Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Review Article

GaN HEMT for High-performance Applications: A Revolutionary Technology

Author(s): Geeta Pattnaik and Meryleen Mohapatra*

Volume 17, Issue 8, 2024

Published on: 06 October, 2023

Page: [737 - 762] Pages: 26

DOI: 10.2174/2352096516666230914103828

Price: $65

Abstract

Background: The upsurge in the field of radio frequency power electronics has led to the involvement of wide bandgap semiconductor materials because of their potential characteristics in achieving high breakdown voltage, output power density, and frequency. III-V group materials of the periodic table have proven to be the best candidates for achieving this goal. Among all the available combinations of group III-V semiconductor materials, gallium nitride (GaN), having a band gap of 3.4eV, has gradually started gaining the confidence to become the next-generation material to fulfill these requirements.

Objective: Considering the various advantages provided by GaN, it is widely used in AlGaN/GaN HEMTs (High Electron Mobility Transistors) as their fundamental materials. This work aimed to review the structure, operation, and polarization mechanisms influencing the HEMT device, different types of GaN HEMT, and the various process technologies for developing the device.

Methods: Various available methods to obtain an enhancement type GaN HEMT are discussed in the study. It also covers the recent developments and various techniques to improve the performance and device linearity of GaN HEMT.

Conclusion: Despite the advantages and continuous improvement exhibited by the GaN HEMT technology, it faces several reliability issues, leading to degradation of device performance. In this study, we review various reliability issues and ways to mitigate them. Moreover, several application domains are also discussed, where GaN HEMTs have proven their capability. It also focuses on reviewing and compiling the various aspects related to the GaN HEMT, thus providing all necessary information.

Next »
Graphical Abstract

[1]
U.K. Mishra, and P. Parikh, "AlGaN/GaN HEMTs-an overview of device operation and applications", Proc. IEEE, vol. 90, no. 6, pp. 1022-1031, 2002.
[http://dx.doi.org/10.1109/JPROC.2002.1021567]
[2]
U.K. Mishra, L. Shen, T.E. Kazior, and L. Yi-Feng, "GaN-based RF power devices and amplifiers", Proc. IEEE, vol. 96, no. 2, pp. 287-305, 2008.
[http://dx.doi.org/10.1109/JPROC.2007.911060]
[3]
T. McNutt, B. Passmore, J. Fraley, B. McPherson, R. Shaw, K. Olejniczak, and A. Lostetter, "High-performance, wide-bandgap power electronics", J. Electron. Mater., vol. 43, no. 12, pp. 4552-4559, 2014.
[http://dx.doi.org/10.1007/s11664-014-3376-y]
[4]
A. Hassan, Y. Savaria, and M. Sawan, "GaN integration technology, an ideal candidate for high-temperature applications: A review", IEEE Access, vol. 6, pp. 78790-78802, 2018.
[http://dx.doi.org/10.1109/ACCESS.2018.2885285]
[5]
P. Murugapandiyan, A. Mohanbabu, V.R. Lakshmi, M. Wasim, and K.M. Sundaram, "Investigation of quaternary barrier InAlGaN/GaN/AlGaN double-heterojunction high-electron-mobility transistors (HEMTs) for high-speed and high-power applications", J. Electron. Mater., vol. 49, no. 1, pp. 524-529, 2020.
[http://dx.doi.org/10.1007/s11664-019-07731-4]
[6]
J.P. Ibbetson, P.T. Fini, K.D. Ness, S.P. DenBaars, J.S. Speck, and U.K. Mishra, "Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors", Appl. Phys. Lett., vol. 77, no. 2, pp. 250-252, 2000.
[http://dx.doi.org/10.1063/1.126940]
[7]
A. Bykhovski, B. Gelmont, and M. Shur, "The influence of the strain-induced electric field on the charge distribution in GaN-AlN-GaN structure", J. Appl. Phys., vol. 74, no. 11, pp. 6734-6739, 1993.
[http://dx.doi.org/10.1063/1.355070]
[8]
M.A. Khan, J.N. Kuznia, J.M. Van Hove, N. Pan, and J. Carter, "Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-Al x Ga1− x N heterojunctions", Appl. Phys. Lett., vol. 60, no. 24, pp. 3027-3029, 1992.
[http://dx.doi.org/10.1063/1.106798]
[9]
M. Asif Khan, A. Bhattarai, J.N. Kuznia, and D.T. Olson, "High electron mobility transistor based on a GaN-Al x Ga1− x N heterojunction", Appl. Phys. Lett., vol. 63, no. 9, pp. 1214-1215, 1993.
[http://dx.doi.org/10.1063/1.109775]
[10]
Y.F. Wu, B.P. Keller, S. Keller, D. Kapolnek, S.P. Denbaars, and U.K. Mishra, "Measured microwave power performance of Al-GaN/GaN MODFET", IEEE Electron Device Lett., vol. 17, no. 9, pp. 455-457, 1996.
[http://dx.doi.org/10.1109/55.536291]
[11]
M.A. Khan, J.N. Kuznia, M.S. Shur, and Q.C. Chen, "Current/voltage characteristic collapse in Al-GaN/GaN heterostructure insulated gate field effect transistors at high drain bias", Electron. Lett., vol. 30, no. 25, pp. 2175-2176, 1994.
[http://dx.doi.org/10.1049/el:19941461]
[12]
S.C. Binari, K. Ikossi, J.A. Roussos, W. Kruppa, Doewon Park, H.B. Dietrich, D.D. Koleske, A.E. Wickenden, and R.L. Henry, "Trapping effects and microwave power performance in AlGaN/GaN HEMTs", IEEE Trans. Electron Dev., vol. 48, no. 3, pp. 465-471, 2001.
[http://dx.doi.org/10.1109/16.906437]
[13]
Y.F. Wu, and D. Kapolnek, "High Al-content AlGaN/GaN HEMTs on SiC substrates with very high power performance", In International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318), 1999 05-08 December 1999, Washington, DC, USA.
[14]
B.M. Green, K.K. Chu, E.M. Chumbes, J.A. Smart, J.R. Shealy, and L.F. Eastman, "The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs", IEEE Electron Device Lett., vol. 21, no. 6, pp. 268-270, 2000.
[http://dx.doi.org/10.1109/55.843146]
[15]
Y.F. Wu, N. Zhang, J. Xu, M.L. Jian, and L.M. Carthy, "Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same", U.S. Patent, 6586781.
[16]
O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, A.J. Sierakowski, W.J. Schaff, L.F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures", J. Appl. Phys., vol. 87, no. 1, pp. 334-344, 2000.
[http://dx.doi.org/10.1063/1.371866]
[17]
F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides", Phys. Rev., vol. 56, p. R10024, 1997.
[http://dx.doi.org/10.1103/PhysRevB.56.R10024]
[18]
O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L.F. Eastman, "Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures", J. Phys. Condens. Matter, vol. 14, no. 13, pp. 3399-3434, 2002.
[http://dx.doi.org/10.1088/0953-8984/14/13/302]
[19]
O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures", J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, 1999.
[http://dx.doi.org/10.1063/1.369664]
[20]
Y. Cai, Y. Zhou, K.M. Lau, and K.J. Chen, "Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: From depletion mode to enhancement mode", IEEE Trans. Electron Dev., vol. 53, no. 9, pp. 2207-2215, 2006.
[http://dx.doi.org/10.1109/TED.2006.881054]
[21]
T. Ueda, "Recent advances and future prospects on GaN-based power devices", In 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA)18-21 May 2014, Hiroshima, Japan
[http://dx.doi.org/10.1109/IPEC.2014.6869874]
[22]
E.A. Jones, F. Wang, and B. Ozpineci, "Application-based review of GaN HFETs", In 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, 2014, pp. 24-29
13-15 October 2014, Knoxville, TN, USA. [http://dx.doi.org/10.1109/WiPDA.2014.6964617]
[23]
M. Dong, J. Elmes, M. Peper, I. Batarseh, and Z.J. Shen, "Investigation on inherently safe gate drive techniques for normally-on wide bandgap power semiconductor switching devices", In Proceedings of Energy Conversion Congress and Exposition, 20-24 September 2009, San Jose, CA, USA., 2009, pp. 120-125
[http://dx.doi.org/10.1109/ECCE.2009.5316342]
[24]
T. Ishibashi, M. Okamoto, and E. Hiraki, "Resonant gate driver for normally-on GaN high-electron-mobility transistor", In Proceedings of ECCE Asia Downunder, 03-06 June, 2013, Melbourne, VIC, Australia., 2013, pp. 365-371
[http://dx.doi.org/10.1109/ECCE-Asia.2013.6579122]
[25]
W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, "Recessed-gate structure approach toward normally off high-Voltage AlGaN/GaN HEMT for power electronics applications", IEEE Trans. Electron Dev., vol. 53, no. 2, pp. 356-362, 2006.
[http://dx.doi.org/10.1109/TED.2005.862708]
[26]
V. Kumar, A. Kuliev, T. Tanaka, Y. Otoki, and I. Adesida, "High transconductance enhancement-mode AlGaN/GaN HEMTs on SiC substrate", Electron. Lett., vol. 39, no. 24, pp. 1758-1760, 2003.
[http://dx.doi.org/10.1049/el:20031124]
[27]
K.J. Chen, and C. Zhou, "Enhancement-mode AlGaN/GaN HEMT and MIS-HEMT technology", Physica. Status Solidi, vol. 208, no. 2, pp. 434-438, 2011.
[28]
G. Greco, F. Giannazzo, A. Frazzetto, V. Raineri, and F. Roccaforte, "Near-surface processing on AlGaN/GaN heterostructures: A nanoscale electrical and structural characterization", Nanoscale Res. Lett., vol. 6, no. 1, p. 132, 2011.
[http://dx.doi.org/10.1186/1556-276X-6-132] [PMID: 21711655]
[29]
Y. Zhang, M. Sun, S.J. Joglekar, T. Fujishima, and T. Palacios, "Threshold voltage control by gate oxide thickness in fluorinated GaN metal-oxide-semiconductor high-electron-mobility transistors", Appl. Phys. Lett., vol. 103, no. 3, p. 033524, 2013.
[http://dx.doi.org/10.1063/1.4815923]
[30]
A. Lorenz, J. Derluyn, J. Das, K. Cheng, S. Degroote, F. Medjdoub, M. Germain, and G. Borghs, "Influence of thermal anneal steps on the current collapse of fluorine treated enhancement mode SiN/AlGaN/GaN HEMTs", Phys. Status Solidi., C Curr. Top. Solid State Phys., vol. 6, no. S2, pp. S996-S998, 2009.
[http://dx.doi.org/10.1002/pssc.200880838]
[31]
G. Greco, P. Fiorenza, F. Giannazzo, A. Alberti, and F. Roccaforte, "Nanoscale electrical and structural modification induced by rapid thermal oxidation of AlGaN/GaN heterostructures", Nanotechnology, vol. 25, no. 2, p. 025201, 2014.
[http://dx.doi.org/10.1088/0957-4484/25/2/025201] [PMID: 24334374]
[32]
F. Roccaforte, F. Giannazzo, F. Iucolano, C. Bongiorno, and V. Raineri, "Electrical behavior of AlGaN/GaN heterostuctures upon high-temperature selective oxidation", J. Appl. Phys., vol. 106, no. 2, p. 023703, 2009.
[http://dx.doi.org/10.1063/1.3174438]
[33]
M. Tajima, J. Kotani, and T. Hashizume, "Effects of surface oxidation of AlGaN on Dc characteristics of AlGaN/GaN high-electron-mobility transistors", Jpn. J. Appl. Phys., vol. 48, no. 2, p. 020203, 2009.
[http://dx.doi.org/10.1143/JJAP.48.020203]
[34]
L. Li, W. Wang, L. He, J. Zhang, Z. Wu, B. Zhang, and Y. Liu, "Synthesis and characterization of p-type NiO films suitable for normally-off AlGaN/GaN HFETs application", Mater. Sci. Semicond. Process., vol. 67, pp. 141-146, 2017.
[http://dx.doi.org/10.1016/j.mssp.2017.05.027]
[35]
S.J. Huang, C.W. Chou, Y.K. Su, J.H. Lin, H-C. Yu, D-L. Chen, and J-L. Ruan, "Achievement of normally-off AlGaN/GaN high-electron mobility transistor with p-NiOx capping layer by sputtering and post-annealing", Appl. Surf. Sci., vol. 401, pp. 373-377, 2017.
[http://dx.doi.org/10.1016/j.apsusc.2017.01.032]
[36]
N. Kaneko, O. Machida, M. Yanagihara, S. Iwakami, R. Baba, H. Goto, and A. Iwabuchi, "Normally-off AlGaN/GaN HFETs using NiOx gate with recess", In Proceedings of the 21st International Symposium on Power Semiconductor Devices and ICs (ISPSD 2009), 14-18 June 2009, Barcelona, Spain., 2009, pp. 25-28
[http://dx.doi.org/10.1109/ISPSD.2009.5157992]
[37]
P. Fiorenza, G. Greco, F. Giannazzo, F. Iucolano, and F. Roccaforte, "Effects of interface states and near interface traps on the threshold voltage stability of GaN and SiC transistors employing SiO2 as gate dielectric", J. Vac. Sci. Technol., vol. B35, p. 01A101, 2017.
[http://dx.doi.org/10.1116/1.4967306]
[38]
G. Greco, P. Fiorenza, F. Iucolano, A. Severino, F. Giannazzo, and F. Roccaforte, "Conduction mechanisms at interface of AlN/SiN dielectric stacks with AlGaN/GaN heterostructures for normally-off high electron mobility transistors: Correlating device behavior with nanoscale interfaces properties", ACS Appl. Mater. Interfaces, vol. 9, no. 40, pp. 35383-35390, 2017.
[http://dx.doi.org/10.1021/acsami.7b08935] [PMID: 28920438]
[39]
P. Fiorenza, G. Greco, F. Iucolano, A. Patti, and F. Roccaforte, "Channel mobility in GaN hybrid MOS-HEMT Using SiO 2 as gate insulator", IEEE Trans. Electron Dev., vol. 64, no. 7, pp. 2893-2899, 2017.
[http://dx.doi.org/10.1109/TED.2017.2699786]
[40]
L. Efthymiou, G. Longobardi, G. Camuso, T. Chien, M. Chen, and F. Udrea, "On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices", Appl. Phys. Lett., vol. 110, no. 12, p. 123502, 2017.
[http://dx.doi.org/10.1063/1.4978690]
[41]
G. Greco, F. Iucolano, and F. Roccaforte, "Review of technology for normally-off HEMTs with p-GaN gate", Mater. Sci. Semicond. Process., vol. 78, pp. 96-106, 2018.
[http://dx.doi.org/10.1016/j.mssp.2017.09.027]
[42]
X. Hu, G. Simin, J. Yang, M. Asif Khan, R. Gaska, and M.S. Shur, "Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate", Electron. Lett., vol. 36, no. 8, pp. 753-754, 2000.
[http://dx.doi.org/10.1049/el:20000557]
[43]
Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, "Gate injection transistor (GIT)—A Normally-Off AlGaN/GaN power transistor using conductivity modulation", IEEE Trans. Electron Dev., vol. 54, no. 12, pp. 3393-3399, 2007.
[http://dx.doi.org/10.1109/TED.2007.908601]
[44]
H.S. Kim, D.H. Lee, J.W. Lee, T.I. Kim, and G.Y. Yeom, "Effects of plasma conditions on the etch properties of AlGaN", Vacuum, vol. 56, no. 1, pp. 45-49, 2000.
[http://dx.doi.org/10.1016/S0042-207X(99)00156-6]
[45]
C.B. Vartuli, J.D. MacKenzie, J.W. Lee, C.R. Abernathy, S.J. Pearton, and R.J. Shul, "Cl2/Ar and CH4/H2/Ar dry etching of III–V nitrides", J. Appl. Phys., vol. 80, no. 7, pp. 3705-3709, 1996.
[http://dx.doi.org/10.1063/1.363320]
[46]
S.J. Pearton, R.J. Shul, and F. Ren, "A review of dry etching of GaN and related materials", MRS Internet J. Nitride Semicond. Res., vol. 5, no. 1, p. e11, 2000.
[http://dx.doi.org/10.1557/S1092578300000119]
[47]
H. Fukumizu, M. Sekine, M. Hori, K. Kanomaru, and T. Kikuchi, "Atomic layer etching of AlGaN using Cl2 and Ar gas chemistry and UV damage evaluation", J. Vac. Sci. Technol., vol. A37, p. 021002, 2019.
[http://dx.doi.org/10.1116/1.5063795]
[48]
A. Usui, H. Sunakawa, A. Sakai, and A.A. Yamaguchi, "Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy", Jpn. J. Appl. Phys., vol. 36, pp. L899-L992, 1997.
[http://dx.doi.org/10.1143/JJAP.36.L899]
[49]
M. Nagahara, S. Miyoshi, H. Yaguchi, K. Onabe, Y. Shiraki, and R.I. Ryoichi Ito, "Selective growth of cubic GaN in small areas on patterned GaAs(100) substrates by metalorganic vapor phase epitaxy", Jpn. J. Appl. Phys., vol. 33, no. 1S, pp. 694-697, 1994.
[http://dx.doi.org/10.1143/JJAP.33.694]
[50]
O.H. Nam, M.D. Bremser, T.S. Zheleva, and R.F. Davis, "Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy", Appl. Phys. Lett., vol. 71, no. 18, pp. 2638-2640, 1997.
[http://dx.doi.org/10.1063/1.120164]
[51]
Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, "Selective growth of wurtzite GaN and AlxGa1-xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy", J. Cryst. Growth, vol. 144, no. 3-4, pp. 133-140, 1994.
[http://dx.doi.org/10.1016/0022-0248(94)90448-0]
[52]
H. Miyake, A. Motogaito, and K. Hiramatsu, "Effects of reactor pressure on epitaxial lateral overgrowth of gan via low-pressure metalorganic vapor phase epitaxy", Jpn. J. Appl. Phys., vol. 38, no. 9A, p. L1000, 1999.
[http://dx.doi.org/10.1143/JJAP.38.L1000]
[53]
H. Marchand, J.P. Ibbetson, P.T. Fini, X.H. Wu, S. Keller, S.P. DenBaars, J.S. Speck, and U.K. Mishra, "Fast lateral epitaxial overgrowth of gallium nitride by metalorganic chemical vapor deposition using a two-step process", MRS Internet J. Nitride Semicond. Res., vol. 4, no. S1, pp. 453-458, 1999.
[http://dx.doi.org/10.1557/S109257830000288X]
[54]
S. Kitamura, K. Hiramatsu, and S.N.S. Nobuhiko, "Fabrication of GaN hexagonal pyramids on dot-patterned GaN/Sapphire substrates via selective metalorganic vapor phase epitaxy", Jpn. J. Appl. Phys., vol. 34, no. 9B, p. L1184, 1995.
[http://dx.doi.org/10.1143/JJAP.34.L1184]
[55]
Y. Yao, Z. He, F. Yang, Z. Shen, J. Zhang, Y. Ni, J. Li, S. Wang, G. Zhou, J. Zhong, Z. Wu, B. Zhang, J. Ao, Y. Liu, B. Zhang, J. Ao, and Y. Liu, "Normally-off GaN recessed-gate MOSFET fabricated by selective area growth technique", Appl. Phys. Express, vol. 7, no. 1, p. 016502, 2014.
[http://dx.doi.org/10.7567/APEX.7.016502]
[56]
Y. Zheng, F. Yang, L. He, Y. Yao, Z. Shen, G. Zhou, Z. He, Y. Ni, D. Zhou, J. Zhong, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, "Selective area growth: A promising way for recessed gate GaN MOSFET with high quality MOS interface", IEEE Electron Device Lett., vol. 37, no. 9, pp. 1193-1196, 2016.
[http://dx.doi.org/10.1109/LED.2016.2590821]
[57]
S. Heikman, S. Keller, S.P. DenBaars, and U.K. Mishra, "Mass transport regrowth of GaN for ohmic contacts to AlGaN/GaN", Appl. Phys. Lett., vol. 78, no. 19, pp. 2876-2878, 2001.
[http://dx.doi.org/10.1063/1.1369609]
[58]
S. Joglekar, M. Azize, M. Beeler, E. Monroy, and T. Palacios, "Impact of recess etching and surface treatments on ohmic contacts regrown by molecular-beam epitaxy for AlGaN/GaN high electron mobility transistors", Appl. Phys. Lett., vol. 109, no. 4, p. 041602, 2016.
[http://dx.doi.org/10.1063/1.4959831]
[59]
R. Puybaret, G. Patriarche, M.B. Jordan, S. Sundaram, Y. El Gmili, J.P. Salvestrini, P.L. Voss, W.A. de Heer, C. Berger, and A. Ougazzaden, "Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask", Appl. Phys. Lett., vol. 108, no. 10, p. 103105, 2016.
[http://dx.doi.org/10.1063/1.4943205]
[60]
J.W. Yang, A. Lunev, G. Simin, A. Chitnis, M. Shatalov, M.A. Khan, J.E. Van Nostrand, and R. Gaska, "Selective area deposited blue GaN–InGaN multiple-quantum well light emitting diodes over silicon substrates", Appl. Phys. Lett., vol. 76, no. 3, pp. 273-275, 2000.
[http://dx.doi.org/10.1063/1.125745]
[61]
B.J. Baliga, Silicon Carbide Power Devices; World Scientific Publising Co., Pte. Ltd.: Singapore, 2005.
[62]
E.A. Jones, F.F. Wang, and D. Costinett, "Review of commercial GaN power devices and GaN-based converter design challenges", IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 3, pp. 707-719, 2016.
[http://dx.doi.org/10.1109/JESTPE.2016.2582685]
[63]
A. Lidow, J. Strydom, M. de Rooij, and D. Reutsch, GaN Transistors For Efficient Power Conversion., John Wiley & Sons Ltd.: Chichester, UK, 2015.
[64]
X. Huang, Q. Li, Z. Liu, and F.C. Lee, "Analytical loss model of high voltage GaN HEMT in cascode configuration", IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2208-2219, 2014.
[http://dx.doi.org/10.1109/TPEL.2013.2267804]
[65]
D. Veereddy, T. McDonald, J. Ambrus, A. Diy, S. Cardwell, B. Pandya, R. Garg, and M. Imam, "Robustness aspects of 600V GaN-on-Si based power cascoded HFET", In 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 07-09 November 2016, Fayetteville, AR, USA, 2016.
[http://dx.doi.org/10.1109/WiPDA.2016.7799930]
[66]
M. Asif Khan, J.N. Kuznia, D.T. Olson, W.J. Schaff, J.W. Burm, and M.S. Shur, "Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor", Appl. Phys. Lett., vol. 65, no. 9, pp. 1121-1123, 1994.
[http://dx.doi.org/10.1063/1.112116]
[67]
N.Q. Zhang, B. Moran, S.P. DenBaars, U.K. Mishra, X.W. Wang, and T.P. Ma, "Kilovolt AlGaN/GaN HEMTs as switching devices", Phys. Status Solidi, A, vol. 188, no. 1, pp. 213-217, 2001.
[68]
J. Leathersich, E. Arkun, A. Clark, P. Suvarna, J. Marini, R. Dargis, and F.S. Shahedipour-Sandvik, "Deposition of GaN films on crystalline rare earth oxides by MOCVD", J. Cryst. Growth, vol. 399, pp. 49-53, 2014.
[http://dx.doi.org/10.1016/j.jcrysgro.2014.04.015]
[69]
R. Aubry, J.C. Jacquet, M. Oualli, O. Patard, S. Piotrowicz, E. Chartier, N. Michel, L. Trinh Xuan, D. Lancereau, C. Potier, M. Magis, P. Gamarra, C. Lacam, M. Tordjman, O. Jardel, C. Dua, and S.L. Delage, "ICP-CVD SiN passivation for high-power RF InAlGaN/GaN/SiC HEMT", IEEE Electron Device Lett., vol. 37, no. 5, pp. 629-632, 2016.
[http://dx.doi.org/10.1109/LED.2016.2540164]
[70]
T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S.P. DenBaars, J.S. Speck, and U.K. Mishra, "High-power AlGaN/GaN HEMTs for Ka-band applications", IEEE Electron Device Lett., vol. 26, no. 11, pp. 781-783, 2005.
[http://dx.doi.org/10.1109/LED.2005.857701]
[71]
X.Y. Liu, and T.G. Andersson, "Surface roughness of GaN and thin AlGaN layers grown by molecular beam epitaxy", Appl. Surf. Sci., vol. 226, pp. 331-334, 2004.
[http://dx.doi.org/10.1016/j.apsusc.2003.10.043]
[72]
D.S. Katzer, S.C. Binari, D.F. Storm, J.A. Roussos, B.V. Shanabrook, and E.R. Glaser, "MBE growth of AlGaN/GaN HEMTs with high power density", Electron. Lett., vol. 38, no. 25, pp. 1740-1741, 2002.
[http://dx.doi.org/10.1049/el:20021102]
[73]
Y. Cordier, F. Semond, and P. Lorenzini, "MBE growth of high quality AlGaN/GaN HEMTs on resistive Si[111] substrate with RF small signal and power performances", In International Conference on Molecular Beam Epitaxy, 15-20 September 2002, San Francisco, CA, USA., 2002, pp. 99-100
[http://dx.doi.org/10.1109/MBE.2002.1037778]
[74]
S. Ganguly, J. Verma, Z. Hu, H.G. Xing, and D. Jena, "Performance enhancement of InAlN/GaN HEMTs by KOH surface treatment", Appl. Phys. Express, vol. 7, no. 3, p. 034102, 2014.
[http://dx.doi.org/10.7567/APEX.7.034102]
[75]
I. Adesida, "Properties, processing and applications of GaN and related semiconductors", In: J. Edgar, S. Strite, I. Akasaki, H. Amano, C. Wetzel, Eds., EMIS Data Review., vol. 23. INSPEC, 1999.
[76]
S. Majumdar, S. Shaik, S. Das, R. Kumar, A. Bag, A. Chakraborty, M.M. Saptarsi Ghosh, and D. Biswas, "Temperature dependent etching of Gallium Nitride layers grown by PA -MBE", In International Conference on Microwave and Photonics (ICMAP), 11-13 December 2015, Dhanbad, India., 2015, pp. 1-2
[http://dx.doi.org/10.1109/ICMAP.2015.7408773]
[77]
G. Lükens, H. Hahn, H. Kalisch, and A. Vescan, "Self-aligned process for selectively etched p-GaN-Gated AlGaN/GaN-on-Si HFETs", IEEE Trans. Electron Dev., vol. 65, no. 9, pp. 3732-3738, 2018.
[http://dx.doi.org/10.1109/TED.2018.2860634]
[78]
G.H. Jessen, R.C. Fitch, J.K. Gillespie, G. Via, A. Crespo, D. Langley, D.J. Denninghoff, M. Trejo, and E.R. Heller, "Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-Gate devices", IEEE Trans. Electron Dev., vol. 54, no. 10, pp. 2589-2597, 2007.
[http://dx.doi.org/10.1109/TED.2007.904476]
[79]
D. Guerra, R. Akis, F.A. Marino, D.K. Ferry, S.M. Goodnick, and M. Saraniti, "Aspect ratio impact on RF and DC performance of state-of-the-art short-channel GaN and InGaAs HEMTs", IEEE Electron Device Lett., vol. 31, no. 11, pp. 1217-1219, 2010.
[http://dx.doi.org/10.1109/LED.2010.2066954]
[80]
L. Shen, T. Palacios, C. Poblenz, A. Corrion, A. Chakraborty, N. Fichtenbaum, S. Keller, S.P. Denbaars, J.S. Speck, and U.K. Mishra, "Unpassivated high power deeply recessed GaN HEMTs with fluorine-plasma surface treatment", IEEE Electron Device Lett., vol. 27, no. 4, pp. 214-216, 2006.
[http://dx.doi.org/10.1109/LED.2006.871887]
[81]
D. Buttari, A. Chini, A. Chakraborty, L. McCarthy, H. Xing, T. Palacios, L. Shen, S. Keller, and U.K. Mishra, "Selective dry etching of GaN over AlGaN in BCl3/SF6 mixture", In Proceedings, IEEE Lester Eastman Conference on High Performance Devices, vol. 2004, 04-06 August, Troy, NY, USA., 2004, pp. 132-137
[http://dx.doi.org/10.1109/LECHPD.2004.1549684]
[82]
T.J. Anderson, M.J. Tadjer, M.A. Mastro, J.K. Hite, K.D. Hobart, C.R. Eddy, and F.J. Kub, "Characterization of recessed-gate AlGaN/GaN HEMTs as a function of etch depth", J. Electron. Mater., vol. 39, no. 5, pp. 478-481, 2010.
[http://dx.doi.org/10.1007/s11664-010-1111-x]
[83]
J.W. Chung, W.E. Hoke, E.M. Chumbes, and T. Palacios, "AlGaN/GaN HEMT with 300-GHz", IEEE Electron Device Lett., vol. 31, no. 3, pp. 195-197, 2010.
[http://dx.doi.org/10.1109/LED.2009.2038935]
[84]
D.S. Lee, X. Gao, S. Guo, D. Kopp, P. Fay, and T. Palacios, "300-GHz InAlN/GaN HEMTs with InGaN back barrier", IEEE Electron Device Lett., vol. 32, no. 11, pp. 1525-1527, 2011.
[http://dx.doi.org/10.1109/LED.2011.2164613]
[85]
H. Lu, B. Hou, L. Yang, X. Niu, Z. Si, M. Zhang, M. Wu, M. Mi, Q. Zhu, K. Cheng, X. Ma, and Y. Hao, "AlN/GaN/InGaN coupling-channel HEMTs for improved gm and gain linearity", IEEE Trans. Electron Dev., vol. 68, no. 7, pp. 3308-3313, 2021.
[http://dx.doi.org/10.1109/TED.2021.3082104]
[86]
N.K. Subramani, A.K. Sahoo, J.C. Nallatamby, R. Sommet, N. Rolland, F. Medjdoub, and R. Quere, "Characterization of parasitic resistances of AlN/GaN/AlGaN HEMTs through TCAD-based device simulations and on-wafer measurements", IEEE Trans. Microw. Theory Tech., vol. 64, no. 5, pp. 1351-1358, 2016.
[http://dx.doi.org/10.1109/TMTT.2016.2549528]
[87]
M. Higashiwaki, T. Mimura, and T. Matsui, "AlGaN/GaN heterostructure field-effect transistors on 4H-SiC substrates with current-gain cutoff frequency of 190 GHz", Appl. Phys. Express, vol. 1, no. 2, p. 021103, 2008.
[http://dx.doi.org/10.1143/APEX.1.021103]
[88]
P. Cui, M. Jia, H. Chen, G. Lin, J. Zhang, L. Gundlach, J.Q. Xiao, and Y. Zeng, "InAlN/GaN HEMT on Si With fmax = 270 GHz", IEEE Trans. Electron Dev., vol. 68, no. 3, pp. 994-999, 2021.
[http://dx.doi.org/10.1109/TED.2021.3049316]
[89]
D.S. Lee, J.W. Chung, H. Wang, X. Gao, S. Guo, P. Fay, and T. Palacios, "245-GHz InAlN/GaN HEMTs with oxygen plasma treatment", IEEE Electron Device Lett., vol. 32, no. 6, pp. 755-757, 2011.
[http://dx.doi.org/10.1109/LED.2011.2132751]
[90]
F. Lecourt, A. Agboton, N. Ketteniss, H. Behmenburg, N. Defrance, V. Hoel, H. Kalisch, A. Vescan, M. Heuken, and J-C. De Jaeger, "Power performance at 40 GHz on quaternary barrier InAlGaN/GaN HEMT", IEEE Electron Device Lett., vol. 34, no. 8, pp. 978-980, 2013.
[http://dx.doi.org/10.1109/LED.2013.2266123]
[91]
Ronghua Wang, Guowang Li, J. Verma, B. Sensale-Rodriguez, Tian Fang, Jia Guo, Zongyang Hu, O. Laboutin, Yu Cao, W. Johnson, G. Snider, P. Fay, D. Jena, and Huili Xing, "220-GHz quaternary barrier InAlGaN/AlN/GaN HEMTs", IEEE Electron Device Lett., vol. 32, no. 9, pp. 1215-1217, 2011.
[http://dx.doi.org/10.1109/LED.2011.2158288]
[92]
F. Medjdoub, M. Zegaoui, B. Grimbert, N. Rolland, and P.A. Rolland, "Effects of AlGaN back barrier on AlN/GaN-on-silicon high-electron-mobility transistors", Appl. Phys. Express, vol. 4, no. 12, p. 124101, 2011.
[http://dx.doi.org/10.1143/APEX.4.124101]
[93]
X. Liu, H.Y. Wang, H.C. Chiu, Y. Chen, D. Li, C.R. Huang, H.L. Kao, H.C. Kuo, and S.W.H. Chen, "Analysis of the back-barrier effect in AlGaN/GaN high electron mobility transistor on free-standing GaN substrates", J. Alloys Compd., vol. 814, p. 152293, 2020.
[http://dx.doi.org/10.1016/j.jallcom.2019.152293]
[94]
E.B. Treidel, F. Brunner, O. Hilt, E. Cho, J. Wurfl, and G. Trankle, "AlGaN/GaN/GaN:C Back-barrier HFETs with breakdown voltage of over 1 kV and Low RON ×", IEEE Trans. Electron Dev., vol. 57, no. 11, pp. 3050-3058, 2010.
[http://dx.doi.org/10.1109/TED.2010.2069566]
[95]
Jie Liu, Yugang Zhou, Jia Zhu, K.M. Lau, and K.J. Chen, "AlGaN/GaN/InGaN/GaN DH-HEMTs with an InGaN notch for enhanced carrier confinement", IEEE Electron Device Lett., vol. 27, no. 1, pp. 10-12, 2006.
[http://dx.doi.org/10.1109/LED.2005.861027]
[96]
T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S.P. DenBaars, and U.K. Mishra, "AlGaN/GaN high electron mobility transistors with InGaN back-barriers", IEEE Electron Device Lett., vol. 27, no. 1, pp. 13-15, 2006.
[http://dx.doi.org/10.1109/LED.2005.860882]
[97]
G. Simin, X. Hu, A. Tarakji, J. Zhang, A. Koudymov, S. Saygi, J. Yang, A. Khan, M.S. Shur, and R. Gaska, "AlGaN/InGaN/GaN double heterostructure field-effect transistor", Jpn. J. Appl. Phys., vol. 40, no. 11A, pp. L1142-L1144, 2001.
[http://dx.doi.org/10.1143/JJAP.40.L1142]
[98]
W. Xinhua, H. Sen, G. Yingkui, W. Ke, C. Xiaojuan, Z. Haoxiang, and L. Xinyu, "Effect of GaN channel layer thickness on DC and RF performance of GaN HEMTs with composite AlGaN/GaN buffer", IEEE Trans. Electron Dev., vol. 61, no. 5, pp. 1341-1346, 2014.
[http://dx.doi.org/10.1109/TED.2014.2312232]
[99]
A. Malmros, P. Gamarra, M. Thorsell, H. Hjelmgren, C. Lacam, S.L. Delage, H. Zirath, and N. Rorsman, "Impact of channel thickness on the large-signal performance in InAlGaN/AlN/GaN HEMTs with an AlGaN back barrier", IEEE Trans. Electron Dev., vol. 66, no. 1, pp. 364-371, 2019.
[http://dx.doi.org/10.1109/TED.2018.2881319]
[100]
D. Qiao, Z.F. Guan, J. Carlton, S.S. Lau, and G.J. Sullivan, "Low resistance ohmic contacts on AlGaN/GaN structures using implantation and the “advancing” Al/Ti metallization", Appl. Phys. Lett., vol. 74, no. 18, pp. 2652-2654, 1999.
[http://dx.doi.org/10.1063/1.123927]
[101]
Haijiang Yu, L. McCarthy, S. Rajan, S. Keller, S. Denbaars, J. Speck, and U. Mishra, "Ion implanted AlGaN-GaN HEMTs with nonalloyed Ohmic contacts", IEEE Electron Device Lett., vol. 26, no. 5, pp. 283-285, 2005.
[http://dx.doi.org/10.1109/LED.2005.846583]
[102]
K. Asano, Y. Miyoshi, K. Ishikura, Y. Nashimoto, M. Kuzuhara, and M. Mizuta, "Novel high power AlGaAs/GaAs HFET with a field-modulating plate operated at 35V drain voltage", In International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217), 06-09 December 1998, San Francisco, CA, USA, 1998, pp. 59-62
[http://dx.doi.org/10.1109/IEDM.1998.746246]
[103]
J.M. All Abbas, G. Atmaca, P. Narin, E. Kutlu, B. Sarikavak-Lisesivdin, and S.B. Lisesivdin, "A comparative study of AlGaN and InGaN back-barriers in ultrathin-barrier AlN/GaN heterostructures", J. Electron. Mater., vol. 46, no. 8, pp. 5278-5286, 2017.
[http://dx.doi.org/10.1007/s11664-017-5540-7]
[104]
H.T. Kwak, K.W. Jang, H.J. Kim, S.H. Lee, J.W. Lim, and H.S. Kim, "DC characteristics of AlGaN/GaN high-electron mobility transistor with a bottom plate connected to source-bridged field plate structure", J. Nanosci. Nanotechnol., vol. 19, no. 4, pp. 2319-2322, 2019.
[http://dx.doi.org/10.1166/jnn.2019.16004] [PMID: 30486991]
[105]
A. Soni, Ajay, and M. Shrivastava, "Novel drain-connected field plate GaN HEMT designs for improved VBD-RON tradeoff and RF PA performance", IEEE Trans. Electron Dev., vol. 67, no. 4, pp. 1718-1725, 2020.
[http://dx.doi.org/10.1109/TED.2020.2976636]
[106]
S. Karmalkar, and U.K. Mishra, "Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate", IEEE Trans. Electron Dev., vol. 48, no. 8, pp. 1515-1521, 2001.
[http://dx.doi.org/10.1109/16.936500]
[107]
Y. Ando, Y. Okamoto, H. Miyamoto, T. Nakayama, T. Inoue, and M. Kuzuhara, "10-W/mm AlGaN-GaN HFET with a field modulating plate", IEEE Electron Device Lett., vol. 24, no. 5, pp. 289-291, 2003.
[http://dx.doi.org/10.1109/LED.2003.812532]
[108]
A. Wakejima, K. Ota, K. Matsunaga, and M. Kuzuhara, "A GaAs-based field-modulating plate HFET with improved WCDMA peak-output-power characteristics", IEEE Trans. Electron Dev., vol. 50, no. 9, pp. 1983-1987, 2003.
[http://dx.doi.org/10.1109/TED.2003.815577]
[109]
Y. Okamoto, Y. Ando, H. Miyamoto, T. Nakayama, T. Inoue, and M. Kuzuhara, "An 80W AlGaN/GaN heterojunction FET with a field-modulating plate. IEEE MTT-S Int", Symp. Dig., vol. 1, pp. 225-228, 2003.
[http://dx.doi.org/10.1109/MWSYM.2003.1210921]
[110]
Y.F. Wu, A. Saxler, M. Moore, R.P. Smith, S. Sheppard, P.M. Chavarkar, T. Wisleder, U.K. Mishra, and P. Parikh, "30-W/mm GaN HEMTs by field plate optimization", IEEE Electron Device Lett., vol. 25, no. 3, pp. 117-119, 2004.
[http://dx.doi.org/10.1109/LED.2003.822667]
[111]
W. Saito, Y. Kakiuchi, T. Nitta, Y. Saito, T. Noda, H. Fujimoto, A. Yoshioka, T. Ohno, and M. Yamaguchi, "Field-plate structure dependence of current collapse phenomena in high-voltage GaN-HEMTs", IEEE Electron Device Lett., vol. 31, no. 7, pp. 659-661, 2010.
[http://dx.doi.org/10.1109/LED.2010.2048741]
[112]
S. Karmalkar, M.S. Shur, G. Simin, and M.A. Khan, "Field-plate engineering for HFETs", IEEE Trans. Electron Dev., vol. 52, no. 12, pp. 2534-2540, 2005.
[http://dx.doi.org/10.1109/TED.2005.859568]
[113]
H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, and U.K. Mishra, "High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates", IEEE Electron Device Lett., vol. 25, no. 4, pp. 161-163, 2004.
[http://dx.doi.org/10.1109/LED.2004.824845]
[114]
H.T. Kwak, S.B. Chang, H.J. Kim, K.W. Jang, H. Yoon, S.H. Lee, J.W. Lim, and H.S. Kim, "Operational improvement of AlGaN/GaN high electron mobility transistor by an inner field-plate structure", Appl. Sci., vol. 8, no. 6, p. 974, 2018.
[http://dx.doi.org/10.3390/app8060974]
[115]
D. Visalli, M. Van Hove, P. Srivastava, J. Derluyn, J. Das, M. Leys, S. Degroote, K. Cheng, M. Germain, and G. Borghs, "Experimental and simulation study of breakdown voltage enhancement of AlGaN/GaN heterostructures by Si substrate removal", Appl. Phys. Lett., vol. 97, no. 11, p. 113501, 2010.
[http://dx.doi.org/10.1063/1.3488024]
[116]
A. Bezroy, C.R. Lashway, H. Moradisizkoohi, and O.A. Mohammed, "Breakdown voltage improvement and analysis of GaNHEMTs through field plate inclusion and substrate removal", In IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2017, pp. 138-142
[117]
Y. Dora, A. Chakraborty, L. Mccarthy, S. Keller, S.P. Denbaars, and U.K. Mishra, "High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates", IEEE Electron Device Lett., vol. 27, no. 9, pp. 713-715, 2006.
[http://dx.doi.org/10.1109/LED.2006.881020]
[118]
N.Q. Zhang, S. Keller, G. Parish, S. Heikman, S.P. DenBaars, and U.K. Mishra, "High breakdown GaN HEMT with overlapping gate structure", IEEE Electron Device Lett., vol. 21, no. 9, pp. 421-423, 2000.
[http://dx.doi.org/10.1109/55.863096]
[119]
J.W. Lee, A.S. Kuliev, and I. Adesida, "Short-channel AlGaN/GaN field-plated high-electron-mobility transistors for X-band high power operation", Jpn. J. Appl. Phys., vol. 47, no. 3, pp. 1479-1483, 2008.
[http://dx.doi.org/10.1143/JJAP.47.1479]
[120]
G. Pattnaik, and M. Mohapatra, "Effect of field plate on device performance of wide bandgap HEMT", Recent Adv. Electr. Electron. Eng., vol. 16, no. 4, pp. 460-470, 2023.
[http://dx.doi.org/10.2174/2352096516666221205115133]
[121]
M.A. Khan, J.W. Heo, H.S. Kim, and H.C. Park, "Comparison of recessed gate-head structures on normally-off AlGaN/GaN high-electron-mobility transistor performance", J. Nanosci. Nanotechnol., vol. 14, no. 11, pp. 8141-8147, 2014.
[http://dx.doi.org/10.1166/jnn.2014.9897] [PMID: 25958488]
[122]
Y. Okamoto, Y. Ando, T. Nakayama, K. Hataya, H. Miyamoto, T. Inoue, M. Senda, K. Hirata, M. Kosaki, N. Shibata, and M. Kuzuhara, "High-power recessed-gate AlGaN-GaN HFET with a field-modulating plate", IEEE Trans. Electron Dev., vol. 51, no. 12, pp. 2217-2222, 2004.
[http://dx.doi.org/10.1109/TED.2004.838453]
[123]
M.A. Khan, J.W. Heo, Y.J. Kim, H.C. Park, H.M. Park, H.S. Kim, and J.K. Mun, "Effects of a recessed camel-gate head structure on normally-off ALGaN/GaN HEMTs", J. Korean Phys. Soc., vol. 62, no. 5, pp. 787-793, 2013.
[http://dx.doi.org/10.3938/jkps.62.787]
[124]
H.K. Ahn, Z.S. Kim, S.B. Bae, H.C. Kim, D.M. Kang, S.I. Kim, J.M. Lee, B.G. Min, H.S. Yoon, J.W. Lim, Y.H. Kwon, E.S. Nam, H.M. Park, H.S. Kim, and J.H. Lee, "Normally-off dual gate AlGaN/GaN MISFET with selective area-recessed floating gate", Solid-State Electron., vol. 95, pp. 42-45, 2014.
[http://dx.doi.org/10.1016/j.sse.2014.03.005]
[125]
S. Hong, S.R.A. Hassan, J.W. Heo, and H.S. Kim, "DC characteristics of AlGaN/GaN HEMTs using a dual-gate structure", J. Nanosci. Nanotechnol., vol. 15, no. 10, pp. 7467-7471, 2015.
[http://dx.doi.org/10.1166/jnn.2015.11135] [PMID: 26726352]
[126]
D.Y.C. Lie, J.C. Mayeda, and J. Lopez, "Highly efficient 5G linear power amplifiers (PA) design challenges", In 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT)24-27 April 2017, Hsinchu, Taiwan.
[http://dx.doi.org/10.1109/VLSI-DAT.2017.7939653]
[127]
P. Choi, U. Radhakrishna, C.C. Boon, L.S. Peh, and D. Antoniadis, "Linearity enhancement of a fully integrated 6-GHz GaN power amplifier", IEEE Microw. Wirel. Compon. Lett., vol. 27, no. 10, pp. 927-929, 2017.
[http://dx.doi.org/10.1109/LMWC.2017.2746673]
[128]
A. Bag, P. Mukhopadhyay, S. Ghosh, R. Kumar, S.M. Dinara, S. Kabi, A. Chakraborty, and D. Biswas, "Effect of longitudinal electric field and self heating of channel on linearity and gain of Al- GaN/GaN HEMT on Sapphire (0001)", In Proceedings of the 2014 IEEE Students' Technology Symposium, 28 February 2014 - 02 March 2014, Kharagpur, India, 2014, pp. 393-395
[http://dx.doi.org/10.1109/TechSym.2014.6808083]
[129]
Y. Zhao, Y. Xue, F. Qian, and W. Zheng, "Design of a high linearity power amplifier in GaN HEMT technology", In IEEE MTT-S International Wireless Symposium (IWS), 06-10 May 2018,, Chengdu, China, 2018, pp. 1-3
[http://dx.doi.org/10.1109/IEEE-IWS.2018.8400935]
[130]
T. Palacios, S. Rajan, A. Chakraborty, S. Heikman, S. Keller, S.P. DenBaars, and U.K. Mishra, "Influence of the dynamic access resistance in the Linearity of AlGaN/GaN HEMTs", IEEE Trans. Electron Dev., vol. 52, no. 10, pp. 2117-2123, 2005.
[http://dx.doi.org/10.1109/TED.2005.856180]
[131]
J.B. Khurgin, S. Bajaj, and S. Rajan, "Amplified spontaneous emission of phonons as a likely mechanism for density-dependent velocity saturation in GaN transistors", Appl. Phys. Express, vol. 9, no. 9, p. 094101, 2016.
[http://dx.doi.org/10.7567/APEX.9.094101]
[132]
S. Bajaj, Z. Yang, F. Akyol, P.S. Park, Y. Zhang, A.L. Price, S. Krishnamoorthy, D.J. Meyer, and S. Rajan, "Graded AlGaN channel transistors for improved current and power gain linearity", IEEE Trans. Electron Dev., vol. 64, no. 8, pp. 3114-3119, 2017.
[http://dx.doi.org/10.1109/TED.2017.2713784]
[133]
S. Bajaj, O.F. Shoron, P.S. Park, S. Krishnamoorthy, F. Akyol, T.H. Hung, S. Reza, E.M. Chumbes, J. Khurgin, and S. Rajan, "Density-dependent electron transport and precise modeling of GaN high electron mobility transistors", Appl. Phys. Lett., vol. 107, no. 15, p. 153504, 2015.
[http://dx.doi.org/10.1063/1.4933181]
[134]
T. Fang, R. Wang, H. Xing, S. Rajan, and D. Jena, "Effect of optical phonon scattering on the performance of GaN transistors", IEEE Electron Device Lett., vol. 33, no. 5, pp. 709-711, 2012.
[http://dx.doi.org/10.1109/LED.2012.2187169]
[135]
S.P. Kumar, A. Agrawal, R. Chaujar, R.S. Gupta, and M. Gupta, "Device linearity and intermodulation distortion comparison of dual material gate and conventional AlGaN/GaN high electron mobility transistor", Microelectron. Reliab., vol. 51, no. 3, pp. 587-596, 2011.
[http://dx.doi.org/10.1016/j.microrel.2010.09.033]
[136]
S. Joglekar, U. Radhakrishna, D. Piedra, D. Antoniadis, and T. Palacios, "Large signal linearity enhancement of AlGaN/GaN high electron mobility transistors by device-level Vt engineering for transconductance compensation", In 2017 IEEE International Electron Devices Meeting (IEDM)02-06 December 2017, San Francisco, CA, USA
[http://dx.doi.org/10.1109/IEDM.2017.8268457]
[137]
M.G. Ancona, J.P. Calame, D.J. Meyer, S. Rajan, and B.P. Downey, "Compositionally graded III-N HEMTs for improved linearity: A simulation study", IEEE Trans. Electron Dev., vol. 66, no. 5, pp. 2151-2157, 2019.
[http://dx.doi.org/10.1109/TED.2019.2904005]
[138]
T. Palacios, A. Chini, D. Buttari, S. Heikman, A. Chakraborty, S. Keller, S.P. DenBaars, and U.K. Mishra, "Use of double-channel heterostructures to improve the access resistance and linearity in GaN-based HEMTs", IEEE Trans. Electron Dev., vol. 53, no. 3, pp. 562-565, 2006.
[http://dx.doi.org/10.1109/TED.2005.863767]
[139]
S-H. Kim, J.Y. Park, and K.R. Kim, "FinHEMT: FinFET – based high electron mobility transistor with strained silicon channel", In Proccedings of the 15th IEEE International Conference on Nanotechnology, 2015 27-30 July 2015, Rome, Italy, 2015, pp. 27-30
[140]
T-T. Liu, L.K. Zhang, G-R. Zhu, J-J. Zhou, Y-C. Kong, X-X. Yu, and T-S. Chen, "Influence of fin architectures on linearity characteristics of AlGaN/GaN FinFETs", Chin. Phys. B, vol. 27, no. 4, pp. 047307-1, 047307-5, 2018.
[http://dx.doi.org/10.1088/1674-1056/27/4/047307]
[141]
P. Shrestha, M. Guidry, B. Romanczyk, N. Hatui, C. Wurm, A. Krishna, S.S. Pasayat, R.R. Karnaty, S. Keller, J.F. Buckwalter, and U.K. Mishra, "High linearity and high gain performance of n-polar GaN MIS-HEMT at 30 GHz", IEEE Electron Device Lett., vol. 41, no. 5, pp. 681-684, 2020.
[http://dx.doi.org/10.1109/LED.2020.2980841]
[142]
D. Jena, S. Heikman, D. Green, D. Buttari, R. Coffie, H. Xing, S. Keller, S. DenBaars, J.S. Speck, U.K. Mishra, and I. Smorchkova, "Realization of wide electron slabs by polarization bulk doping in graded III–V nitride semiconductor alloys", Appl. Phys. Lett., vol. 81, no. 23, pp. 4395-4397, 2002.
[http://dx.doi.org/10.1063/1.1526161]
[143]
S. Rajan, H. Xing, S. DenBaars, U.K. Mishra, and D. Jena, "AlGaN/GaN polarization-doped field-effect transistor for microwave power applications", Appl. Phys. Lett., vol. 84, no. 9, pp. 1591-1593, 2004.
[http://dx.doi.org/10.1063/1.1652254]
[144]
S.H. Sohel, A. Xie, E. Beam, H. Xue, J.A. Roussos, T. Razzak, S. Bajaj, Y. Cao, D.J. Meyer, W. Lu, and S. Rajan, "X-band power and linearity performance of compositionally graded AlGaN channel transistors", IEEE Electron Device Lett., vol. 39, no. 12, pp. 1884-1887, 2018.
[http://dx.doi.org/10.1109/LED.2018.2874443]
[145]
N. Venkatesan, J-S. Moon, and P. Fay, "Electric field engineering in graded-channel GaN-Based HEMTs", In 2021 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), 05-08 December 2021, Monterey, CA, USA, 2021.
[http://dx.doi.org/10.1109/BCICTS50416.2021.9682456]
[146]
J.S. Moon, B. Grabar, J. Wong, D. Chuong, E. Arkun, D.V. Morales, P. Chen, C. Malek, D. Fanning, N. Venkatesan, and P. Fay, "Power scaling of graded-channel GaN HEMTs with mini-field-plate T-gate and 156 GHz f T", IEEE Electron Device Lett., vol. 42, no. 6, pp. 796-799, 2021.
[http://dx.doi.org/10.1109/LED.2021.3075926]
[147]
P. Sung Park, D.N. Nath, S. Krishnamoorthy, and S. Rajan, "Electron gas dimensionality engineering in AlGaN/GaN high electron mobility transistors using polarization", Appl. Phys. Lett., vol. 100, no. 6, p. 063507, 2012.
[http://dx.doi.org/10.1063/1.3685483]
[148]
S.H. Sohel, A. Xie, E. Beam, H. Xue, T. Razzak, S. Bajaj, Y. Cao, C. Lee, W. Lu, and S. Rajan, "Polarization engineering of AlGaN/GaN HEMT with graded InGaN sub-channel for high-linearity X-band applications", IEEE Electron Device Lett., vol. 40, no. 4, pp. 522-525, 2019.
[http://dx.doi.org/10.1109/LED.2019.2899100]
[149]
J.S. Moon, J. Wong, B. Grabar, M. Antcliffe, P. Chen, E. Arkun, I. Khalaf, A. Corrion, J. Chappell, N. Venkatesan, and P. Fay, "360 GHz f MAX graded-channel AlGaN/GaN HEMTs for mmW low-noise applications", IEEE Electron Device Lett., vol. 41, no. 8, pp. 1173-1176, 2020.
[http://dx.doi.org/10.1109/LED.2020.3005337]
[150]
Y. Fang, Z. Feng, J. Yin, X. Zhou, Y. Wang, G. Gu, X. Song, Y. Lv, C. Li, and S. Cai, "AlGaN/GaN polarization-doped field-effect transistors with graded heterostructure", IEEE Trans. Electron Dev., vol. 61, no. 12, pp. 4084-4089, 2014.
[http://dx.doi.org/10.1109/TED.2014.2364457]
[151]
Y. Zhang, T. Zhang, H. Zhou, Y. Li, S. Xu, W. Bao, J. Zhang, and Y. Hao, "InGaN-channel high-electron-mobility transistor with enhanced linearity and high-temperature performance", Appl. Phys. Express, vol. 11, no. 9, p. 094101, 2018.
[http://dx.doi.org/10.7567/APEX.11.094101]
[152]
J. Yang, S. Cui, T.P. Ma, T.H. Hung, D. Nath, S. Krishnamoorthy, and S. Rajan, "Electron tunneling spectroscopy study of electrically active traps in AlGaN/GaN high electron mobility transistors", Appl. Phys. Lett., vol. 103, no. 22, p. 223507, 2013.
[http://dx.doi.org/10.1063/1.4834698]
[153]
N.K. Subramani, J. Couvidat, A.A. Hajjar, J.C. Nallatamby, D. Floriot, M. Prigent, and R. Queré, "Low-frequency noise characterization in GaN HEMTs: Investigation of deep levels and their physical properties", IEEE Electron Device Lett., vol. 38, no. 8, pp. 1109-1112, 2017.
[http://dx.doi.org/10.1109/LED.2017.2717539]
[154]
M.J. Uren, J. Moreke, and M. Kuball, "Buffer design to minimize current collapse in GaN/AlGaN HFETs", IEEE Trans. Electron Dev., vol. 59, no. 12, pp. 3327-3333, 2012.
[http://dx.doi.org/10.1109/TED.2012.2216535]
[155]
G. Meneghesso, M. Meneghini, A. Tazzoli, N. Ronchi, A. Stocco, A. Chini, and E. Zanoni, "Reliability issues of gallium nitride high electron mobility transistors", Int. J. Microw. Wirel. Technol., vol. 2, no. 1, pp. 39-50, 2010.
[http://dx.doi.org/10.1017/S1759078710000097]
[156]
J. Joh, and J.A. del Alamo, "A current-transient methodology for trap analysis for GaN high electron mobility transistors", IEEE Trans. Electron Dev., vol. 58, no. 1, pp. 132-140, 2011.
[http://dx.doi.org/10.1109/TED.2010.2087339]
[157]
D. Jin, and J.A. del Alamo, "Methodology for the study of dynamic ON-resistance in high-voltage GaN field-effect transistors", IEEE Trans. Electron Dev., vol. 60, no. 10, pp. 3190-3196, 2013.
[http://dx.doi.org/10.1109/TED.2013.2274477]
[158]
A. Jimnez, D. Buttari, D. Jena, R. Coffie, S. Heikman, N.Q. Zhang, L. Shen, E. Calleja, E. Munoz, J. Speck, and U.K. Mishra, "Effect of p-doped overlayer thickness on RF-dispersion in GaN junction FETs", IEEE Electron Device Lett., vol. 23, no. 6, pp. 306-308, 2002.
[http://dx.doi.org/10.1109/LED.2002.1004217]
[159]
R. Coffie, D. Buttari, S. Heikman, S. Keller, A. Chini, L. Shen, and U.K. Mishra, "p-capped GaN-AlGaN-GaN high- electron mobility transistors (HEMTs)", IEEE Electron Device Lett., vol. 23, no. 10, pp. 588-590, 2002.
[160]
G. Meneghesso, M. Meneghini, and E. Zanoni, "Reliability and instabilities in GaN-based HEMTs", In IEEE International Conference on Electron Devices and Solid-State Circuits, 18-20 June 2014, Chengdu, China, 2014, pp. 1-2
[http://dx.doi.org/10.1109/EDSSC.2014.7061275]
[161]
R. Hao, W. Li, K. Fu, G. Yu, L. Song, J. Yuan, J. Li, X. Deng, X. Zhang, Q. Zhou, Y. Fan, W. Shi, Y. Cai, X. Zhang, and B. Zhang, "Breakdown enhancement and current collapse suppression by high-resistivity GaN cap layer in normally-off AlGaN/GaN HEMTs", IEEE Electron Device Lett., vol. 38, no. 11, pp. 1567-1570, 2017.
[http://dx.doi.org/10.1109/LED.2017.2749678]
[162]
J.A. del Alamo, and E.S. Lee, "Stability and reliability of lateral gan power field-effect transistors", IEEE Trans. Electron Dev., vol. 66, no. 11, pp. 4578-4590, 2019.
[http://dx.doi.org/10.1109/TED.2019.2931718]
[163]
M. Meneghini, P. Vanmeerbeek, R. Silvestri, S. Dalcanale, A. Banerjee, D. Bisi, E. Zanoni, G. Meneghesso, and P. Moens, "Temperature-dependent dynamic R ON in GaN-based MIS-HEMTs: Role of surface traps and buffer leakage", IEEE Trans. Electron Dev., vol. 62, no. 3, pp. 782-787, 2015.
[http://dx.doi.org/10.1109/TED.2014.2386391]
[164]
P. McGovern, J. Benedikt, P.J. Tasker, J. Powell, K.P. Hilton, J.L. Glasper, R.S. Balmer, T. Martin, and M.J. Uren, "Analysis of DC - RF dispersion in AlGaN/GaN HFETs using pulsed I-V and time-domain waveform measurements", In IEEE MTT-S International Microwave Symposium Digest, 17-17 June 2005, Long Beach, CA, USA., 2005, pp. 503-509
[http://dx.doi.org/10.1109/MWSYM.2005.1516641]
[165]
N. Sharma, C. Periasamy, N. Chaturvedi, and N. Chaturvedi, "Trapping effects on leakage and current collapse in AlGaN/GaN HEMTs", J. Electron. Mater., vol. 49, no. 10, pp. 5687-5697, 2020.
[http://dx.doi.org/10.1007/s11664-020-08299-0]
[166]
C. Roff, J. Benedikt, P.J. Tasker, D.J. Wallis, K.P. Hilton, J.O. Maclean, D.G. Hayes, M.J. Uren, and T. Martin, "Analysis of DC–RF dispersion in AlGaN/GaN HFETs using RF waveform engineering", IEEE Trans. Electron Dev., vol. 56, no. 1, pp. 13-19, 2009.
[http://dx.doi.org/10.1109/TED.2008.2008674]
[167]
G. Pattnaik, and M. Mohapatra, "Comparison of DC & RF characteristics of AlGaN/GaN HEMT using different surface passivation materials", In 2021 IEEE 2nd International Conference on Applied Electromagnetics, Signal Processing, & Communication (AESPC)26-28 November 2021, Bhubaneswar, India.
[http://dx.doi.org/10.1109/AESPC52704.2021.9708538]
[168]
S. Martin-Horcajo, A. Wang, A. Bosca, M.F. Romero, M.J. Tadjer, A.D. Koehler, T.J. Anderson, and F. Calle, "Trapping phenomena in AlGaN and InAlN barrier HEMTs with different geometries", Semicond. Sci. Technol., vol. 30, no. 3, p. 035015, 2015.
[http://dx.doi.org/10.1088/0268-1242/30/3/035015]
[169]
M. Meneghini, N. Ronchi, A. Stocco, G. Meneghesso, U.K. Mishra, Y. Pei, and E. Zanoni, "Investigation of trapping and hot-electron effects in GaN HEMTs by means of a combined electrooptical method", IEEE Trans. Electron Dev., vol. 58, no. 9, pp. 2996-3003, 2011.
[http://dx.doi.org/10.1109/TED.2011.2160547]
[170]
M. Meneghini, A. Stocco, R. Silvestri, G. Meneghesso, and E. Zanoni, "Degradation of AlGaN/GaN high electron mobility transistors related to hot electrons", Appl. Phys. Lett., vol. 100, no. 23, p. 233508, 2012.
[http://dx.doi.org/10.1063/1.4723848]
[171]
X.D. Wang, W.D. Hu, X.S. Chen, and W. Lu, "The study of self-heating and hot-electron effects for AlGaN/GaN double-channel HEMTs", IEEE Trans. Electron Dev., vol. 59, no. 5, pp. 1393-1401, 2012.
[http://dx.doi.org/10.1109/TED.2012.2188634]
[172]
D. Cheney, E. Douglas, L. Liu, C.F. Lo, B. Gila, F. Ren, and S. Pearton, "Degradation mechanisms for GaN and GaAs high speed transistors", Materials, vol. 5, no. 12, pp. 2498-2520, 2012.
[http://dx.doi.org/10.3390/ma5122498]
[173]
M. Meneghini, G. Meneghesso, and E. Zanoni, "Trapping and degradation mechanisms in GaN-Based HEMTs", In: Gallium Nitride (GaN)., CRC Press, 2015, pp. 327-362.
[174]
K. Kikuchi, M. Nishihara, H. Yamamoto, S. Mizuno, F. Yamaki, and T. Yamamoto, An X-Band 300-Watt class high power GaN HEMT amplifier for radar applications., vol. 81. SEI Technical Review, 2015.
[175]
K. Kikuchi, M. Nishihara, H. Yamamoto, T. Yamamoto, S. Mizuno, F. Yamaki, and S. Sano, "An 8.5 – 10.0 GHz 310 W GaN HEMT for radar applications", In IEEE MTT-S International Microwave Symposium (IMS2014), 01-06 June 2014, Tampa, FL, USA., 2014, pp. 1-4
[http://dx.doi.org/10.1109/MWSYM.2014.6848404]
[176]
H. Noto, H. Maehara, H. Uchida, M. Koyanagi, H. Utsumi, J. Nishihara, H. Otsuka, K. Yamanaka, M. Nakayama, and Y. Hirano, "X- and Ku-band internally matched GaN amplifiers with more than 100W output power", In 42nd European Microwave Conference, 29 October 2012 - 01 November 2012, Amsterdam, Netherlands., 2012, pp. 1075-1078
[http://dx.doi.org/10.23919/EuMC.2012.6459316]
[177]
M. Nishihara, M. Aojima, and N. Miyazawa, "X-Band 300 W high-power GaN HEMT for marine radar systems", SEI Technical Review, vol. 91, pp. 29-32, 2020.
[178]
K. Takagi, S. Takatsuka, Y. Kashiwabara, S. Teramoto, K. Matsushita, H. Sakurai, K. Onodera, H. Kawasaki, Y. Takada, and K. Tsuda, "Ku-band AlGaN/GaN-HEMT with over 30% of PAE", In IEEE MTT-S International Microwave Symposium Digest, 2009, pp. 457-460
[http://dx.doi.org/10.1109/MWSYM.2009.5165732]
[179]
H. Shigematsu, Y. Inoue, A. Akasegawa, M. Yamada, S. Masuda, Y. Kamada, A. Yamada, M. Kanamura, T. Ohki, K. Makiyama, N. Okamoto, K. Imanishi, T. Kikkawa, K. Joshin, and N. Hara, "C-band 340-W and X-band 100-W GaN power amplifiers with over 50-% PAE", IEEE MTT-S International Microwave Symposium Digest, vol. 2009, pp. 1265-1268, 2009.
[http://dx.doi.org/10.1109/MWSYM.2009.5165934]
[180]
M. Kimura, K. Yamauchi, K. Yamanaka, H. Noto, E. Kuwata, H. Otsuka, A. Inoue, Y. Kamo, and M. Miyazaki, "GaN X-band 43% internally-matched FET with 60W output power", In Asia-Pacific Microwave Conference 2008, 16-20 December 2008, Hong Kong, China., 2008.
[http://dx.doi.org/10.1109/APMC.2008.4957911]
[181]
S. Zhong, T. Chen, C. Ren, G. Jiao, C. Chen, K. Shao, and N. Yang, "AlGaN/GaN HEMT with over 110 W Output Power for X-Band", In 2008 European Microwave Integrated Circuit Conference, 27-28 October 2008, Amsterdam, Netherlands, 2008, pp. 91-94
[182]
T. Yamamoto, E. Mitani, K. Inoue, M. Nishi, and S.A. Sano, "A 9.5–10.5GHz 60W AlGaN/GaN HEMT for X-band high power application", In 2007 European Microwave Integrated Circuit Conference, 08-10 October 2007, Munich, Germany, 2007, pp. 173-175
[http://dx.doi.org/10.1109/EMICC.2007.4412676]
[183]
J. Yamagata, M. Sawayanagi, H. Sugawara, and M. Sudoh, "400 W GaN solid-state power amplifier for x-band marine radar systems", IEICE Tech. Rep., vol. 108, no. 118, pp. 63-68, 2008.
[184]
Y.S. Lee, and Y.H. Jeong, "A high-efficiency class-E GaN HEMT power amplifier for WCDMA applications", IEEE Microw. Wirel. Compon. Lett., vol. 17, no. 8, pp. 622-624, 2007.
[http://dx.doi.org/10.1109/LMWC.2007.901803]
[185]
T. Kaneko, K. Shiikuma, and K. Kunihiro, "GaN HEMT high efficiency power amplifiers for 4G/5G mobile communication base stations", In 2014 Asia-Pacific Microwave Conference04-07 November 2014, Sendai, Japan
[186]
N. Kosaka, S. Fujiwara, A. Okamura, K. Chomei, Y. Sasaki, K. Horiguchi, H. Katayama, and A. Inoue, "A high-efficiency and high-gain, plastic packaged GaN HEMT for 3.5-GHz-band LTE base stations", In IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 24-26 August 2016, Taipei, Taiwan, 2016, pp. 1-3
[http://dx.doi.org/10.1109/RFIT.2016.7578168]
[187]
G. Shujian, P. Chen, and C. Ran, "Design of a high-efficiency Doherty GaN power amplifier", In IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 16-19 October 2016, Nanjing, China, 2016, pp. 1-4
[http://dx.doi.org/10.1109/ICUWB.2016.7790558]
[188]
J. Wong, N. Watanabe, and A. Grebennikov, "High-power high-efficiency broadband GaN HEMT Doherty amplifiers for base station applications", In 2018 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), 14-17 January 2018, Anaheim, CA, USA., 2018.
[http://dx.doi.org/10.1109/PAWR.2018.8310055]
[189]
R. Guo, H. Tao, and A. Zhang, "26 GHz Doherty power amplifier and a fully integrated 2×2 PA in 0.15μm GaN HEMT process for heterogeneous integration and 5G", In IEEE MTT-S International Wireless Symposium (IWS), 06-10 May 2018, Chengdu, China., 2018, pp. 1-4
[http://dx.doi.org/10.1109/IEEE-IWS.2018.8401017]
[190]
R. Sun, J. Lai, W. Chen, and B. Zhang, "GaN power integration for high frequency and high efficiency power applications: A review", IEEE Access, vol. 8, pp. 15529-15542, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2967027]
[191]
"Different Types of Wireless Communication with Applications", Available from: https://www.elprocus.com/types-of-wireless-communication-applications/
[192]
D. Maassen, F. Rautschke, T. Huellen, and G. Boeck, "A 12-W GaN-HEMT power amplifier for Ku-band satellite communication", In 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), 09-11 May 2016, Krakow, Poland., 2016, pp. 1-4
[http://dx.doi.org/10.1109/MIKON.2016.7492070]
[193]
S. Sano, K. Ebihara, T. Yamamoto, T. Sato, and N. Miyazawa, "GaN HEMTs for wireless communication", SEI Technical Review, vol. 86, pp. 65-70, 2018.
[194]
A. Fong, J. Srisathapat, C. Chin, F. Telvin, J. Grebliunas, and G. Wu, "Ku- and K-band high-efficiency GaN MMIC HPA chipset for satellite communications", Electron. Lett., vol. 55, no. 7, pp. 393-395, 2019.
[http://dx.doi.org/10.1049/el.2018.7179]
[195]
H. Wu, K.S. Yuk, C. Cui, and G.R. Branner, "High power class F GaN HEMT power amplifier in L band for global positioning systems application", In 2018 IEEE 19th Wireless and Microwave Technology Conference (WAMICON)09-10 April 2018, Sand Key, FL, USA.
[http://dx.doi.org/10.1109/WAMICON.2018.8363920]
[196]
T. Satoh, K. Osawa, and A. Nitta, "GaN HEMT for space applications", In 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), 15-17 October 2018, San Diego, CA, USA, 2018.
[http://dx.doi.org/10.1109/BCICTS.2018.8551070]
[197]
E. Khansalee, N. Puangngernmak, and S. Chalermwisutkul, "A high efficiency VHF GaN HEMT class E power amplifier for public and homeland security applications", In Asia-Pacific Microwave Conference, 07-10 December 2010, Yokohama, Japan., 2010, pp. 437-440
[198]
T. Yamasaki, Y. Kittaka, H. Minamide, K. Yamauchi, S. Miwa, S. Goto, M. Nakayama, M. Kohno, and N.A. Yoshida, "68% efficiency, C-band 100W GaN power amplifier for space applications", In IEEE MTT-S International Microwave Symposium, 23-28 May 2010, Anaheim, CA, USA., 2010, pp. 1384-1387
[http://dx.doi.org/10.1109/MWSYM.2010.5517228]
[199]
K. Inoue, N. Ui, and S. Sano, "High power and high efficiency GaN-HEMT for microwave communication applications", In IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, 12-13 May 2011, Kyoto, Japan, 2011, pp. 267-270
[http://dx.doi.org/10.1109/IMWS.2011.5877127]
[200]
F. Medjdoub, M. Zegaoui, B. Grimbert, D. Ducatteau, N. Rolland, and P.A. Rolland, "First demonstration of high-power GaN-on-silicon transistors at 40 GHz", IEEE Electron Device Lett., vol. 33, no. 8, pp. 1168-1170, 2012.
[http://dx.doi.org/10.1109/LED.2012.2198192]
[201]
J.S. Moon, R. Grabar, D. Brown, I. Alvarado-Rodriguez, D. Wong, A. Schmitz, H. Fung, P. Chen, J-C. Kang, S. Kim, T. Oh, and C. Mcguire, ">70% power-added-efficiency dual-gate, cascode GaN HEMTs without harmonic tuning", IEEE Electron Device Lett., vol. 37, no. 3, pp. 272-275, 2016.
[http://dx.doi.org/10.1109/LED.2016.2520488]
[202]
M. Micovic, "GaN DHFETs having 48% power added efficiency and 57% drain efficiency at V – Band", IEEE Electron Device Letters, Dec., vol. 38, no. 12, pp. 1708-1711, 2017.
[http://dx.doi.org/10.1109/LED.2017.2763940]
[203]
B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, and U.K. Mishra, "Demonstration of constant 8 W/mm Power Density at 10, 30, and 94 GHz in State-of-the-Art Millimeter-Wave N-Polar GaN MISHEMTs", IEEE Trans. Electron Dev., vol. 65, no. 1, pp. 45-50, 2018.
[http://dx.doi.org/10.1109/TED.2017.2770087]
[204]
R. Pecheux, R. Kabouche, E. Okada, M. Zegaoui, and F. Medjdoub, "C-doped AlN/GaN HEMTs for high efficiency mmW applications", In International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMIC), 05-06 July 2018, Brive La Gaillarde, France, 2018, pp. 1-3
[http://dx.doi.org/10.1109/INMMIC.2018.8430021]
[205]
D. Marti, S. Tirelli, A.R. Alt, J. Roberts, and C.R. Bolognesi, "150-GHz cutoff frequencies and 2-W/mm output power at 40 GHz in a millimeter-wave AlGaN/GaN HEMT technology on silicon", IEEE Electron Device Lett., vol. 33, no. 10, pp. 1372-1374, 2012.
[http://dx.doi.org/10.1109/LED.2012.2204855]
[206]
Y. Lu, X. Ma, L. Yang, B. Hou, M. Mi, M. Zhang, J. Zheng, H. Zhang, and Y. Hao, "High RF performance AlGaN/GaN HEMT fabricated by recess-arrayed ohmic contact technology", IEEE Electron Device Lett., vol. 39, no. 6, pp. 811-814, 2018.
[http://dx.doi.org/10.1109/LED.2018.2828860]
[207]
M.R. Irekti, M. Lesecq, N. Defrance, E. Okada, E. Frayssinet, Y. Cordier, J.G. Tartarin, and J.C. De Jaeger, "2 W mm -1 power density of an AlGaN/GaN HEMT grown on free-standing GaN substrate at 40 GHz", Semicond. Sci. Technol., vol. 34, no. 12, p. 12LT01, 2019.
[http://dx.doi.org/10.1088/1361-6641/ab4e74]
[208]
"Inter satellite link v-band solid state power amplifier module (ARTES AT 5C.381 RE-ISSUE OF 1-9719)", Available from: https://artes.esa.int/funding/inter-satellite-link-vband-solid-state-power-amplifier-module-artes-5c381-reissue-19719-0
[209]
I. Kallfass, "Towards the exploratory in-orbit verification of an E/W-band satellite communication link", In 2021 IEEE MTT-S International Wireless Symposium (IWS), 23-26 May 2021, Nanjing, China, 2021, pp. 1-3
[http://dx.doi.org/10.1109/IWS52775.2021.9499586]
[210]
T.K. Woodward, "What to do when there’s no fiber: the DARPA 100Gb/s RF backbone programp", In Optical Fiber Communication Conference 2017, Tu3E 19–23 March 2017, Los Angeles, California United States, 2017.
[http://dx.doi.org/10.1364/OFC.2017.Tu3E.6]
[211]
K. Brown, "Long-range wireless link with fiber-equivalent data rate", In 2017 IEEE MTT-S International Microwave Symposium (IMS), 04-09 June 2017, Honololu, HI, USA, 2017, pp. 809-811
[http://dx.doi.org/10.1109/MWSYM.2017.8058701]
[212]
C.B. Czegledi, "Demonstrating 139 Gbps and 55.6 bps/Hz spectrum efficiency using 8×8 MIMO over a 1.5-km link at 73.5 GHz", In 2020 IEEE/MTT-S International Microwave Symposium (IMS), 04-06 August 2020, Los Angeles, CA, USA, 2020, pp. 539-42
[http://dx.doi.org/10.1109/IMS30576.2020.9223907]
[213]
I. Kallfass, "High system gain E-Band link in a wideband aircraft-to-ground data transmission", In 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), 04-06 November 2019, Tel-Aviv, Israel, 2019.
[http://dx.doi.org/10.1109/COMCAS44984.2019.8958387]
[214]
Z. Zhang, X. Zou, Q. Li, and N. Wei, "Towards 100 Gbps over 100 km: System design and demonstration of E-band millimeter wave communication", Sensors, vol. 22, no. 23, p. 9514, 2022.
[http://dx.doi.org/10.3390/s22239514] [PMID: 36502216]
[215]
P. Neininger, M. Mikulla, P. Döring, M. Dammann, F. Thome, S. Krause, D. Schwantuschke, P. Brückner, C. Friesicke, and R. Quay, "Advances in GaN devices and circuits at higher mm-wave frequencies", e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 4, p. 100177, 2023.
[http://dx.doi.org/10.1016/j.prime.2023.100177]
[216]
"Datasheet of M1603B, by Microwave Systems JSC", Available from: https://www.everythingrf.com/products/microwave-rf-amplifiers/microwave-systems-jsc/567-1423-m1603b
[217]
"Datasheet of IGT9010M50, by Integra Technologies, Inc", Available from: https://www.everythingrf.com/products/rf-transistors/integra-technologies-inc/659-396-igt9010m50
[218]
"Datasheet of CMPA0060025F1, by Wolfspeed, (Cree Company)", Available from: https://assets.wolfspeed.com/uploads/2020/12/CMPA0060025F1.pdf
[219]
"Datasheet of MGFK48G3745A, by Mitsubishi Electric US, Inc", Available from: https://www.mitsubishielectric.com/semiconductors/content/product/highfrequency/gan/internally/mgfk48g3745a.pdf
[220]
"Datasheet of TGI5254-200P, by Toshiba America, Inc", Available from: https://toshiba.semicon-storage.com/us/company/news/2013/06/mwrf_13_679.html
[221]
"Datasheet of ADPA1106, by Analog Devices, Inc", Available from: https://www.analog.com/en/products/adpa1106.html
[222]
L.C. Clark Jr, and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery", Ann. N. Y. Acad. Sci., vol. 102, no. 1, pp. 29-45, 1962.
[http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x] [PMID: 14021529]
[223]
M.S.Z. Abidin, A.M. Hashim, M.E. Sharifabad, S.F.A. Rahman, and T. Sadoh, "Open-gated pH sensor fabricated on an undoped-AlGaN/GaN HEMT structure", Sensors, vol. 11, no. 3, pp. 3067-3077, 2011.
[http://dx.doi.org/10.3390/s110303067] [PMID: 22163786]
[224]
K.T. Upadhyay, and M.K. Chattopadhyay, "A composition-dependent unified analytical model for quaternary InAlGaN/GaN HEMTs for pH sensing", J. Electron. Mater., vol. 50, no. 6, pp. 3392-3405, 2021.
[http://dx.doi.org/10.1007/s11664-021-08836-5]
[225]
A.M. Khalifa, A.H. Saleem, H.Z. Refaat, and N.M. Ahmed, "Extended gate field effect transistor-based N-type Gallium Nitride as a pH sensor", J. Electron. Mater., vol. 50, pp. 7071-7077, 2021.
[http://dx.doi.org/10.1007/s11664-021-09210-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy