, et al. Retinal repair by transplantation of photoreceptor precursors. Nature 2006; 444(7116): 203-7.
[http://dx.doi.org/10.1038/nature05161] [PMID: 17093405]
[107]
Pearson RA, Barber AC, Rizzi M, et al. Restoration of vision after transplantation of photoreceptors. Nature 2012; 485(7396): 99-103.
[http://dx.doi.org/10.1038/nature10997] [PMID: 22522934]
[108]
Zhu J, Cifuentes H, Reynolds J, Lamba DA. Immunosuppression via Loss of IL2rγ enhances long-term functional integration of hESC-derived photoreceptors in the mouse retina. Cell Stem Cell 2017; 20(3): 374-384.e5.
[http://dx.doi.org/10.1016/j.stem.2016.11.019] [PMID: 28089909]
[109]
Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 2009; 4(1): 73-9.
[http://dx.doi.org/10.1016/j.stem.2008.10.015] [PMID: 19128794]
[110]
Gonzalez-Cordero A, West EL, Pearson RA, et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol 2013; 31(8): 741-7.
[http://dx.doi.org/10.1038/nbt.2643] [PMID: 23873086]
[111]
McLelland BT, Lin B, Mathur A, et al. Transplanted hESC-derived retina organoid sheets differentiate, integrate, and improve visual function in retinal degenerate rats. Invest Ophthalmol Vis Sci 2018; 59(6): 2586-603.
[http://dx.doi.org/10.1167/iovs.17-23646] [PMID: 29847666]
[112]
Shirai H, Mandai M, Matsushita K, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci 2016; 113(1): E81-90.
[http://dx.doi.org/10.1073/pnas.1512590113] [PMID: 26699487]
[113]
Liu Y, Xu HW, Wang L, et al. Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration. Cell Discov 2018; 4(1): 50.
[http://dx.doi.org/10.1038/s41421-018-0053-y] [PMID: 30245845]
[114]
Wang L, Wu W, Gu Q, et al. The effect of clinical-grade retinal pigment epithelium derived from human embryonic stem cells using different transplantation strategies. Protein Cell 2019; 10(6): 455-60.
[http://dx.doi.org/10.1007/s13238-018-0606-8] [PMID: 30673951]
[115]
Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet 2015; 385(9967): 509-16.
[http://dx.doi.org/10.1016/S0140-6736(14)61376-3] [PMID: 25458728]
[116]
Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet 2012; 379(9817): 713-20.
[http://dx.doi.org/10.1016/S0140-6736(12)60028-2] [PMID: 22281388]
[117]
Song WK, Park KM, Kim HJ, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: Preliminary results in Asian patients. Stem Cell Reports 2015; 4(5): 860-72.
[http://dx.doi.org/10.1016/j.stemcr.2015.04.005] [PMID: 25937371]
[118]
da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 2018; 36(4): 328-37.
[http://dx.doi.org/10.1038/nbt.4114] [PMID: 29553577]
[119]
Li SY, Liu Y, Wang L, et al. A phase I clinical trial of human embryonic stem cell‐derived retinal pigment epithelial cells for early‐stage Stargardt macular degeneration: 5‐years’ follow‐up. Cell Prolif 2021; 54(9): e13100.
[http://dx.doi.org/10.1111/cpr.13100] [PMID: 34347352]
[120]
Silverman SM, Wong WT. Microglia in the retina: Roles in development, maturity, and disease. Annu Rev Vis Sci 2018; 4(1): 45-77.
[http://dx.doi.org/10.1146/annurev-vision-091517-034425] [PMID: 29852094]
[121]
Selvam S, Kumar T, Fruttiger M. Retinal vasculature development in health and disease. Prog Retin Eye Res 2018; 63: 1-19.
[http://dx.doi.org/10.1016/j.preteyeres.2017.11.001] [PMID: 29129724]
[122]
Hayashi R, Ishikawa Y, Sasamoto Y, et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 2016; 531(7594): 376-80.
[http://dx.doi.org/10.1038/nature17000] [PMID: 26958835]
[123]
Achberger K, Probst C, Haderspeck J, et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. eLife 2019; 8: e46188.
[http://dx.doi.org/10.7554/eLife.46188] [PMID: 31451149]
[124]
Shi Y, Sun L, Wang M, et al. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol 2020; 18(5): e3000705.
[http://dx.doi.org/10.1371/journal.pbio.3000705] [PMID: 32401820]
[125]
Cakir B, Xiang Y, Tanaka Y, et al. Engineering of human brain organoids with a functional vascular-like system. Nat Methods 2019; 16(11): 1169-75.
[http://dx.doi.org/10.1038/s41592-019-0586-5] [PMID: 31591580]
[126]
Cakir B, Tanaka Y, Kiral FR, et al. Expression of the transcription factor PU.1 induces the generation of microglia-like cells in human cortical organoids. Nat Commun 2022; 13(1): 430.
[http://dx.doi.org/10.1038/s41467-022-28043-y] [PMID: 35058453]
[127]
Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ. CellNet: Network biology applied to stem cell engineering. Cell 2014; 158(4): 903-15.
[http://dx.doi.org/10.1016/j.cell.2014.07.020] [PMID: 25126793]
[128]
Morris SA, Cahan P, Li H, et al. Dissecting engineered cell types and enhancing cell fate conversion via CellNet. Cell 2014; 158(4): 889-902.
[http://dx.doi.org/10.1016/j.cell.2014.07.021] [PMID: 25126792]
[129]
Joung J, Ma S, Tay T, et al. A transcription factor atlas of directed differentiation. Cell 2023; 186(1): 209-229.e26.
[http://dx.doi.org/10.1016/j.cell.2022.11.026] [PMID: 36608654]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy