Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Targeting PPARγ/ NF-κB Signaling Pathway by Britannin, a Sesquiterpene Lactone from Inula aucheriana DC., in Gastric Cancer

Author(s): Mohammad Hossein Abdolmohammadi, Maryam Roozbehani, Maryam Hamzeloo-Moghadam, Fatemeh Heidari and Faranak Fallahian*

Volume 23, Issue 19, 2023

Published on: 26 September, 2023

Page: [2102 - 2110] Pages: 9

DOI: 10.2174/1871520623666230918140559

Price: $65

Abstract

Background: Gastric cancer is one of the most common and deadliest malignancies in the world. Therefore, there is an urgent need to develop new and effective agents to reduce mortality. The plants of genus Inula have gained the attention of researchers worldwide as a rich source of potent medicinal compounds.

Objective: This study explores the anti-cancer activity of Britannin, a sesquiterpene lactone isolated from Inula aucheriana DC., and its molecular mechanism in gastric cancer cells, AGS and MKN45.

Methods: Cytotoxicity was evaluated through the MTT assay following 24 h, 48 h, and 72 h treatment with different concentrations of Britannin. Apoptosis rate and caspase-3 activity were measured 24 h after treatment by Britannin. . Western blotting was performed to determine the expression of the NF-κB, IκBα, and PPARγ proteins. Moreover, quantitative RT-PCR was applied to measure the expression of NF-κB target genes.

Results: We showed that Britannin induced cell growth inhibition and apoptosis in gastric cancer cells. Britannin caused an elevation in mRNA and protein levels of PPARγ. The involvement of PPARγ was more confirmed using GW9662, a PPARγ inhibitor. Suppression of NF-κB was demonstrated by western blot analysis. Down-regulation of MMP-9, TWIST-1, COX-2, and Bcl-2 and up-regulation of Bax were also observed in gastric cancer cells.

Conclusion: These results imply that activation of the PPARγ signaling pathway through suppression of NF-κB underlies the anti-cancer properties of Britannin in gastric cancer. Therefore, Britannin could be considered as a promising anti-cancer candidate for further evaluation.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLobocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660]
[2]
Seca, A.M.L.; Grigore, A.; Pinto, D.C.G.A.; Silva, A.M.S. The genus inula and their metabolites: From ethnopharmacological to medicinal uses. J. Ethnopharmacol., 2014, 154(2), 286-310.
[http://dx.doi.org/10.1016/j.jep.2014.04.010]
[3]
Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids lactones: Benefits to plants and people. Int. J. Mol. Sci., 2013, 14(6), 12780-12805.
[http://dx.doi.org/10.3390/ijms140612780]
[4]
Li, Q.; Wang, Z.; Xie, Y.; Hu, H. Antitumor activity and mechanism of costunolide and dehydrocostus lactone: Two natural sesquiterpene lactones from the Asteraceae family. Biomed. Pharmacother., 2020, 125, 109955.
[http://dx.doi.org/10.1016/j.biopha.2020.109955]
[5]
Ren, Y.; Yu, J.; Douglas Kinghorn, A. Development of anticancer agents from plant-derived sesquiterpene lactones. Curr. Med. Chem., 2016, 23(23), 2397-2420.
[http://dx.doi.org/10.2174/0929867323666160510123255]
[6]
Roozbehani, M.; Abdolmohammadi, M.H.; Hamzeloo-Moghadam, M.; Irani, S.; Fallahian, F. Gaillardin, a potent sesquiterpene lactone induces apoptosis via down-regulation of NF‐κβ in gastric cancer cells, AGS and MKN45. J. Ethnopharmacol., 2021, 281, 114529.
[http://dx.doi.org/10.1016/j.jep.2021.114529]
[7]
Fallahian, F.; Aghaei, M.; Abdolmohammadi, M.H.; Hamzeloo-Moghadam, M. Molecular mechanism of apoptosis induction by Gaillardin, a sesquiterpene lactone, in breast cancer cell lines. Cell Biol. Toxicol., 2015, 31(6), 295-305.
[http://dx.doi.org/10.1007/s10565-016-9312-6]
[8]
Bailly, C. Anticancer targets and signaling pathways activated by britannin and related pseudoguaianolide sesquiterpene lactones. Biomedicines, 2021, 9(10), 1325.
[http://dx.doi.org/10.3390/biomedicines9101325]
[9]
Hamzeloo-Moghadam, M.; Aghaei, M.; Fallahian, F.; Jafari, S.M.; Dolati, M.; Abdolmohammadi, M.H.; Hajiahmadi, S.; Esmaeili, S. Britannin, a sesquiterpene lactone, inhibits proliferation and induces apoptosis through the mitochondrial signaling pathway in human breast cancer cells. Tumour Biol., 2015, 36(2), 1191-1198.
[http://dx.doi.org/10.1007/s13277-014-2744-9]
[10]
Moeinifard, M.; Hassan, Z.M.; Fallahian, F.; Hamzeloo-Moghadam, M.; Taghikhani, M. Britannin induces apoptosis through AKT-FOXO1 pathway in human pancreatic cancer cells. Biomed. Pharmacother., 2017, 94, 1101-1110.
[http://dx.doi.org/10.1016/j.biopha.2017.08.025]
[11]
Mohammadlou, H.; Hamzeloo-Moghadam, M.; Yami, A.; Feizi, F.; Moeinifard, M.; Gharehbaghian, A. Britannin a sesquiterpene lactone from inula aucheriana exerted an anti-leukemic effect in acute lymphoblastic leukemia (ALL) cells and enhanced the sensitivity of the cells to vincristine. Nutr. Cancer, 2022, 74(3), 965-977.
[http://dx.doi.org/10.1080/01635581.2021.1931700]
[12]
Fallahian, F.; Hamzeloo-Moghadam, M.; Aghaei, M.; Abdolmoham Madi, M.H. Anticancer activity of britannin through the downregulation of cyclin D1 and CDK4 in human breast cancer cells. J. Cancer Res. Ther., 2019, 15(5), 1105.
[http://dx.doi.org/10.4103/jcrt.JCRT_517_17]
[13]
Cui, Y.Q.; Liu, Y.J.; Zhang, F. The suppressive effects of Britannin (Bri) on human liver cancer through inducing apoptosis and autophagy via AMPK activation regulated by ROS. Biochem. Biophys. Res. Commun., 2018, 497(3), 916-923.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.144]
[14]
Zhang, Y.F.; Zhang, Z.H.; Li, M.Y.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Zuo, H.X.; Jin, H.L.; Ma, J.; Jin, X. Britannin stabilizes T cell activity and inhibits proliferation and angiogenesis by targeting PD-L1 via abrogation of the crosstalk between Myc and HIF-1α in cancer. Phytomedicine, 2021, 81, 153425.
[http://dx.doi.org/10.1016/j.phymed.2020.153425]
[15]
Lehrke, M.; Lazar, M.A. The many faces of PPARγ. Cell, 2005, 123(6), 993-999.
[http://dx.doi.org/10.1016/j.cell.2005.11.026]
[16]
Krishnan, A.; Nair, S.; Pillai, M. Biology of PPARγ in cancer: A critical review on existing lacunae. Curr. Mol. Med., 2007, 7(6), 532-540.
[http://dx.doi.org/10.2174/156652407781695765]
[17]
Vella, V.; Nicolosi, M.L.; Giuliano, S.; Bellomo, M.; Belfiore, A.; Malaguarnera, R. PPAR-γ agonists as antineoplastic agents in cancers with dysregulated IGF axis. Front. Endocrinol., 2017, 8, 31.
[http://dx.doi.org/10.3389/fendo.2017.00031]
[18]
Moghadam, M.H.; Hajimehdipoor, H.; Saeidnia, S.; Atoofi, A.; Shahrestani, R.; Read, R.W.; Mosaddegh, M. Anti-proliferative activity and apoptotic potential of britannin, a sesquiterpene lactone from Inula aucheriana., Natural product communications 2012, 7(8), 1934578X1200700804.
[http://dx.doi.org/10.1177/1934578X1200700804]
[19]
Lin, H.R. Sesquiterpene lactones from tithonia diversifolia act as peroxisome proliferator-activated receptor agonists. Bioorg. Med. Chem. Lett., 2012, 22(8), 2954-2958.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.043]
[20]
babaei, G.; Aliarab, A.; Abroon, S.; Rasmi, Y.; Aziz, S.G-G. Application of sesquiterpene lactone: A new promising way for cancer therapy based on anticancer activity. Biomed. Pharmacother., 2018, 106, 239-246.
[http://dx.doi.org/10.1016/j.biopha.2018.06.131]
[21]
Wang, L.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Blunder, M.; Liu, X.; Malainer, C.; Blazevic, T.; Schwaiger, S.; Rollinger, J.M.; Heiss, E.H.; Schuster, D.; Kopp, B.; Bauer, R.; Stuppner, H.; Dirsch, V.M.; Atanasov, A.G. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochem. Pharmacol., 2014, 92(1), 73-89.
[http://dx.doi.org/10.1016/j.bcp.2014.07.018]
[22]
Wang, T.; Xu, J.; Yu, X.; Yang, R.; Han, Z. Peroxisome proliferator-activated receptor γ in malignant diseases. Crit. Rev. Oncol. Hematol., 2006, 58(1), 1-14.
[http://dx.doi.org/10.1016/j.critrevonc.2005.08.011]
[23]
Gou, Q.; Gong, X.; Jin, J.; Shi, J.; Hou, Y. Peroxisome proliferator-activated receptors (PPARs) are potential drug targets for cancer therapy. Oncotarget, 2017, 8(36), 60704-60709.
[http://dx.doi.org/10.18632/oncotarget.19610]
[24]
Liu, X.; Yu, Z.; Huang, X.; Gao, Y.; Wang, X.; Gu, J.; Xue, S. Peroxisome proliferator-activated receptor γ (PPARγ) mediates the protective effect of quercetin against myocardial ischemia-reperfusion injury via suppressing the NF-κB pathway. Am. J. Transl. Res., 2016, 8(12), 5169.
[25]
Lu, Y.; Sun, Y.; Zhu, J.; Yu, L.; Jiang, X.; Zhang, J.; Dong, X.; Ma, B.; Zhang, Q. Oridonin exerts anticancer effect on osteosarcoma by activating PPAR-γ and inhibiting Nrf2 pathway. Cell Death Dis., 2018, 9(1), 15.
[http://dx.doi.org/10.1038/s41419-017-0031-6]
[26]
Liu, L.; Liu, X.; Bai, Y.; Tang, N.; Li, J.; Zhang, Y.; Wu, J.; Wang, X.; Wei, J. Neuregulin-1β modulates myogenesis in septic mouse serum-treated C2C12 myotubes in vitro through PPARγ/NF-κB signaling. Mol. Biol. Rep., 2018, 45(6), 1611-1619.
[http://dx.doi.org/10.1007/s11033-018-4293-6]
[27]
Lee, C.H.; Jeon, Y.T.; Kim, S.H.; Song, Y.S. NF-κB as a potential molecular target for cancer therapy. Biofactors, 2007, 29(1), 19-35.
[http://dx.doi.org/10.1002/biof.5520290103]
[28]
Xia, Y.; Shen, S.; Verma, I.M. NF-κB, an active player in human cancers. Cancer Immunol. Res., 2014, 2(9), 823-830.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0112]
[29]
Shi, G.; Li, D.; Fu, J.; Sun, Y.; Li, Y.; Qu, R.; Jin, X.; Li, D. Upregulation of cyclooxygenase-2 is associated with activation of the alternative nuclear factor kappa B signaling pathway in colonic adenocarcinoma. Am. J. Transl. Res., 2015, 7(9), 1612.
[30]
Valentina Tudor, D.; Bâldea, I.; Lupu, M.; Kacso, T.; Kutasi, E.; Hopârtean, A.; Stretea, R.; Gabriela, F. A. COX-2 as a potential biomarker and therapeutic target in melanoma. Cancer Biol. Med., 2020, 17(1), 20-31.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2019.0339]
[31]
Guarneri, C.; Bevelacqua, V.; Polesel, J.; Falzone, L.; Cannavò, P.S.; Spandidos, D.A.; Malaponte, G.; Libra, M. NF-κB inhibition is associated with OPN/MMP-9 downregulation in cutaneous melanoma. Oncol. Rep., 2017, 37(2), 737-746.
[http://dx.doi.org/10.3892/or.2017.5362]
[32]
Ha, S.H.; Kwon, K.M.; Park, J.Y.; Abekura, F.; Lee, Y.C.; Chung, T.W.; Ha, K.T.; Chang, H.W.; Cho, S.H.; Kim, J.S.; Kim, C-H. Esculentoside H inhibits colon cancer cell migration and growth through suppression of MMP‐9 gene expression via NF‐kB signaling pathway. J. Cell. Biochem., 2019, 120(6), 9810-9819.
[http://dx.doi.org/10.1002/jcb.28261]
[33]
Zhao, Z.; Rahman, M.A.; Chen, Z.G.; Shin, D.M. Multiple biological functions of Twist1 in various cancers. Oncotarget, 2017, 8(12), 20380-20393.
[http://dx.doi.org/10.18632/oncotarget.14608]
[34]
Pham, C.G.; Bubici, C.; Zazzeroni, F.; Knabb, J.R.; Papa, S.; Kuntzen, C.; Franzoso, G. Upregulation of Twist-1 by NF-κB blocks cytotoxicity induced by chemotherapeutic drugs. Mol. Cell. Biol., 2007, 27(11), 3920-3935.
[http://dx.doi.org/10.1128/MCB.01219-06]
[35]
Vogler, M.; Hamali, H.A.; Sun, X.M.; Bampton, E.T.W.; Dinsdale, D.; Snowden, R.T.; Dyer, M.J.S.; Goodall, A.H.; Cohen, G.M. BCL2/BCL-XL inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation. Blood, 2011, 117(26), 7145-7154.
[http://dx.doi.org/10.1182/blood-2011-03-344812]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy