Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Ebselen: A Review on its Synthesis, Derivatives, Anticancer Efficacy and Utility in Combating SARS-COV-2

Author(s): Farak Ali, Shahnaz Alom, Sheikh Rezzak Ali, Biswanarayan Kondoli, Prativa Sadhu, Chinmoyee Borah, Bibhuti Bushan Kakoti, Surajit Kumar Ghosh, Anshul Shakya, Abdul Baquee Ahmed, Udaya Pratap Singh and Hans Raj Bhat*

Volume 24, Issue 12, 2024

Published on: 14 September, 2023

Page: [1203 - 1225] Pages: 23

DOI: 10.2174/1389557523666230914103339

Price: $65

Abstract

Ebselen is a selenoorganic chiral compound with antioxidant properties comparable to glutathione peroxidase. It is also known as 2-phenyl-1,2-benzisoselenazol-3(2H)-one. In studies examining its numerous pharmacological activities, including antioxidant, anticancer, antiviral, and anti- Alzheimer’s, ebselen has demonstrated promising results. This review's primary objective was to emphasize the numerous synthesis pathways of ebselen and their efficacy in fighting cancer. The data were collected from multiple sources, including Scopus, PubMed, Google Scholar, Web of Science, and Publons. The starting reagents for the synthesis of ebselen are 2-aminobenzoic acid and N-phenyl benzamide. It was discovered that ebselen has the ability to initiate apoptosis in malignant cells and prevent the formation of new cancer cells by scavenging free radicals. In addition, ebselen increases tumor cell susceptibility to apoptosis by inhibiting TNF-α mediated NF-kB activation. Ebselen can inhibit both doxorubicin and daunorubicin-induced cardiotoxicity. Allopurinol and ebselen administered orally can be used to suppress renal ototoxicity and nephrotoxicity. Due to excessive administration, diclofenac can induce malignancy of the gastrointestinal tract, which ebselen can effectively suppress. Recent research has demonstrated ebselen to inhibit viral function by binding to cysteinecontaining catalytic domains of various viral proteases. It was discovered that ebselen could inhibit the catalytic dyad function of Mpro by forming an irreversible covalent bond between Se and Cys145, thereby altering protease function and inhibiting SARS-CoV-2. Ebselen may also inhibit the activation of endosomal NADPH oxidase of vascular endothelial cells, which is believed to be required for thrombotic complications in COVID-19. In this review, we have included various studies conducted on the anticancer effect of ebselen as well as its inhibition of SARS-CoV-2.

« Previous
Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Organization, W.H. Cancer Today; International Agency for Research on Cancer, 2020.
[3]
Dandona, L.; Dandona, R.; Kumar, G.A.; Shukla, D.K.; Paul, V.K.; Balakrishnan, K.; Prabhakaran, D.; Tandon, N.; Salvi, S.; Dash, A.P.; Nandakumar, A.; Patel, V.; Agarwal, S.K.; Gupta, P.C.; Dhaliwal, R.S.; Mathur, P.; Laxmaiah, A.; Dhillon, P.K.; Dey, S.; Mathur, M.R.; Afshin, A.; Fitzmaurice, C.; Gakidou, E.; Gething, P.; Hay, S.I.; Kassebaum, N.J.; Kyu, H.; Lim, S.S.; Naghavi, M.; Roth, G.A.; Stanaway, J.D.; Whiteford, H.; Chadha, V.K.; Khaparde, S.D.; Rao, R.; Rade, K.; Dewan, P.; Furtado, M.; Dutta, E.; Varghese, C.M.; Mehrotra, R.; Jambulingam, P.; Kaur, T.; Sharma, M.; Singh, S.; Arora, R.; Rasaily, R.; Anjana, R.M.; Mohan, V.; Agrawal, A.; Chopra, A.; Mathew, A.J.; Bhardwaj, D.; Muraleedharan, P.; Mutreja, P.; Bienhoff, K.; Glenn, S.; Abdulkader, R.S.; Aggarwal, A.N.; Aggarwal, R.; Albert, S.; Ambekar, A.; Arora, M.; Bachani, D.; Bavdekar, A.; Beig, G.; Bhansali, A.; Bhargava, A.; Bhatia, E.; Camara, B.; Christopher, D.J.; Das, S.K.; Dave, P.V.; Dey, S.; Ghoshal, A.G.; Gopalakrishnan, N.; Guleria, R.; Gupta, R.; Gupta, S.S.; Gupta, T.; Gupte, M.D.; Gururaj, G.; Harikrishnan, S.; Iyer, V.; Jain, S.K.; Jeemon, P.; Joshua, V.; Kant, R.; Kar, A.; Kataki, A.C.; Katoch, K.; Khanna, T.; Khera, A.; Kinra, S.; Koul, P.A.; Krishnan, A.; Kumar, A.; Kumar, R.K.; Kumar, R.; Kurpad, A.; Ladusingh, L.; Lodha, R.; Mahesh, P.A.; Malhotra, R.; Mathai, M.; Mavalankar, D.; Mohan, B.V.M.; Mukhopadhyay, S.; Murhekar, M.; Murthy, G.V.S.; Nair, S.; Nair, S.A.; Nanda, L.; Nongmaithem, R.S.; Oommen, A.M.; Pandian, J.D.; Pandya, S.; Parameswaran, S.; Pati, S.; Prasad, K.; Prasad, N.; Purwar, M.; Rahim, A.; Raju, S.; Ramji, S.; Rangaswamy, T.; Rath, G.K.; Roy, A.; Sabde, Y.; Sachdeva, K.S.; Sadhu, H.; Sagar, R.; Sankar, M.J.; Sharma, R.; Shet, A.; Shirude, S.; Shukla, R.; Shukla, S.R.; Singh, G.; Singh, N.P.; Singh, V.; Sinha, A.; Sinha, D.N.; Srivastava, R.K.; Srividya, A.; Suri, V.; Swaminathan, R.; Sylaja, P.N.; Tandale, B.; Thakur, J.S.; Thankappan, K.R.; Thomas, N.; Tripathy, S.; Varghese, M.; Varughese, S.; Venkatesh, S.; Venugopal, K.; Vijayakumar, L.; Xavier, D.; Yajnik, C.S.; Zachariah, G.; Zodpey, S.; Rao, J.V.R.P.; Vos, T.; Reddy, K.S.; Murray, C.J.L.; Swaminathan, S. Swaminathan, S. Nations within a nation: Variations in epidemiological transition across the states of India, 1990–2016 in the global burden of disease study. Lancet, 2017, 390(10111), 2437-2460.
[http://dx.doi.org/10.1016/S0140-6736(17)32804-0] [PMID: 29150201]
[4]
Yabroff, K.R.; Wu, X.C.; Negoita, S.; Stevens, J.; Coyle, L.; Zhao, J.; Mumphrey, B.J.; Jemal, A.; Ward, K.C. Association of the COVID-19 pandemic with patterns of statewide cancer services. J. Natl. Cancer Inst., 2022, 114(6), 907-909.
[http://dx.doi.org/10.1093/jnci/djab122] [PMID: 34181001]
[5]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[6]
Office of the Registrar General & Census Commissioner I (ORGI). Annual Report on MCCD-2020 2022; , 2022. Available From: https://censusindia.gov.in/nada/index.php/catalog/42681 (accessed October 22, 2022)
[7]
Ali, F.; Alom, S.; Shakya, A.; Ghosh, S.K.; Singh, U.P.; Bhat, H.R. Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2. Arch. Pharm., 2022, 355(5), 2100360.
[http://dx.doi.org/10.1002/ardp.202100360] [PMID: 35244237]
[8]
Rodrigues, R.; Duarte, D.; Vale, N. Drug repurposing in cancer therapy: Influence of patient’s genetic background in breast cancer treatment. Int. J. Mol. Sci., 2022, 23(8), 4280.
[http://dx.doi.org/10.3390/ijms23084280] [PMID: 35457144]
[9]
Rodrigues, L.; Bento Cunha, R.; Vassilevskaia, T.; Viveiros, M.; Cunha, C. Drug repurposing for COVID-19: A review and a novel strategy to identify new targets and potential drug candidates. Molecules, 2022, 27(9), 2723.
[http://dx.doi.org/10.3390/molecules27092723] [PMID: 35566073]
[10]
Sakurai, T.; Kanayama, M.; Shibata, T.; Itoh, K.; Kobayashi, A.; Yamamoto, M.; Uchida, K. Ebselen, a seleno-organic antioxidant, as an electrophile. Chem. Res. Toxicol., 2006, 19(9), 1196-1204.
[http://dx.doi.org/10.1021/tx0601105] [PMID: 16978024]
[11]
Santi, C.; Scimmi, C.; Sancineto, L. Ebselen and analogues: Pharmacological properties and synthetic strategies for their preparation. Molecules, 2021, 26(14), 4230.
[http://dx.doi.org/10.3390/molecules26144230] [PMID: 34299505]
[12]
Ullrich, V.; Weber, P.; Meisch, F.; von Appen, F. Ebselen-binding equilibria between plasma and target proteins. Biochem. Pharmacol., 1996, 52(1), 15-19.
[http://dx.doi.org/10.1016/0006-2952(96)00109-8] [PMID: 8678900]
[13]
Zhao, R.; Masayasu, H.; Holmgren, A. Ebselen: A substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant. Proc. Natl. Acad. Sci. USA, 2002, 99(13), 8579-8584.
[http://dx.doi.org/10.1073/pnas.122061399] [PMID: 12070343]
[14]
Antony, S.; Bayse, C.A. Modeling the mechanism of the glutathione peroxidase mimic ebselen. Inorg. Chem., 2011, 50(23), 12075-12084.
[http://dx.doi.org/10.1021/ic201603v] [PMID: 22059718]
[15]
Sies, H.; Sharov, V.S.; Klotz, L.O.; Briviba, K. Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J. Biol. Chem., 1997, 272(44), 27812-27817.
[http://dx.doi.org/10.1074/jbc.272.44.27812] [PMID: 9346926]
[16]
Zhao, R.; Holmgren, A. A novel antioxidant mechanism of ebselen involving ebselen diselenide, a substrate of mammalian thioredoxin and thioredoxin reductase. J. Biol. Chem., 2002, 277(42), 39456-39462.
[http://dx.doi.org/10.1074/jbc.M206452200] [PMID: 12177067]
[17]
Batna, A.; Fuchs, C.; Spiteller, G. Lipid peroxidation in presence of ebselen. Chem. Phys. Lipids, 1997, 87(2), 149-158.
[http://dx.doi.org/10.1016/S0009-3084(97)00037-6] [PMID: 9275309]
[18]
Chan, P.H. Role of oxidants in ischemic brain damage. Stroke, 1996, 27(6), 1124-1129.
[http://dx.doi.org/10.1161/01.STR.27.6.1124] [PMID: 8650725]
[19]
Müller, A.; Cadenas, E.; Graf, P.; Sies, H. A novel biologically active seleno-organic compound—1. Biochem. Pharmacol., 1984, 33(20), 3235-3239.
[http://dx.doi.org/10.1016/0006-2952(84)90083-2] [PMID: 6487370]
[20]
Sies, H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic. Biol. Med., 1993, 14(3), 313-323.
[http://dx.doi.org/10.1016/0891-5849(93)90028-S] [PMID: 8458589]
[21]
Maiorino, M.; Roveri, A.; Ursini, F. Antioxidant effect of ebselen (PZ 51): Peroxidase mimetic activity on phospholipid and cholesterol hydroperoxides vs free radical scavenger activity. Arch. Biochem. Biophys., 1992, 295(2), 404-409.
[http://dx.doi.org/10.1016/0003-9861(92)90534-4] [PMID: 1586168]
[22]
Yamaguchi, T.; Sano, K.; Takakura, K.; Saito, I.; Shinohara, Y.; Asano, T.; Yasuhara, H. Ebselen in acute ischemic stroke: A placebo-controlled, double-blind clinical trial. Stroke, 1998, 29(1), 12-17.
[http://dx.doi.org/10.1161/01.STR.29.1.12] [PMID: 9445321]
[23]
Ogawa, A.; Yoshimoto, T.; Kikuchi, H.; Sano, K.; Saito, I.; Yamaguchi, T.; Yasuhara, H. for the Ebselen Study Group, Ebselen in acute middle cerebral artery occlusion: A placebo-controlled, double-blind clinical trial Cerebrovasc. Dis., 1999, 9(2), 112-118.
[http://dx.doi.org/10.1159/000015908] [PMID: 9973655]
[24]
Saito, I.; Asano, T.; Sano, K.; Takakura, K.; Abe, H.; Yoshimoto, T.; Kikuchi, H.; Ohta, T.; Ishibashi, S. Neuroprotective effect of an antioxidant, ebselen, in patients with delayed neurological deficits after aneurysmal subarachnoid hemorrhage. Neurosurgery, 1998, 42(2), 269-277.
[http://dx.doi.org/10.1097/00006123-199802000-00038] [PMID: 9482177]
[25]
Chew, P.; Yuen, D.Y.C.; Stefanovic, N.; Pete, J.; Coughlan, M.T.; Jandeleit-Dahm, K.A.; Thomas, M.C.; Rosenfeldt, F.; Cooper, M.E.; Haan, J.B. Antiatherosclerotic and renoprotective effects of ebselen in the diabetic apolipoprotein E/GPx1-double knockout mouse. Diabetes, 2010, 59(12), 3198-3207.
[http://dx.doi.org/10.2337/db10-0195] [PMID: 20823099]
[26]
Schewe, T. Molecular actions of Ebselen—an antiinflammatory antioxidant. Gen. Pharmacol., 1995, 26(6), 1153-1169.
[http://dx.doi.org/10.1016/0306-3623(95)00003-J] [PMID: 7590103]
[27]
Lindenblatt, N.; Braun, B.; Menger, M.D.; Klar, E.; Vollmar, B. C-peptide exerts antithrombotic effects that are repressed by insulin in normal and diabetic mice. Diabetologia, 2006, 49(4), 792-800.
[http://dx.doi.org/10.1007/s00125-006-0152-4] [PMID: 16496122]
[28]
Kasraee, B.; Nikolic, D.S.; Salomon, D.; Carraux, P.; Fontao, L.; Piguet, V.; Omrani, G.R.; Sorg, O.; Saurat, J.H. Ebselen is a new skin depigmenting agent that inhibits melanin biosynthesis and melanosomal transfer. Exp. Dermatol., 2012, 21(1), 19-24.
[http://dx.doi.org/10.1111/j.1600-0625.2011.01394.x] [PMID: 22082249]
[29]
Morin, D.; Zini, R.; Ligeret, H.; Neckameyer, W.; Labidalle, S.; Tillement, J.P. Dual effect of ebselen on mitochondrial permeability transition. Biochem. Pharmacol., 2003, 65(10), 1643-1651.
[http://dx.doi.org/10.1016/S0006-2952(03)00114-X] [PMID: 12754100]
[30]
Sies, H.; de Groot, H. Role of reactive oxygen species in cell toxicity. Toxicol. Lett., 1992, 64-65(Spec No), 547-551.
[http://dx.doi.org/10.1016/0378-4274(92)90230-H] [PMID: 1335181]
[31]
Hiroshi Masumoto, ; Kissner, R.; Koppenol, W.H.; Sies, H. Kinetic study of the reaction of ebselen with peroxynitrite. FEBS Lett., 1996, 398(2-3), 179-182.
[http://dx.doi.org/10.1016/S0014-5793(96)01237-9] [PMID: 8977102]
[32]
Briviba, K.; Roussyn, I.; Sharov, V.S.; Sies, H. Attenuation of oxidation and nitration reactions of peroxynitrite by selenomethionine, selenocystine and ebselen. Biochem. J., 1996, 319(1), 13-15.
[http://dx.doi.org/10.1042/bj3190013] [PMID: 8870642]
[33]
Xie, Y.; Liu, Q.; Zheng, L.; Wang, B.; Qu, X.; Ni, J.; Zhang, Y.; Du, X. Se-Methylselenocysteine ameliorates neuropathology and cognitive deficits by attenuating oxidative stress and metal dyshomeostasis in Alzheimer model mice. Mol. Nutr. Food Res., 2018, 62(12), 1800107.
[http://dx.doi.org/10.1002/mnfr.201800107] [PMID: 29688618]
[34]
Zhang, Z.H.; Wu, Q.Y.; Zheng, R.; Chen, C.; Chen, Y.; Liu, Q.; Hoffmann, P.R.; Ni, J.Z.; Song, G.L. Selenomethionine mitigates cognitive decline by targeting both tau hyperphosphorylation and autophagic clearance in an Alzheimer’s disease mouse model. J. Neurosci., 2017, 37(9), 2449-2462.
[http://dx.doi.org/10.1523/JNEUROSCI.3229-16.2017] [PMID: 28137967]
[35]
Zhang, Z.H.; Wu, Q.Y.; Chen, C.; Zheng, R.; Chen, Y.; Liu, Q.; Ni, J.Z.; Song, G.L. Selenomethionine attenuates the amyloid-β level by both inhibiting amyloid-β production and modulating autophagy in neuron-2a/AβPPswe cells. J. Alzheimers Dis., 2017, 59(2), 591-602.
[http://dx.doi.org/10.3233/JAD-170216] [PMID: 28671121]
[36]
Song, G.; Zhang, Z.; Wen, L.; Chen, C.; Shi, Q.; Zhang, Y.; Ni, J.; Liu, Q. Selenomethionine ameliorates cognitive decline, reduces tau hyperphosphorylation, and reverses synaptic deficit in the triple transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2014, 41(1), 85-99.
[http://dx.doi.org/10.3233/JAD-131805] [PMID: 24577479]
[37]
Li, X.; Shi, Q.; Xu, H.; Xiong, Y.; Wang, C.; Le, L.; Lian, J.; Wu, G.; Peng, F.; Liu, Q.; Du, X. Ebselen interferes with alzheimer’s disease by regulating mitochondrial function. Antioxidants, 2022, 11(7), 1350.
[http://dx.doi.org/10.3390/antiox11071350] [PMID: 35883841]
[38]
Azad, G.K.; Tomar, R.S. Ebselen, a promising antioxidant drug: Mechanisms of action and targets of biological pathways. Mol. Biol. Rep., 2014, 41(8), 4865-4879.
[http://dx.doi.org/10.1007/s11033-014-3417-x] [PMID: 24867080]
[39]
Noguchi, N. Ebselen, a useful tool for understanding cellular redox biology and a promising drug candidate for use in human diseases. Arch. Biochem. Biophys., 2016, 595, 109-112.
[http://dx.doi.org/10.1016/j.abb.2015.10.024] [PMID: 27095225]
[40]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[41]
Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17), 127377.
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[42]
Menéndez, C.A.; Byléhn, F.; Perez-Lemus, G.R.; Alvarado, W.; de Pablo, J.J. Molecular characterization of ebselen binding activity to SARS-CoV-2 main protease. Sci. Adv., 2020, 6(37), eabd0345.
[http://dx.doi.org/10.1126/sciadv.abd0345] [PMID: 32917717]
[43]
Amporndanai, K.; Meng, X.; Shang, W.; Jin, Z.; Rogers, M.; Zhao, Y.; Rao, Z.; Liu, Z.J.; Yang, H.; Zhang, L.; O’Neill, P.M.; Samar Hasnain, S. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nat. Commun., 2021, 12(1), 3061.
[http://dx.doi.org/10.1038/s41467-021-23313-7] [PMID: 34031399]
[44]
Begini, F.; Krasowska, D.; Jasiak, A.; Drabowicz, J.; Santi, C.; Sancineto, L. Continuous flow synthesis of 2,2′-diselenobis(benzoic acid) and derivatives. React. Chem. Eng., 2020, 5(4), 641-644.
[http://dx.doi.org/10.1039/D0RE00012D]
[45]
Krasowska, D.; Begini, F.; Santi, C.; Mangiavacchi, F.; Drabowicz, J.; Sancineto, L. Ultrasound-assisted synthesis of alkali metals diselenides (M2Se2) and their application for the gram-scale preparation of 2,2′-diselenobis(benzoic acid). ARKIVOC, 2019, 2019(2), 24-37.
[http://dx.doi.org/10.24820/ark.5550190.p010.981]
[46]
Bartolini, D.; Commodi, J.; Piroddi, M.; Incipini, L.; Sancineto, L.; Santi, C.; Galli, F. Glutathione S-transferase pi expression regulates the Nrf2-dependent response to hormetic diselenides. Free Radic. Biol. Med., 2015, 88(Pt B), 466-480.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.06.039] [PMID: 26151571]
[47]
Engman, L.; Hallberg, A. Expedient synthesis of ebselen and related compounds. J. Org. Chem., 1989, 54(12), 2964-2966.
[http://dx.doi.org/10.1021/jo00273a035]
[48]
Chang, T.C.; Huang, M.L.; Hsu, W.L.; Hwang, J.M.; Hsu, L.Y. Synthesis and biological evaluation of ebselen and its acyclic derivatives. Chem. Pharm. Bull., 2003, 51(12), 1413-1416.
[http://dx.doi.org/10.1248/cpb.51.1413] [PMID: 14646319]
[49]
Zade, S.S.; Panda, S.; Singh, H.B.; Wolmershäuser, G. Synthesis of diaryl selenides using the in situ reagent SeCl2. Tetrahedron Lett., 2005, 46(4), 665-669.
[http://dx.doi.org/10.1016/j.tetlet.2004.11.125]
[50]
Zade, S.S.; Panda, S.; Tripathi, S.K.; Singh, H.B.; Wolmershäuser, G. Convenient synthesis, characterization and GPx-like catalytic activity of novel ebselen derivatives. Eur. J. Org. Chem., 2004, 2004(18), 3857-3864.
[http://dx.doi.org/10.1002/ejoc.200400326]
[51]
Balkrishna, S.J.; Bhakuni, B.S.; Chopra, D.; Kumar, S. Cu-catalyzed efficient synthetic methodology for ebselen and related Se-N heterocycles. Org. Lett., 2010, 12(23), 5394-5397.
[http://dx.doi.org/10.1021/ol102027j] [PMID: 21053969]
[52]
Balkrishna, S.J.; Kumar, S.; Azad, G.K.; Bhakuni, B.S.; Panini, P.; Ahalawat, N.; Tomar, R.S.; Detty, M.R.; Kumar, S. An ebselen like catalyst with enhanced GPx activity via a selenol intermediate. Org. Biomol. Chem., 2014, 12(8), 1215-1219.
[http://dx.doi.org/10.1039/C4OB00027G] [PMID: 24448734]
[53]
Fong, M.C.; Schiesser, C.H. Intramolecular homolytic substitution with amidyl radicals: A free-radical synthesis of ebselen and related analogues. J. Org. Chem., 1997, 62(10), 3103-3108.
[http://dx.doi.org/10.1021/jo970019t] [PMID: 11671692]
[54]
Pacuła, A.J.; Kaczor, K.B.; Antosiewicz, J.; Janecka, A.; Długosz, A.; Janecki, T.; Wojtczak, A.; Ścianowski, J. New chiral ebselen analogues with antioxidant and cytotoxic potential. Molecules, 2017, 22(3), 492.
[http://dx.doi.org/10.3390/molecules22030492] [PMID: 28335518]
[55]
Sun, L.Y.; Chen, C.; Su, J.; Li, J.Q.; Jiang, Z.; Gao, H.; Chigan, J.Z.; Ding, H.H.; Zhai, L.; Yang, K.W. Ebsulfur and Ebselen as highly potent scaffolds for the development of potential SARS-CoV-2 antivirals. Bioorg. Chem., 2021, 112, 104889.
[http://dx.doi.org/10.1016/j.bioorg.2021.104889] [PMID: 33915460]
[56]
Gustafsson, T.N.; Osman, H.; Werngren, J.; Hoffner, S.; Engman, L.; Holmgren, A. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis. Biochim. Biophys. Acta, Gen. Subj., 2016, 1860(6), 1265-1271.
[http://dx.doi.org/10.1016/j.bbagen.2016.03.013] [PMID: 26971857]
[57]
Martin, D.W.; Schurr, M.J.; Mudd, M.H.; Govan, J.R.; Holloway, B.W.; Deretic, V. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl. Acad. Sci. USA, 1993, 90(18), 8377-8381.
[http://dx.doi.org/10.1073/pnas.90.18.8377] [PMID: 8378309]
[58]
Kim, S.K.; Ngo, H.X.; Dennis, E.K.; Thamban Chandrika, N.; DeShong, P.; Garneau-Tsodikova, S.; Lee, V.T. Inhibition of Pseudomonas aeruginosa alginate synthesis by ebselen oxide and its analogues. ACS Infect. Dis., 2021, 7(6), 1713-1726.
[http://dx.doi.org/10.1021/acsinfecdis.1c00045] [PMID: 33871968]
[59]
Favrot, L.; Grzegorzewicz, A.E.; Lajiness, D.H.; Marvin, R.K.; Boucau, J.; Isailovic, D.; Jackson, M.; Ronning, D.R. Mechanism of inhibition of Mycobacterium tuberculosis antigen 85 by ebselen. Nat. Commun., 2013, 4(1), 2748.
[http://dx.doi.org/10.1038/ncomms3748] [PMID: 24193546]
[60]
Goins, C.M.; Dajnowicz, S.; Thanna, S.; Sucheck, S.J.; Parks, J.M.; Ronning, D.R. Exploring covalent allosteric inhibition of antigen 85C from Mycobacterium tuberculosis by ebselen derivatives. ACS Infect. Dis., 2017, 3(5), 378-387.
[http://dx.doi.org/10.1021/acsinfecdis.7b00003] [PMID: 28285521]
[61]
Vartak, R.; Menon, S.; Patki, M.; Billack, B.; Patel, K. Ebselen nanoemulgel for the treatment of topical fungal infection. Eur. J. Pharm. Sci., 2020, 148, 105323.
[http://dx.doi.org/10.1016/j.ejps.2020.105323] [PMID: 32259677]
[62]
Lu, J.; Vlamis-Gardikas, A.; Kandasamy, K.; Zhao, R.; Gustafsson, T.N.; Engstrand, L.; Hoffner, S.; Engman, L.; Holmgren, A. Inhibition of bacterial thioredoxin reductase: An antibiotic mechanism targeting bacteria lacking glutathione. FASEB J., 2013, 27(4), 1394-1403.
[http://dx.doi.org/10.1096/fj.12-223305] [PMID: 23248236]
[63]
Koh, W.X.; Coppo, L.; Ganguly, R.; Holmgren, A.; Leong, W.K. Metallocenyl derivatives of ebselen are selective and competitive inhibitors of thioredoxin reductase. J. Organomet. Chem., 2021, 943, 121822.
[http://dx.doi.org/10.1016/j.jorganchem.2021.121822]
[64]
Santofimia-Castaño, P.; Izquierdo-Alvarez, A.; Plaza-Davila, M.; Martinez-Ruiz, A.; Fernandez-Bermejo, M.; Mateos-Rodriguez, J.M.; Salido, G.M.; Gonzalez, A. Ebselen impairs cellular oxidative state and induces endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in pancreatic tumour AR42J cells. J. Cell. Biochem., 2018, 119(1), 1122-1133.
[http://dx.doi.org/10.1002/jcb.26280] [PMID: 28703940]
[65]
Wang, Y.; Wallach, J.; Duane, S.; Wang, Y.; Wu, J.; Wang, J.; Adejare, A.; Ma, H. Developing selective histone deacetylases (HDACs) inhibitors through ebselen and analogs. Drug Des. Devel. Ther., 2017, 11, 1369-1382.
[http://dx.doi.org/10.2147/DDDT.S124977] [PMID: 28496307]
[66]
Kaczor-Keller, K.B.; Pawlik, A.; Scianowski, J. Pacuła, A.; Obieziurska, M.; Marcheggiani, F.; Cirilli, I.; Tiano, L.; Antosiewicz, J. In vitro anti-prostate cancer activity of two ebselen analogues. Pharmaceuticals, 2020, 13(3), 47.
[http://dx.doi.org/10.3390/ph13030047] [PMID: 32192052]
[67]
Elsherbini, M.; Hamama, W.S.; Zoorob, H.H. An Easy synthetic approach to construct some ebselen analogues and benzobselenophene derivatives: Their antioxidant and cytotoxic assessment. J. Heterocycl. Chem., 2018, 55(7), 1645-1650.
[http://dx.doi.org/10.1002/jhet.3199]
[68]
Venkateswaran, V.; Klotz, L.H.; Fleshner, N.E. Selenium modulation of cell proliferation and cell cycle biomarkers in human prostate carcinoma cell lines. Cancer Res., 2002, 62(9), 2540-2545.
[PMID: 11980647]
[69]
Sundaram, N.; Pahwa, A.K.; Ard, M.D.; Lin, N.; Perkins, E.; Bowles, A.P., Jr Selenium causes growth inhibition and apoptosis in human brain tumor cell lines. J. Neurooncol., 2000, 46(2), 125-133.
[http://dx.doi.org/10.1023/A:1006436326003] [PMID: 10894365]
[70]
Parnham, M.J.; Biedermann, J.; Bittner, C.; Dereu, N.; Leyck, S.; Wetzig, H. Structure-activity relationships of a series of anti-inflammatory benzisoselenazolones (BISAs). Agents Actions, 1989, 27(3-4), 306-308.
[http://dx.doi.org/10.1007/BF01972806] [PMID: 2801314]
[71]
Wendel, A.; Fausel, M.; Safayhi, H.; Tiegs, G.; Otter, R. A novel biologically active seleno-organic compound—II. Biochem. Pharmacol., 1984, 33(20), 3241-3245.
[http://dx.doi.org/10.1016/0006-2952(84)90084-4] [PMID: 6487371]
[72]
Maiorino, M.; Roveri, A.; Coassin, M.; Ursini, F. Kinetic mechanism and substrate specificity of glutathione peroxidase activity of ebselen (PZ51). Biochem. Pharmacol., 1988, 37(11), 2267-2271.
[http://dx.doi.org/10.1016/0006-2952(88)90591-6] [PMID: 3377822]
[73]
Zweier, J.L.; Rayburn, B.K.; Flaherty, J.T.; Weisfeldt, M.L. Recombinant superoxide dismutase reduces oxygen free radical concentrations in reperfused myocardium. J. Clin. Invest., 1987, 80(6), 1728-1734.
[http://dx.doi.org/10.1172/JCI113264] [PMID: 3680525]
[74]
Hermenegildo, C.; Nies, E.; Monsalve, E.; Puertas, F.J.; Higueras, V.; Romero, F.J. Some aspects of cardiac antioxidant defence: Ebselen (PZ 51) treatment increases glutathione peroxidase activity in the rat heart. Biochem. Soc. Trans., 1990, 18(6), 1193-1194.
[http://dx.doi.org/10.1042/bst0181193] [PMID: 2088859]
[75]
Bachur, N.R.; Gordon, S.L.; Gee, M.V. Anthracycline antibiotic augmentation of microsomal electron transport and free radical formation. Mol. Pharmacol., 1977, 13(5), 901-910.
[PMID: 19695]
[76]
Davies, K.J.; Doroshow, J.H. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J. Biol. Chem., 1986, 261(7), 3060-3067.
[http://dx.doi.org/10.1016/S0021-9258(17)35746-0] [PMID: 3456345]
[77]
Doroshow, J.H.; Locker, G.Y.; Myers, C.E. Enzymatic defenses of the mouse heart against reactive oxygen metabolites: Alterations produced by doxorubicin. J. Clin. Invest., 1980, 65(1), 128-135.
[http://dx.doi.org/10.1172/JCI109642] [PMID: 7350193]
[78]
Müller, A.; Cadenas, E.; Graf, P.; Sies, H. A novel biologically active seleno-organic compound-I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem. Pharmacol., 1984, 33(20), 3235-3239.
[http://dx.doi.org/10.1016/0006-2952(84)90083-2] [PMID: 6487370]
[79]
Pritsos, C.A.; Sokoloff, M.; Gustafson, D.L. PZ-51 (Ebselen) in vivo protection against Adriamycin-induced mouse cardiac and hepatic lipid peroxidation and toxicity. Biochem. Pharmacol., 1992, 44(4), 839-841.
[http://dx.doi.org/10.1016/0006-2952(92)90427-K] [PMID: 1510734]
[80]
Singal, P.K.; Iliskovic, N. Doxorubicin-induced cardiomyopathy. N. Engl. J. Med., 1998, 339(13), 900-905.
[http://dx.doi.org/10.1056/NEJM199809243391307] [PMID: 9744975]
[81]
Buzdar, A.U.; Marcus, C.; Blumenschein, G.R.; Smith, T.L. Early and delayed clinical cardiotoxicity of doxorubicin. Cancer, 1985, 55(12), 2761-2765.
[http://dx.doi.org/10.1002/1097-0142(19850615)55:12<2761:AID-CNCR2820551206>3.0.CO;2-P] [PMID: 3922612]
[82]
Skladanowski, A.; Konopa, J. Adriamycin and daunomycin induce programmed cell death (apoptosis) in tumour cells. Biochem. Pharmacol., 1993, 46(3), 375-382.
[http://dx.doi.org/10.1016/0006-2952(93)90512-U] [PMID: 7688510]
[83]
Narula, J.; Haider, N.; Virmani, R.; DiSalvo, T.G.; Kolodgie, F.D.; Hajjar, R.J.; Schmidt, U.; Semigran, M.J.; Dec, G.W.; Khaw, B.A. Apoptosis in myocytes in end-stage heart failure. N. Engl. J. Med., 1996, 335(16), 1182-1189.
[http://dx.doi.org/10.1056/NEJM199610173351603] [PMID: 8815940]
[84]
Konorev, E.A.; Kennedy, M.C.; Kalyanaraman, B. Cell-permeable superoxide dismutase and glutathione peroxidase mimetics afford superior protection against doxorubicin-induced cardiotoxicity: The role of reactive oxygen and nitrogen intermediates. Arch. Biochem. Biophys., 1999, 368(2), 421-428.
[http://dx.doi.org/10.1006/abbi.1999.1337] [PMID: 10441396]
[85]
Kotamraju, S.; Konorev, E.A.; Joseph, J.; Kalyanaraman, B. Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. J. Biol. Chem., 2000, 275(43), 33585-33592.
[http://dx.doi.org/10.1074/jbc.M003890200] [PMID: 10899161]
[86]
Parnham, M.; Sies, H. Ebselen: Prospective therapy for cerebral ischaemia. Expert Opin. Investig. Drugs, 2000, 9(3), 607-619.
[http://dx.doi.org/10.1517/13543784.9.3.607] [PMID: 11060699]
[87]
Lindenblatt, N.; Schareck, W.; Belusa, L.; Nickels, R.; Menger, M.; Vollmar, B. Anti-oxidant ebselen delays microvascular thrombus formation in the rat cremaster muscle by inhibiting platelet P-selectin expression. Thromb. Haemost., 2003, 90(11), 882-892.
[http://dx.doi.org/10.1160/TH02-09-0093] [PMID: 14597984]
[88]
Paparella, D.; Yau, T.M.; Young, E. Cardiopulmonary bypass induced inflammation: Pathophysiology and treatment. An update. Eur. J. Cardiothorac. Surg., 2002, 21(2), 232-244.
[http://dx.doi.org/10.1016/S1010-7940(01)01099-5] [PMID: 11825729]
[89]
Pesonen, E.J.; Vento, A.E.; Rämo, J.O.; Vuorte, J.; Jansson, S.E.; Repo, H. Nitecapone reduces cardiac neutrophil accumulation in clinical open heart surgery. Anesthesiology, 1999, 91(2), 355-361.
[http://dx.doi.org/10.1097/00000542-199908000-00007] [PMID: 10443596]
[90]
Yau, T.M.; Weisel, R.D.; Mickle, D.A.G.; Burton, G.W.; Ingold, K.U.; Ivanov, J.; Mohabeer, M.K.; Tumiati, L.; Carson, S. Vitamin E for coronary bypass operations. J. Thorac. Cardiovasc. Surg., 1994, 108(2), 302-310.
[http://dx.doi.org/10.1016/S0022-5223(94)70012-5] [PMID: 8041178]
[91]
Pietrangelo, A.; Haemochromatosis, BMJ 2003, 52(suppl 2), 23-30.
[http://dx.doi.org/10.1136/gut.52.suppl_2.ii23.]
[92]
Lieu, P.T.; Heiskala, M.; Peterson, P.A.; Yang, Y. The roles of iron in health and disease. Mol. Aspects Med., 2001, 22(1-2), 1-87.
[http://dx.doi.org/10.1016/S0098-2997(00)00006-6] [PMID: 11207374]
[93]
Fraga, C.; Oteiza, P.I. Iron toxicity and antioxidant nutrients. Toxicology, 2002, 180(1), 23-32.
[http://dx.doi.org/10.1016/S0300-483X(02)00379-7] [PMID: 12324197]
[94]
Feder, J.N.; Gnirke, A.; Thomas, W.; Tsuchihashi, Z.; Ruddy, D.A.; Basava, A.; Dormishian, F.; Domingo, R., Jr; Ellis, M.C.; Fullan, A.; Hinton, L.M.; Jones, N.L.; Kimmel, B.E.; Kronmal, G.S.; Lauer, P.; Lee, V.K.; Loeb, D.B.; Mapa, F.A.; McClelland, E.; Meyer, N.C.; Mintier, G.A.; Moeller, N.; Moore, T.; Morikang, E.; Prass, C.E.; Quintana, L.; Starnes, S.M.; Schatzman, R.C.; Brunke, K.J.; Drayna, D.T.; Risch, N.J.; Bacon, B.R.; Wolff, R.K. A novel MHC class I–like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet., 1996, 13(4), 399-408.
[http://dx.doi.org/10.1038/ng0896-399] [PMID: 8696333]
[95]
Olivieri, N.F. The β-Thalassemias. N. Engl. J. Med., 1999, 341(2), 99-109.
[http://dx.doi.org/10.1056/NEJM199907083410207] [PMID: 10395635]
[96]
Davis, M.T.; Bartfay, W.J. Ebselen decreases oxygen free radical production and iron concentrations in the hearts of chronically iron-overloaded mice. Biol. Res. Nurs., 2004, 6(1), 37-45.
[http://dx.doi.org/10.1177/1099800403261350] [PMID: 15186706]
[97]
Wu, X.; Hasinoff, B.B. The antitumor anthracyclines doxorubicin and daunorubicin do not inhibit cell growth through the formation of iron-mediated reactive oxygen species. Anticancer Drugs, 2005, 16(1), 93-99.
[http://dx.doi.org/10.1097/00001813-200501000-00014] [PMID: 15613911]
[98]
Šimůnek, T.; Klimtová, I.; Kaplanová, J.; Štěrba, M.; Mazurová, Y.; Adamcová, M.; Hrdina, R.; Geršl, V.; Poňka, P. Study of daunorubicin cardiotoxicity prevention with pyridoxal isonicotinoyl hydrazone in rabbits. Pharmacol. Res., 2005, 51(3), 223-231.
[http://dx.doi.org/10.1016/j.phrs.2004.08.005] [PMID: 15661572]
[99]
Ali, N.; Yoshizumi, M.; Tsuchiya, K.; Kyaw, M.; Fujita, Y.; Izawa, Y.; Abe, S.; Kanematsu, Y.; Kagami, S.; Tamaki, T. Ebselen inhibits p38 mitogen-activated protein kinase-mediated endothelial cell death by hydrogen peroxide. Eur. J. Pharmacol., 2004, 485(1-3), 127-135.
[http://dx.doi.org/10.1016/j.ejphar.2003.11.079] [PMID: 14757132]
[100]
Sarker, K.P.; Biswas, K.K.; Rosales, J.L.; Yamaji, K.; Hashiguchi, T.; Lee, K.Y.; Maruyama, I. Ebselen inhibits NO-induced apoptosis of differentiated PC12 cells via inhibition of ASK1-p38 MAPK-p53 and JNK signaling and activation of p44/42 MAPK and Bcl-2. J. Neurochem., 2003, 87(6), 1345-1353.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02096.x] [PMID: 14713291]
[101]
Saad, S.Y.; Najjar, T.A.; Arafah, M.M. Cardioprotective effects of subcutaneous ebselen against daunorubicin-induced cardiomyopathy in rats. Basic Clin. Pharmacol. Toxicol., 2006, 99(6), 412-417.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_523.x] [PMID: 17169121]
[102]
Yasunari, K.; Maeda, K.; Nakamura, M.; Watanabe, T.; Yoshikawa, J. Benidipine, a long-acting calcium channel blocker, inhibits oxidative stress in polymorphonuclear cells in patients with essential hypertension. Hypertens. Res., 2005, 28(2), 107-112.
[http://dx.doi.org/10.1291/hypres.28.107] [PMID: 16025736]
[103]
Shimosawa, T.; Ogihara, T.; Matsui, H.; Asano, T.; Ando, K.; Fujita, T. Deficiency of adrenomedullin induces insulin resistance by increasing oxidative stress. Hypertension, 2003, 41(5), 1080-1085.
[http://dx.doi.org/10.1161/01.HYP.0000066846.46422.2C] [PMID: 12668590]
[104]
Brown, J.M.; Terada, L.S.; Grosso, M.A.; Whitmann, G.J.; Velasco, S.E.; Patt, A.; Harken, A.H.; Repine, J.E. Xanthine oxidase produces hydrogen peroxide which contributes to reperfusion injury of ischemic, isolated, perfused rat hearts. J. Clin. Invest., 1988, 81(4), 1297-1301.
[http://dx.doi.org/10.1172/JCI113448] [PMID: 3127425]
[105]
Ohta, Y.; Kobayashi, T.; Inui, K.; Yoshino, J.; Kitagawa, A.; Nakazawa, S. Preventive effect of teprenone on acute gastric mucosal lesion progression in compound 48/80-treated rats. Eur. J. Pharmacol., 2004, 487(1-3), 223-232.
[http://dx.doi.org/10.1016/j.ejphar.2004.01.032] [PMID: 15033395]
[106]
Cheng, B.; Zhong, J.P.; Wu, F.X.; Li, G.L.; Ruan, Q.X.; Luo, G.; Jiang, H. Ebselen protects rat hearts against myocardial ischemia reperfusion injury. Exp. Ther. Med., 2018, 17(2), 1412-1419.
[http://dx.doi.org/10.3892/etm.2018.7089] [PMID: 30680022]
[107]
Sui, H.; Wang, W.; Wang, P.H.; Liu, L.S. Protective effect of antioxidant ebselen (PZ51) on the cerebral cortex of stroke-prone spontaneously hypertensive rats. Hypertens. Res., 2005, 28(3), 249-254.
[http://dx.doi.org/10.1291/hypres.28.249] [PMID: 16097369]
[108]
Baldew, G.S.; McVie, J.G.; van der Valk, M.A.; Los, G.; de Goeij, J.J.; Vermeulen, N.P. Selective reduction of cis-diamminedichloroplatinum(II) nephrotoxicity by ebselen. Cancer Res., 1990, 50(21), 7031-7036.
[PMID: 2208170]
[109]
Yoshida, M.; Iizuka, K.; Terada, A.; Hara, M.; Nishijima, H.; Shimada, A.; Nakada, K.; Satoh, Y.; Akama, Y.; Akama, Y. Prevention of nephrotoxicity of cisplatin by repeated oral administration of ebselen in rats. Tohoku J. Exp. Med., 2000, 191(4), 209-220.
[http://dx.doi.org/10.1620/tjem.191.209] [PMID: 11038013]
[110]
Husain, K.; Morris, C.; Whitworth, C.; Trammell, G.L.; Rybak, L.P.; Somani, S.M. Protection by ebselen against cisplatin-induced nephrotoxicity: Antioxidant system. Mol. Cell. Biochem., 1998, 178(1/2), 127-133.
[http://dx.doi.org/10.1023/A:1006889427520] [PMID: 9546591]
[111]
Haenen, G.R.; De Rooij, B.M.; Vermeulen, N.P.; Bast, A. Mechanism of the reaction of ebselen with endogenous thiols: Dihydrolipoate is a better cofactor than glutathione in the peroxidase activity of ebselen. Mol. Pharmacol., 1990, 37(3), 412-422.
[PMID: 2107391]
[112]
Lynch, E.D.; Gu, R.; Pierce, C.; Kil, J. Reduction of acute cisplatin ototoxicity and nephrotoxicity in rats by oral administration of allopurinol and ebselen. Hear. Res., 2005, 201(1-2), 81-89.
[http://dx.doi.org/10.1016/j.heares.2004.08.002] [PMID: 15721563]
[113]
Yazar, E.; Elmas, M.; Altunok, V.; Sivrikaya, A.; Oztekin, E.; Birdane, Y.O. Effects of aminoglycoside antibiotics on renal antioxidants, malondialdehyde levels, and some serum biochemical parameters. Can. J. Vet. Res., 2003, 67(3), 239-240.
[PMID: 12889734]
[114]
Sener, G.; Sehirli, A.Ö.; Altunbas, H.Z.; Ersoy, Y.; Paskaloglu, K.; Arbak, S.; Ayanoglu-Dulger, G. Melatonin protects against gentamicin-induced nephrotoxicity in rats. J. Pineal Res., 2002, 32(4), 231-236.
[http://dx.doi.org/10.1034/j.1600-079X.2002.01858.x] [PMID: 11982792]
[115]
Maldonado, P.D.; Barrera, D.; Medina-Campos, O.N.; Hernández-Pando, R.; Ibarra-Rubio, M.E.; Pedraza-Chaverrí, J. Aged garlic extract attenuates gentamicin induced renal damage and oxidative stress in rats. Life Sci., 2003, 73(20), 2543-2556.
[http://dx.doi.org/10.1016/S0024-3205(03)00609-X] [PMID: 12967679]
[116]
Nakaš-Ićindić, E.; Avdagić, N.; Mijanović, M.; Prašović, S.; Začiragić, A.; Začiragić, A.; Tahirović, G. Nitric oxide in gentamicin-induced acute tubular necrosis in rats. Bosn. J. Basic Med. Sci., 2005, 5(2), 70-74.
[http://dx.doi.org/10.17305/bjbms.2005.3288] [PMID: 16053459]
[117]
Sies, H.; Masumoto, H. Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv. Pharmacol., 1996, 38, 229-246.
[http://dx.doi.org/10.1016/S1054-3589(08)60986-2] [PMID: 8895811]
[118]
Daiber, A.; Zou, M.H.; Bachschmid, M.; Ullrich, V. Ebselen as a peroxynitrite scavenger in vitro and ex vivo. Biochem. Pharmacol., 2000, 59(2), 153-160.
[http://dx.doi.org/10.1016/S0006-2952(99)00309-3] [PMID: 10810449]
[119]
Noiri, E.; Nakao, A.; Uchida, K.; Tsukahara, H.; Ohno, M.; Fujita, T.; Brodsky, S.; Goligorsky, M.S. Oxidative and nitrosative stress in acute renal ischemia. Am. J. Physiol. Renal Physiol., 2001, 281(5), F948-F957.
[http://dx.doi.org/10.1152/ajprenal.2001.281.5.F948] [PMID: 11592952]
[120]
Dhanarajan, R.; Abraham, P.; Isaac, B. Protective effect of ebselen, a selenoorganic drug, against gentamicin-induced renal damage in rats. Basic Clin. Pharmacol. Toxicol., 2006, 99(3), 267-272.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_474.x] [PMID: 16930301]
[121]
Huber, W.; Ilgmann, K.; Page, M.; Hennig, M.; Schweigart, U.; Jeschke, B.; Lutilsky, L.; Weiss, W.; Salmhofer, H.; Classen, M. Effect of theophylline on contrast material-nephropathy in patients with chronic renal insufficiency: Controlled, randomized, double-blinded study. Radiology, 2002, 223(3), 772-779.
[http://dx.doi.org/10.1148/radiol.2233010609] [PMID: 12034949]
[122]
Zager, R.A.; Johnson, A.C.M.; Hanson, S.Y. Radiographic contrast media–induced tubular injury: Evaluation of oxidant stress and plasma membrane integrity. Kidney Int., 2003, 64(1), 128-139.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00059.x] [PMID: 12787403]
[123]
Heyman, S.N.; Rosen, S.; Khamaisi, M.; Idée, J.M.; Rosenberger, C. Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy. Invest. Radiol., 2010, 45(4), 188-195.
[http://dx.doi.org/10.1097/RLI.0b013e3181d2eed8] [PMID: 20195159]
[124]
Ozgur, T.; Tutanc, M.; Zararsiz, I.; Motor, S.; Ozturk, O.H.; Yaldiz, M.; Kurtgoz, O.Y. The protective effect of ebselen on radiocontrast-induced nephrotoxicity. Ren. Fail., 2012, 34(8), 991-997.
[http://dx.doi.org/10.3109/0886022X.2012.706880] [PMID: 22880804]
[125]
Afolabi, O.K.; Wusu, A.D.; Ogunrinola, O.O.; Abam, E.O.; Babayemi, D.O.; Dosumu, O.A.; Onunkwor, O.B.; Balogun, E.A.; Odukoya, O.O.; Ademuyiwa, O. Arsenic-induced dyslipidemia in male albino rats: Comparison between trivalent and pentavalent inorganic arsenic in drinking water. BMC Pharmacol. Toxicol., 2015, 16(1), 15.
[http://dx.doi.org/10.1186/s40360-015-0015-z] [PMID: 26044777]
[126]
Ventura-Lima, J.; Bogo, M.R.; Monserrat, J.M. Arsenic toxicity in mammals and aquatic animals: A comparative biochemical approach. Ecotoxicol. Environ. Saf., 2011, 74(3), 211-218.
[http://dx.doi.org/10.1016/j.ecoenv.2010.11.002] [PMID: 21112631]
[127]
Robles-Osorio, M.L.; Sabath-Silva, E.; Sabath, E. Arsenic-mediated nephrotoxicity. Ren. Fail., 2015, 37(4), 542-547.
[http://dx.doi.org/10.3109/0886022X.2015.1013419] [PMID: 25703706]
[128]
Guha Mazumder, D.; Dasgupta, U.B. Chronic arsenic toxicity: Studies in West Bengal, India. Kaohsiung J. Med. Sci., 2011, 27(9), 360-370.
[http://dx.doi.org/10.1016/j.kjms.2011.05.003] [PMID: 21914522]
[129]
Goudarzi, M.; Fatemi, I.; Siahpoosh, A.; Sezavar, S.H.; Mansouri, E.; Mehrzadi, S. Protective effect of ellagic acid against sodium arsenite-induced cardio- and hematotoxicity in rats. Cardiovasc. Toxicol., 2018, 18(4), 337-345.
[http://dx.doi.org/10.1007/s12012-018-9446-2] [PMID: 29383632]
[130]
Mehrzadi, S.; Fatemi, I.; Malayeri, A.R.; Khodadadi, A.; Mohammadi, F.; Mansouri, E.; Rashno, M.; Goudarzi, M. Ellagic acid mitigates sodium arsenite-induced renal and hepatic toxicity in male Wistar rats. Pharmacol. Rep., 2018, 70(4), 712-719.
[http://dx.doi.org/10.1016/j.pharep.2018.02.007] [PMID: 29935397]
[131]
Al-Brakati, A.Y.; Kassab, R.B.; Lokman, M.S.; Elmahallawy, E.K.; Amin, H.K.; Abdel Moneim, A.E. Role of thymoquinone and ebselen in the prevention of sodium arsenite–induced nephrotoxicity in female rats. Hum. Exp. Toxicol., 2019, 38(4), 482-493.
[http://dx.doi.org/10.1177/0960327118818246] [PMID: 30558456]
[132]
Kim, Y.J.; Kim, E.H.; Hahm, K.B. Oxidative stress in inflammation-based gastrointestinal tract diseases: Challenges and opportunities. J. Gastroenterol. Hepatol., 2012, 27(6), 1004-1010.
[http://dx.doi.org/10.1111/j.1440-1746.2012.07108.x] [PMID: 22413852]
[133]
CichożLach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol., 2014, 20(25), 8082-8091.
[http://dx.doi.org/10.3748/wjg.v20.i25.8082] [PMID: 25009380]
[134]
Jadeja, R.N.; Devkar, R.V.; Nammi, S. Oxidative stress in liver diseases: Pathogenesis, prevention, and therapeutics. Oxid. Med. Cell. Longev., 2017, 2017, 1-2.
[http://dx.doi.org/10.1155/2017/8341286] [PMID: 28529677]
[135]
Hayashi, M.; Slater, T.F. Inhibitory effects of ebselen on lipid peroxidation in rat liver microsomes. Free Radic. Res. Commun., 1986, 2(3), 179-185.
[http://dx.doi.org/10.3109/10715768609088070] [PMID: 3505244]
[136]
Schöneich, C.; Narayanaswami, V.; Asmus, K.D.; Sies, H. Reactivity of ebselen and related selenoorganic compounds with 1,2-dichloroethane radical cations and halogenated peroxyl radicals. Arch. Biochem. Biophys., 1990, 282(1), 18-25.
[http://dx.doi.org/10.1016/0003-9861(90)90081-9] [PMID: 2221918]
[137]
Halliwell, B.; Aruoma, O.I. DNA damage by oxygen-derived species Its mechanism and measurement in mammalian systems. FEBS Lett., 1991, 281(1-2), 9-19.
[http://dx.doi.org/10.1016/0014-5793(91)80347-6] [PMID: 1849843]
[138]
Yang, C.F.; Shen, H.M.; Ong, C.N. Protective effect of ebselen against hydrogen peroxide-induced cytotoxicity and DNA damage in HepG2 cells. Biochem. Pharmacol., 1999, 57(3), 273-279.
[http://dx.doi.org/10.1016/S0006-2952(98)00299-8] [PMID: 9890554]
[139]
Eaton, D.L.; Gallagher, E.P. Mechanisms of aflatoxin carcinogenesis. Annu. Rev. Pharmacol. Toxicol., 1994, 34(1), 135-172.
[http://dx.doi.org/10.1146/annurev.pa.34.040194.001031] [PMID: 8042848]
[140]
Shen, H.M.; Ong, C.N.; Lee, B.L.; Shi, C.Y. Aflatoxin B 1 -induced 8-hydroxydeoxyguanosine formation in rat hepatic DNA. Carcinogenesis, 1995, 16(2), 419-422.
[http://dx.doi.org/10.1093/carcin/16.2.419] [PMID: 7859375]
[141]
Shen, H.M.; Shi, C.Y.; Lee, H.P.; Ong, C.N. Aflatoxin B1-induced lipid peroxidation in rat liver. Toxicol. Appl. Pharmacol., 1994, 127(1), 145-150.
[http://dx.doi.org/10.1006/taap.1994.1148] [PMID: 8048046]
[142]
Yang, C.F.; Liu, J.; Shen, H.M. OngNote, C-N. Protective effect of ebselen on aflatoxin B1-induced cytotoxicity in primary rat hepatocytes. Pharmacol. Toxicol., 2000, 86(4), 156-161.
[http://dx.doi.org/10.1034/j.1600-0773.2000.d01-29.x] [PMID: 10815748]
[143]
Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[144]
Fulco, B.C.W.; Jung, J.T.K.; Brum, L.O.B.; Zborowski, V.A.; Goulart, T.A.C.; Nogueira, C.W. Similar hepatoprotective effectiveness of Diphenyl diselenide and Ebselen against cisplatin-induced disruption of metabolic homeostasis and redox balance in juvenile rats. Chem. Biol. Interact., 2020, 330, 109234.
[http://dx.doi.org/10.1016/j.cbi.2020.109234] [PMID: 32860823]
[145]
Ozaki, M.; Fuchinoue, S.; Teraoka, S.; Ota, K. The in vivo cytoprotection of ascorbic acid against ischemia/reoxygenation injury of rat liver. Arch. Biochem. Biophys., 1995, 318(2), 439-445.
[http://dx.doi.org/10.1006/abbi.1995.1252] [PMID: 7733675]
[146]
Ozaki, M.; Nakamura, M.; Teraoka, S.; Ota, K. Ebselen, a novel anti-oxidant compound, protects the rat liver from ischemia-reperfusion injury. Transpl. Int., 1997, 10(2), 96-102.
[http://dx.doi.org/10.1111/j.1432-2277.1997.tb00548.x] [PMID: 9089992]
[147]
Kono, H.; Rusyn, I.; Uesugi, T.; Yamashina, S.; Connor, H.D.; Dikalova, A.; Mason, R.P.; Thurman, R.G. Diphenyleneiodonium sulfate, an NADPH oxidase inhibitor, prevents early alcohol-induced liver injury in the rat. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 280(5), G1005-G1012.
[http://dx.doi.org/10.1152/ajpgi.2001.280.5.G1005] [PMID: 11292610]
[148]
Kono, H.; Arteel, G.E.; Rusyn, I.; Sies, H.; Thurman, R.G. Ebselen prevents early alcohol-induced liver injury in rats. Free Radic. Biol. Med., 2001, 30(4), 403-411.
[http://dx.doi.org/10.1016/S0891-5849(00)00490-1] [PMID: 11182296]
[149]
Kurebayashi, Y.; Tabuchi, Y.; Akasaki, M. Gastric cytoprotection by ebselen against the injury induced by necrotizing agents in rats. Arzneimittelforschung, 1989, 39(2), 250-253.
[PMID: 2730695]
[150]
Schuurmans Stekhoven, F.; Bonting, S.L. Transport adenosine triphosphatases: Properties and functions. Physiol. Rev., 1981, 61(1), 1-76.
[http://dx.doi.org/10.1152/physrev.1981.61.1.1] [PMID: 6258180]
[151]
Beil, W.; Staar, U.; Sewing, K.F. Interaction of the anti-inflammatory seleno-organic compound ebselen with acid secretion in isolated parietal cells and gastric H+/K+-ATPase. Biochem. Pharmacol., 1990, 40(9), 1997-2003.
[http://dx.doi.org/10.1016/0006-2952(90)90229-E] [PMID: 2173597]
[152]
Safayhi, H.; Tiegs, G.; Wendel, A. A novel biologically active seleno-organic compound—V. Biochem. Pharmacol., 1985, 34(15), 2691-2694.
[http://dx.doi.org/10.1016/0006-2952(85)90569-6] [PMID: 2990494]
[153]
Tabuchi, Y.; Kurebayashi, Y. Antisecretory and antiulcer effects of ebselen, a seleno-organic compound, in rats. Jpn. J. Pharmacol., 1993, 61(3), 255-257.
[http://dx.doi.org/10.1254/jjp.61.255] [PMID: 8483303]
[154]
Peskar, B.M. On the synthesis of prostaglandins by human gastric mucosa and its modification by drugs. Biochim. Biophys. Acta Lipids Lipid Metab., 1977, 487(2), 307-314.
[http://dx.doi.org/10.1016/0005-2760(77)90007-8] [PMID: 301045]
[155]
Leyck, S.; Parnham, M.J. Acute antiinflammatory and gastric effects of the seleno-organic compound ebselen. Agents Actions, 1990, 30(3-4), 426-431.
[http://dx.doi.org/10.1007/BF01966308] [PMID: 2117337]
[156]
Kinross, J.; Warren, O.; Basson, S.; Holmes, E.; Silk, D.; Darzi, A.; Nicholson, J.K. Intestinal ischemia/reperfusion injury: Defining the role of the gut microbiome. Biomarkers Med., 2009, 3(2), 175-192.
[http://dx.doi.org/10.2217/bmm.09.11] [PMID: 20477509]
[157]
Tunc, T.; Uysal, B.; Atabek, C.; Kesik, V.; Caliskan, B.; Oztas, E.; Ersoz, N.; Oter, S.; Guven, A. Erdosteine and ebselen as useful agents in intestinal ischemia/reperfusion injury. J. Surg. Res., 2009, 155(2), 210-216.
[http://dx.doi.org/10.1016/j.jss.2008.06.017] [PMID: 19505699]
[158]
Tunc, T.; Guven, A.; Topal, T.; Kul, M.; Korkmaz, A.; Gundogdu, G.; Onguru, O.; Ozturk, H. Preventive effect of α-lipoic acid and ebselen on rat intestine against ischemia/reperfusion injury. FASEB J., 2008, 22(S1)
[http://dx.doi.org/10.1096/fasebj.22.1_supplement.1138.7]
[159]
Korkmaz, A.; Oter, S.; Sadir, S.; Coskun, O.; Topal, T.; Ozler, M.; Bilgic, H. Peroxynitrite may be involved in bladder damage caused by cyclophosphamide in rats. J. Urol., 2005, 173(5), 1793-1796.
[http://dx.doi.org/10.1097/01.ju.0000154344.80669.e3] [PMID: 15821589]
[160]
Li, C.; Jackson, R.M. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am. J. Physiol. Cell Physiol., 2002, 282(2), C227-C241.
[http://dx.doi.org/10.1152/ajpcell.00112.2001] [PMID: 11788333]
[161]
Befus, A.D.; Pearce, F.L.; Gauldie, J.; Horsewood, P.; Bienenstock, J. Mucosal mast cells. I. Isolation and functional characteristics of rat intestinal mast cells. J. Immunol., 1982, 128(6), 2475-2480.
[http://dx.doi.org/10.4049/jimmunol.128.6.2475] [PMID: 6176638]
[162]
Ohta, Y.; Kobayashi, T.; Nishida, K.; Ishiguro, I. Relationship between changes of active oxygen metabolism and blood flow and formation, progression, and recovery of lesions is gastric mucosa of rats with a single treatment of compound 48/80, a mast cell degranulator. Dig. Dis. Sci., 1997, 42(6), 1221-1232.
[http://dx.doi.org/10.1023/A:1018854107623] [PMID: 9201088]
[163]
Kobayashi, T.; Ohta, Y.; Yoshino, J. Preventive effect of ebselen on acute gastric mucosal lesion development in rats treated with compound 48/80. Eur. J. Pharmacol., 2001, 414(2-3), 271-279.
[http://dx.doi.org/10.1016/S0014-2999(01)00815-9] [PMID: 11239928]
[164]
Peek, R.M., Jr; Blaser, M.J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer, 2002, 2(1), 28-37.
[http://dx.doi.org/10.1038/nrc703] [PMID: 11902583]
[165]
Beil, W.; Obst, B.; Sewing, K.F.; Wagner, S. Helicobacter pylori reduces intracellular glutathione in gastric epithelial cells. Dig. Dis. Sci., 2000, 45(9), 1769-1773.
[http://dx.doi.org/10.1023/A:1005530227603] [PMID: 11052318]
[166]
Xu, L.; Gong, C.; Li, G.; Wei, J.; Wang, T.; Meng, W.; Shi, M.; Wang, Y. Ebselen suppresses inflammation induced by Helicobacter pylori lipopolysaccharide via the p38 mitogen-activated protein kinase signaling pathway. Mol. Med. Rep., 2018, 17(5), 6847-6851.
[http://dx.doi.org/10.3892/MMR.2018.8641/HTML] [PMID: 29488609]
[167]
Ocakci, A.; Coskun, O.; Tumkaya, L.; Kanter, M.; Gurel, A.; Hosnuter, M.; Uzun, L. Beneficial effects of Ebselen on corrosive esophageal burns of rats. Int. J. Pediatr. Otorhinolaryngol., 2006, 70(1), 45-52.
[http://dx.doi.org/10.1016/j.ijporl.2005.05.018] [PMID: 15979162]
[168]
Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Review: Ultraviolet radiation and skin cancer. Int. J. Dermatol., 2010, 49(9), 978-986.
[http://dx.doi.org/10.1111/j.1365-4632.2010.04474.x] [PMID: 20883261]
[169]
Suárez, B.; López-Abente, G.; Martínez, C.; Navarro, C.; Tormo, M.J.; Rosso, S.; Schraub, S.; Gafà, L.; Sancho-Garnier, H.; Wechsler, J.; Zanetti, R. Occupation and skin cancer: The results of the HELIOS-I multicenter case-control study. BMC Public Health, 2007, 7(1), 180.
[http://dx.doi.org/10.1186/1471-2458-7-180] [PMID: 17655745]
[170]
Sample, A.; He, Y.Y. Mechanisms and prevention of UV-induced melanoma. Photodermatol. Photoimmunol. Photomed., 2018, 34(1), 13-24.
[http://dx.doi.org/10.1111/phpp.12329] [PMID: 28703311]
[171]
Ananthaswamy, H.N.; Ouhtit, A.; Ananthaswamy, O.N. Mechanisms of induction of skin cancer by UV radiation. Front. Biosci., 1997, 2(4), A211.
[http://dx.doi.org/10.2741/A211] [PMID: 9343491]
[172]
Mullenders, L.H.F. Solar UV damage to cellular DNA: From mechanisms to biological effects. Photochem. Photobiol. Sci., 2018, 17(12), 1842-1852.
[http://dx.doi.org/10.1039/c8pp00182k] [PMID: 30065996]
[173]
Liu-Smith, F.; Jia, J.; Zheng, Y. UV-induced molecular signaling differences in melanoma and non-melanoma skin cancer. Adv. Exp. Med. Biol., 2017, 996, 27-40.
[http://dx.doi.org/10.1007/978-3-319-56017-5_3] [PMID: 29124688]
[174]
Shah, P.; He, Y.Y. Molecular regulation of UV-induced DNA repair. Photochem. Photobiol., 2015, 91(2), 254-264.
[http://dx.doi.org/10.1111/php.12406] [PMID: 25534312]
[175]
Cadet, J.; Douki, T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem. Photobiol. Sci., 2018, 17(12), 1816-1841.
[http://dx.doi.org/10.1039/c7pp00395a] [PMID: 29405222]
[176]
Brem, R.; Guven, M.; Karran, P. Oxidatively-generated damage to DNA and proteins mediated by photosensitized UVA. Free Radic. Biol. Med., 2017, 107, 101-109.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.488] [PMID: 27989755]
[177]
Li, J.; Chen, J.J.; Zhang, F.; Zhang, C. Ebselen protection against hydrogen peroxide-induced cytotoxicity and DNA damage in HL-60 cells. Acta Pharmacol. Sin., 2000, 21(5), 455-459.
[PMID: 11324446]
[178]
Zuo, L.; Zhou, T.; Pannell, B.K.; Ziegler, A.C.; Best, T.M. Biological and physiological role of reactive oxygen species-The good, the bad and the ugly. Acta Physiol. (Oxf.), 2015, 214(3), 329-348.
[http://dx.doi.org/10.1111/apha.12515] [PMID: 25912260]
[179]
Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol., 2015, 4, 180-183.
[http://dx.doi.org/10.1016/j.redox.2015.01.002] [PMID: 25588755]
[180]
Steinbrenner, H.; Sies, H. Protection against reactive oxygen species by selenoproteins. Biochim. Biophys. Acta, Gen. Subj., 2009, 1790(11), 1478-1485.
[http://dx.doi.org/10.1016/j.bbagen.2009.02.014] [PMID: 19268692]
[181]
Mugesh, G.; Singh, H.B. Synthetic organoselenium compounds as antioxidants: Glutathione peroxidase activity. Chem. Soc. Rev., 2000, 29(5), 347-357.
[http://dx.doi.org/10.1039/a908114c]
[182]
Weekley, C.M.; Harris, H.H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem. Soc. Rev., 2013, 42(23), 8870-8894.
[http://dx.doi.org/10.1039/c3cs60272a] [PMID: 24030774]
[183]
Pacuła, A.J.; Kaczor, K.B.; Wojtowicz, A.; Antosiewicz, J.; Janecka, A.; Długosz, A.; Janecki, T.; Ścianowski, J. New glutathione peroxidase mimetics—Insights into antioxidant and cytotoxic activity. Bioorg. Med. Chem., 2017, 25(1), 126-131.
[http://dx.doi.org/10.1016/j.bmc.2016.10.018] [PMID: 28029457]
[184]
Noguchi, N.; Yoshida, Y.; Kaneda, H.; Yamamoto, Y.; Niki, E. Action of ebselen as an antioxidant against lipid peroxidation. Biochem. Pharmacol., 1992, 44(1), 39-44.
[http://dx.doi.org/10.1016/0006-2952(92)90035-H] [PMID: 1632836]
[185]
Mugesh, G. Glutathione peroxidase activity of ebselen and its analogues: Some insights into the complex chemical mechanisms underlying the antioxidant activity. Curr. Chem. Biol., 2013, 7(1), 47-56.
[http://dx.doi.org/10.2174/2212796811307010005]
[186]
Ren, X.; Zou, L.; Lu, J.; Holmgren, A. Selenocysteine in mammalian thioredoxin reductase and application of ebselen as a therapeutic. Free Radic. Biol. Med., 2018, 127, 238-247.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.081] [PMID: 29807162]
[187]
Nakamura, Y.; Feng, Q.; Kumagai, T.; Torikai, K.; Ohigashi, H.; Osawa, T.; Noguchi, N.; Niki, E.; Uchida, K. Ebselen, a glutathione peroxidase mimetic seleno-organic compound, as a multifunctional antioxidant. Implication for inflammation-associated carcinogenesis. J. Biol. Chem., 2002, 277(4), 2687-2694.
[http://dx.doi.org/10.1074/jbc.M109641200] [PMID: 11714717]
[188]
Sinha, R.; El-Bayoumy, K. Apoptosis is a critical cellular event in cancer chemoprevention and chemotherapy by selenium compounds. Curr. Cancer Drug Targets, 2004, 4(1), 13-28.
[http://dx.doi.org/10.2174/1568009043481614] [PMID: 14965264]
[189]
Tewari, R.; Sharma, V.; Koul, N.; Ghosh, A.; Joseph, C.; Hossain Sk, U.; Sen, E. Ebselen abrogates TNFα induced pro-inflammatory response in glioblastoma. Mol. Oncol., 2009, 3(1), 77-83.
[http://dx.doi.org/10.1016/j.molonc.2008.10.004] [PMID: 19383369]
[190]
Sharma, V.; Tewari, R.; Sk, U.H.; Joseph, C.; Sen, E. Ebselen sensitizes glioblastoma cells to Tumor Necrosis Factor (TNFα)-induced apoptosis through two distinct pathways involving NF-κB downregulation and Fas-mediated formation of death inducing signaling complex. Int. J. Cancer, 2008, 123(9), 2204-2212.
[http://dx.doi.org/10.1002/ijc.23771] [PMID: 18709644]
[191]
Piscitello, D.; Varshney, D.; Lilla, S.; Vizioli, M.G.; Reid, C.; Gorbunova, V.; Seluanov, A.; Gillespie, D.A.; Adams, P.D. AKT overactivation can suppress DNA repair via p70S6 kinase-dependent downregulation of MRE11. Oncogene, 2018, 37(4), 427-438.
[http://dx.doi.org/10.1038/onc.2017.340] [PMID: 28967905]
[192]
Al-Ani, A.; Toms, D.; Kondro, D.; Thundathil, J.; Yu, Y.; Ungrin, M. Oxygenation in cell culture: Critical parameters for reproducibility are routinely not reported. PLoS One, 2018, 13(10), e0204269.
[http://dx.doi.org/10.1371/journal.pone.0204269] [PMID: 30325922]
[193]
Choudhary, C; Kumar, C; Gnad, F; Nielsen, ML; Rehman, M; Walther, TC Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science (80-), 2009, 325, 834-840.
[http://dx.doi.org/10.1126/science.1175371]
[194]
Thabet, N.M.; Moustafa, E.M. Synergistic effect of Ebselen and gamma radiation on breast cancer cells. Int. J. Radiat. Biol., 2017, 93(8), 784-792.
[http://dx.doi.org/10.1080/09553002.2017.1325024] [PMID: 28463038]
[195]
Feng, G.; Zheng, K.I.; Yan, Q.Q.; Rios, R.S.; Targher, G.; Byrne, C.D.; Poucke, S.V.; Liu, W.Y.; Zheng, M.H. COVID-19 and liver dysfunction: Current insights and emergent therapeutic strategies. J. Clin. Transl. Hepatol., 2020, 8(1), 1-7.
[http://dx.doi.org/10.14218/JCTH.2020.00018] [PMID: 32274342]
[196]
Anand, K; Ziebuhr, J; Wadhwani, P; Mesters, JR Hilgenfeld, R Coronavirus main proteinase (3CL pro ) structure: Basis for design of anti-sars drugs. Science (80- ), 2003, 300, 1763-1767.
[http://dx.doi.org/10.1126/science.1085658]
[197]
Zhang, L; Lin, D Sun, X Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (80- ), 2020, 368, 409-412.
[http://dx.doi.org/10.1126/science.abb3405]
[198]
Zhang, L.; Lin, D.; Kusov, Y.; Nian, Y.; Ma, Q.; Wang, J.; von Brunn, A.; Leyssen, P.; Lanko, K.; Neyts, J.; de Wilde, A.; Snijder, E.J.; Liu, H.; Hilgenfeld, R. α-ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment. J. Med. Chem., 2020, 63(9), 4562-4578.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01828] [PMID: 32045235]
[199]
Abbasi-Oshaghi, E.; Mirzaei, F.; Farahani, F.; Khodadadi, I.; Tayebinia, H. Diagnosis and treatment of coronavirus disease 2019 (COVID-19): Laboratory, PCR, and chest CT imaging findings. Int. J. Surg., 2020, 79, 143-153.
[http://dx.doi.org/10.1016/j.ijsu.2020.05.018] [PMID: 32422384]
[200]
Zmudzinski, M.; Rut, W.; Olech, K.; Granda, J.; Giurg, M. Burda-Grabowska, M Ebselen derivatives inhibit SARS-CoV-2 replication by inhibition of its essential proteins–PL pro and M pro proteases, and nsp14 guanine N7-methyltransferase. Sci. Rep., 2022, 13(1), 9161.
[http://dx.doi.org/10.21203/rs.3.rs-1546114/v1]
[201]
Ma, C.; Hu, Y.; Townsend, J.A. Ebselen, disulfiram, carmofur, PX-12, tideglusib, and shikonin are non-specific promiscuous SARS-CoV-2 main protease inhibitors. BioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.09.15.299164]
[202]
Weglarz-Tomczak, E.; Tomczak, J.M.; Talma, M.; Burda-Grabowska, M.; Giurg, M.; Brul, S. Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Sci. Rep., 2021, 11(1), 3640.
[http://dx.doi.org/10.1038/s41598-021-83229-6] [PMID: 33574416]
[203]
Sahoo, P.; Lenka, D.R.; Batabyal, M.; Pain, P.K.; Kumar, S.; Manna, D.; Kumar, A. Detailed insights into the inhibitory mechanism of new ebselen derivatives against main protease (M pro) of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). ACS Pharmacol. Transl. Sci., 2023, 6(1), 171-180.
[http://dx.doi.org/10.1021/acsptsci.2c00203] [PMID: 36650888]
[204]
Ismail, H.T.H. Hematobiochemical disturbances and oxidative stress after subacute manganese chloride exposure and potential protective effects of ebselen in rats. Biol. Trace Elem. Res., 2019, 187(2), 452-463.
[http://dx.doi.org/10.1007/s12011-018-1395-x] [PMID: 29858966]
[205]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[206]
Koyanagi, T.; Nakamuta, M.; Enjoji, M.; Iwamoto, H.; Motomura, K.; Sakai, H.; Nawata, H. The selenoorganic compound ebselen suppresses liver injury induced by Propionibacterium acnes and lipopolysaccharide in rats. Int. J. Mol. Med., 2001, 7(3), 321-327.
[http://dx.doi.org/10.3892/ijmm.7.3.321] [PMID: 11179515]
[207]
Sies, H.; Parnham, M.J. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radic. Biol. Med., 2020, 156, 107-112.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.06.032] [PMID: 32598985]
[208]
DiNicolantonio, J.J.; McCarty, M. Thrombotic complications of COVID-19 may reflect an upregulation of endothelial tissue factor expression that is contingent on activation of endosomal NADPH oxidase. Open Heart, 2020, 7(1), e001337.
[http://dx.doi.org/10.1136/openhrt-2020-001337] [PMID: 32532805]
[209]
Gladilin, S.; Bidmon, H.J.; Divanach, A.; Arteel, G.E.; Witte, O.W.; Zilles, K.; Sies, H. Ebselen lowers plasma interleukin-6 levels and glial heme oxygenase-1 expression after focal photothrombotic brain ischemia. Arch. Biochem. Biophys., 2000, 380(2), 237-242.
[http://dx.doi.org/10.1006/abbi.2000.1943] [PMID: 10933877]
[210]
Wichmann, D.; Sperhake, J.P.; Lütgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schröder, A.S.; Burdelski, C.; de Heer, G.; Nierhaus, A.; Frings, D.; Pfefferle, S.; Becker, H.; Bredereke-Wiedling, H.; de Weerth, A.; Paschen, H.R.; Sheikhzadeh-Eggers, S.; Stang, A.; Schmiedel, S.; Bokemeyer, C.; Addo, M.M.; Aepfelbacher, M.; Püschel, K.; Kluge, S. Autopsy findings and venous thromboembolism in patients with COVID-19. Ann. Intern. Med., 2020, 173(4), 268-277.
[http://dx.doi.org/10.7326/M20-2003] [PMID: 32374815]
[211]
Aruoma, O.I. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat. Res., 2003, 523-524, 9-20.
[http://dx.doi.org/10.1016/S0027-5107(02)00317-2] [PMID: 12628499]
[212]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395, 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0]
[213]
Koyanagi, T.; Nakamuta, M.; Enjoji, M.; Iwamoto, H.; Motomura, K.; Sakai, H.; Nawata, H. The selenoorganic compound ebselen suppresses liver injury induced by Propionibacterium acnes and lipopolysaccharide in rats. Int. J. Mol. Med., 2001, 7(3), 321-327.
[http://dx.doi.org/10.3892/ijmm.7.3.321]
[214]
Sies, H.; Parnham, M.J. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radic. Biol. Med., 2020, 156, 107-112.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.06.032]
[215]
DiNicolantonio, J.J.; McCarty, M. Thrombotic complications of COVID-19 may reflect an upregulation of endothelial tissue factor expression that is contingent on activation of endosomal NADPH oxidase. Open Heart, 2020, 7, e001337.
[http://dx.doi.org/10.1136/openhrt-2020-001337]
[216]
Gladilin, S.; Bidmon, H-J.; Divanach, A.; Arteel, G.E.; Witte, O.W.; Zilles, K.; Sies, H. Ebselen Lowers Plasma Interleukin-6 Levels and Glial Heme Oxygenase-1 Expression after Focal Photothrombotic Brain Ischemia. Arch. Biochem. Biophys., 2000, 380, 237-242.
[http://dx.doi.org/10.1006/abbi.2000.1943]
[217]
Wichmann, D.; Sperhake, J-P.; Lütgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schröder, A.S.; Burdelski, C.; de Heer, G.; Nierhaus, A.; Frings, D.; Pfefferle, S.; Becker, H.; Bredereke-Wiedling, H.; de Weerth, A.; Paschen, H.R.; Sheikhzadeh-Eggers, S.; Stang, A.; Schmiedel, S.; Bokemeyer, C.; Addo, M.M.; Aepfelbacher, M.; Püschel, K.; Kluge, S. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19. Ann. Intern. Med., 2020, 173, 268-277.
[http://dx.doi.org/10.7326/M20-2003]
[218]
Aruoma, O.I. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat. Res. Mol. Mech. Mutagen., 2003, 523–524, 9-20.
[http://dx.doi.org/10.1016/S0027-5107(02)00317-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy