Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The most Recent Compilation of Reactions of Enaminone Derivatives with various Amine Derivatives to Generate Biologically Active Compounds

Author(s): Thoraya A. Farghaly*, Amal M. Alosaimy, Nadia T. Al-Qurashi, Ghada S. Masaret and Hanan Gaber Abdulwahab

Volume 24, Issue 8, 2024

Published on: 13 September, 2023

Page: [793 - 843] Pages: 51

DOI: 10.2174/1389557523666230913164038

Price: $65

Abstract

Heterocyclic derivatives serve as the fundamental components of both natural and synthetic drugs. Enaminones play a crucial role as foundational units in the synthesis of numerous bioactive heterocyclic compounds, including pyrazoles, pyridines, oxazoles, isoxazoles, as well as fused heterocyclic structures like indoles, carbazoles, quinolines, acridines, and phenanthridines. These diverse heterocyclic rings are well-known for their various therapeutic activities, encompassing anticancer, anti-inflammatory, antimicrobial, antidepressant, and antiviral properties. By reacting with nitrogenbased nucleophiles, enaminones can generate bioactive azoles, azines, and their fused systems. This study focuses on the recent advancements in enaminone reactions with (a) nitrogen-based nucleophiles, such as aliphatic amines, derivatives of aniline, heterocyclic amines, hydroxylamine, hydrazine derivatives, guanidine derivatives, urea, and thiourea derivatives, and (b) nitrogen-based electrophiles, such as diazonium salts. These reactions have led to the synthesis of a wide range of bioactive fused heterocyclic compounds from 2010 to the end of 2022.

Graphical Abstract

[1]
Greenhill, B.J.V. The Third elliptic integral and the ellipsotomic problem. JSTOR, 1904, 203, 217-304.
[2]
Farghaly, T.; Abo Alnaja, A.M.; Shaaban, M.R. Recent advances in synthesis and reactions of β-amino-α β -enones (Enaminones). Curr. Org. Synth., 2021, 18(7), 639-684.
[http://dx.doi.org/10.2174/1570179418666210512015725] [PMID: 33982653]
[3]
Prakasham, A.P.; Gangwar, M. K.; Ghosh, P. β‐Enaminone synthesis from 1, 3‐dicarbonyl compounds and aliphatic and aromatic amines catalyzed by iron complexes of fused bicyclic imidazo [1,5‐a] pyridine derived N‐heterocyclic carbenes. Eur. J. Inorg. Chem., 2019, 2019(2), 295.
[http://dx.doi.org/10.1002/ejic.201800906]
[4]
Hajipour, A.R.; Ghayeb, Y.; Sheikhan, N.; Ruoho, A.E. Brøّnsted acidic ionic liquid as an efficient and reusable catalyst for one-pot synthesis of 1-amidoalkyl 2-naphthols under solvent-free conditions. Tetrahedron Lett., 2009, 50(40), 5649-5651.
[http://dx.doi.org/10.1055/s-0029-1219399]
[5]
Sroor, F.M.; Mukhtar, S.S.; Hafez, T.S.; Tohamy, W.M.; Hassaneen, H.M.; Saleh, F.M. A facile and robust approach for synthesis and structural characterization of an unprecedented ring system of 4H-pyrazolo[3,4-f]indolizine-4,9(2H)-dione derivatives. Tetrahedron, 2023, 134, 133303.
[http://dx.doi.org/10.1016/j.tet.2023.133303]
[6]
Mekky, A.E.M.; Sanad, S.M.H. [3+2] cycloaddition synthesis of new (nicotinonitrile‐chromene)‐based bis(pyrazole) hybrids as potential acetylcholinesterase inhibitors. J. Heterocycl. Chem., 2023, 60(1), 156-160.
[http://dx.doi.org/10.1002/jhet.4590]
[7]
Mao, L.L.; Quan, L.X.; Liu, Y.; Wan, J.P. Nitrogen heterocycle construction in aqueous mediums: A sustainable tool for molecular diversity. Curr. Opin. Green Sustain. Chem., 2023, 40, 100756.
[http://dx.doi.org/10.1016/j.cogsc.2023.100756]
[8]
Amaye, I.J.; Haywood, R.D.; Mandzo, E.M.; Wirick, J.J.; Jackson-Ayotunde, P.L. Enaminones as building blocks in drug development: Recent advances in their chemistry, synthesis, and biological properties. Tetrahedron, 2021, 83, 131984.
[http://dx.doi.org/10.1016/j.tet.2021.131984]
[9]
Stanovnik, B. Enaminone, enaminoesters, and related compounds in the metal‐free synthesis of pyridines and fused pyridines. Eur. J. Org. Chem., 2019, 2019(31-32), 5120-5132.
[http://dx.doi.org/10.1002/ejoc.201900797]
[10]
Xu, L.; Wu, L.; Chen, T.; Xu, S.; Huang, C.; Wang, Y.; You, Q.; Shen, J. Superbase‐promoted n ‐α‐sp 3 c‐h functionalization of tertiary enaminones: Synthesis of polysubstituted Pyrroles. ChemistrySelect, 2020, 5(2), 655-659.
[http://dx.doi.org/10.1002/slct.201903792]
[11]
Tian, S.; Liu, Y.; Wan, C.; Wan, J.P.; Hao, G. Catalyst-free cascade annulation of enaminones and aryl diazonium tetrafluoroboronates for cinnoline synthesis and the anti-inflammatory activity study. J. Org. Chem., 2023, 88(4), 2433-2442.
[http://dx.doi.org/10.1021/acs.joc.2c02858] [PMID: 36753776]
[12]
Liang, Y.; Wang, R. Cu2O-Promoted cascade reaction of O-halobenzoate and enaminones for the synthesis of isoquinolinone derivatives. Tetrahedron Lett., 2023, 114, 154287.
[http://dx.doi.org/10.1016/j.tetlet.2022.154287]
[13]
Maury, S.K.; Kushwaha, A.K.; Kamal, A.; Singh, H.K.; Singh, S. Visible light triggered synthesis of spiro[indoline-3,4′-quinoline] via oxidative coupling of indole with enaminone and malononitrile. J. Mol. Struct., 2023, 1274, 134452.
[http://dx.doi.org/10.1016/j.molstruc.2022.134452]
[14]
Zhang, C.; Wang, W.; Zhu, X.; Chen, L.; Luo, H.; Guo, M.; Liu, D.; Liu, F.; Zhang, H.; Li, Q.; Lin, J. Synthesis of indolizines via tf 2 o-mediated cascade reaction of pyridyl-enaminones with thiophenols/thioalcohols. Org. Lett., 2023, 25(7), 1192-1197.
[http://dx.doi.org/10.1021/acs.orglett.3c00177] [PMID: 36779678]
[15]
Michael, J.P.; de Koning, C.B.; Hosken, G.D.; Stanbury, T.V. Reformatsky reactions with N-arylpyrrolidine-2-thiones: Synthesis of tricyclic analogues of quinolone antibacterial agents. Tetrahedron, 2001, 57(47), 9635-9648.
[http://dx.doi.org/10.1016/S0040-4020(01)00964-4]
[16]
Kumar, R.; Saha, N.; Purohit, P.; Garg, S.K.; Seth, K.; Meena, V.S.; Dubey, S.; Dave, K.; Goyal, R.; Sharma, S.S.; Banerjee, U.C.; Chakraborti, A.K. Cyclic enaminone as new chemotype for selective cyclooxygenase-2 inhibitory, anti-inflammatory, and analgesic activities. Eur. J. Med. Chem., 2019, 182, 111601.
[http://dx.doi.org/10.1016/j.ejmech.2019.111601] [PMID: 31445233]
[17]
Bangalore, P.K.; Vagolu, S.K.; Bollikanda, R.K.; Veeragoni, D.K.; Choudante, P.C.; Misra, S.; Sriram, D.; Sridhar, B.; Kantevari, S. Usnic acid enaminone-coupled 1, 2, 3-triazoles as antibacterial and antitubercular agents. J. Nat. Prod., 2019, 83(1), 26-35.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00475]
[18]
Masocha, W.; Kombian, S.B.; Edafiogho, I.O. Evaluation of the antinociceptive activities of enaminone compounds on the formalin and hot plate tests in mice. Scient Rep., 2016, 6(1), 1-9.
[http://dx.doi.org/10.1038/srep21582]
[19]
Foster, J.E.; Nicholson, J.M.; Butcher, R.; Stables, J.P.; Edafiogho, I.O.; Goodwin, A.M.; Henson, M.C.; Smith, C.A.; Scott, K.R. Synthesis, characterization and anticonvulsant activity of enaminones. Bioorg. Med. Chem., 1999, 7(11), 2415-2425.
[http://dx.doi.org/10.1016/S0968-0896(99)00185-6]
[20]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; El-Gazzar, M.G.; El-Gazzar, M.G. Novel thioureido-benzenesulfonamide derivatives with enaminone linker as potent anticancer, radiosensitizers and VEGFR2 inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(9), 1464-1470.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.089]
[21]
Ilhan, S.; Atmaca, H.; Yilmaz, E. S.; Korkmaz, E.; Zora, M. N‐Propargylic β‐enaminones in breast cancer cells: Cytotoxicity, apoptosis, and cell cycle analyses. J. Biochem. Molec Toxicol., 2023, 37(4), e23299.
[http://dx.doi.org/10.1002/jbt.23299]
[22]
Jyothish Kumar, L.; Sarveswari, S.; Vijayakumar, V. DMFDMA catalyzed synthesis of 2-((Dimethylamino)methylene)-3,4-dihydro-9-arylacridin-1(2 H)-ones and their derivatives: in-vitro antifungal, antibacterial and antioxidant evaluations. Open Chem., 2018, 16(1), 1077-1088.
[http://dx.doi.org/10.1515/chem-2018-0110]
[23]
Farghaly, T.A.; Abdallah, M.A.; Abdel Aziz, M.R. Synthesis of a novel tri‐enaminone as building block for polyaza‐heterocycles. J. Heterocycl. Chem., 2017, 54(1), 699-705.
[http://dx.doi.org/10.1002/jhet.2644]
[24]
Li, M.; Fang, D.; Geng, F.; Dai, X. Silver-catalyzed efficient synthesis of enaminones from propargyl alcohols and amines. Tetrahedron Lett., 2017, 58(51), 4747-4749.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.054]
[25]
Sowmya, P.V.; Poojary, B.; Revanasiddappa, B.C.; Vijayakumar, M.; Nikil, P.; Kumar, V. Novel 2-methyl-6-arylpyridines carrying active pharmacophore 4,5-dihydro 2-pyrazolines: Synthesis, antidepressant, and anti-tuberculosis evaluation. Res. Chem. Intermed., 2017, 43(12), 7399-7422.
[http://dx.doi.org/10.1007/s11164-017-3083-4]
[26]
Yu, X.; Wang, L.; Feng, X.; Bao, M.; Yamamoto, Y. Copper-catalyzed aldol-type addition of ketones to aromatic nitriles: A simple approach to enaminone synthesis. Chem. Commun., 2013, 49(28), 2885-2887.
[http://dx.doi.org/10.1039/c3cc40466h]
[27]
Schuppe, A.W.; Cabrera, J.M.; McGeoch, C.L.; Newhouse, T.R. Scalable synthesis of enaminones utilizing Gold’s reagents. Tetrahedron, 2017, 73(26), 3649-3651.
[http://dx.doi.org/10.1016/j.tet.2017.03.092]
[28]
Sayed, M.; Ismail, A. A.; Hamad, M. Enamines as precursors to polyfunctional heteroaromatic compounds: A decade of development. Heterocycles: An int. j. rev. commun. heteroc. chem., 2008, 78(8), 1849-1905.
[29]
Edafiogho, I.O.; Kombian, S.B.; Ananthalakshmi, K.V.; Salama, N.N.; Eddington, N.D.; Wilson, T.L.; Alexander, M.S.; Jackson, P.L.; Hanson, C.D.; Scott, K.R.; Scott, K.R. Enaminones: Exploring additional therapeutic activities. J. Pharmaceutical Sci., 2007, 96(10), 2509-2531.
[http://dx.doi.org/10.1002/jps.20967]
[30]
Hernndez, S.; Moreno, I.; SanMartin, R.; Herrero, M. T.; Domnguez, E. An straightforward entry to new pyrazolo-fused dibenzo [1,4] diazepines. Org. Biomol. Chem., 2011, 9(7), 2251-2257.
[http://dx.doi.org/10.1039/c0ob00812e]
[31]
Al-Zaydi, K.M.; Hafez, E.A.A. 1, 3-Dipolar cycloadditions of some nitrilimines and nitrile oxides to 3-N, N-dimethylamino-1-oxopropene derivatives. J. Chem. Res., 1999, 23(6), 360-361.
[http://dx.doi.org/10.1177/174751989902300608]
[32]
Al-Omran, F.; Al-Awadl, N.; Yousef, O.; Elnagdi, M.H. New routes to 1-functionally substituted arylbenzotriazoles: 3-Benzotriazol-1-yl-pyridazine-4-ones, 5-benzotriazol-1-yl-pyridazine-6-ones and 5-benzotriazol-1-yl-pyridazine-6-imines. J. Heterocycl. Chem., 2000, 37(1), 167-170.
[http://dx.doi.org/10.1002/jhet.5570370127]
[33]
Al-Saleh, B.; Abdel-Khalik, M.M.; Darwich, E.; Salah, O.A.M.; Elnagdi, M.H. Functionally substituted alkylbenzotriazoles: Reactivity of alkylbenzotriazoles toward electrophilic and nucleophilic reagents. Heteroatom Chem., 2002, 13(2), 141-145.
[http://dx.doi.org/10.1002/hc.10009]
[34]
Abdelkhalik, M.M.; Eltoukhy, A.M.; Agamy, S.M.; Elnagdi, M.H. Enaminones as building blocks in heterocyclic synthesis: New syntheses of nicotinic acid and thienopyridine derivatives. J. Heterocycl. Chem., 2004, 41(3), 431-434.
[http://dx.doi.org/10.1002/jhet.5570410321]
[35]
Shaaban, M.R.; Farghaly, T.A.; Khormi, A.Y.; Farag, A.M. Recent advances in synthesis and uses of heterocycles-based palladium(ii) complexes as robust, stable, and low-cost catalysts for suzuki- miyaura crosscouplings. Curr. Org. Chem., 2019, 23(15), 1601-1662.
[http://dx.doi.org/10.2174/1385272823666190620121845]
[36]
Dawood, K.M.; Farghaly, T.A.; Raslan, M.A. Heteroannulation routes to bioactive pyrazolooxazines. Curr. Org. Chem., 2020, 24(17), 1943-1975.
[http://dx.doi.org/10.2174/1570179417999200628035124]
[37]
Farghaly, T.A.; Al-Hasani, W.A.; Abdulwahab, H.G. An updated patent review of VEGFR-2 inhibitors (2017-present). Expert Opin. Ther. Pat., 2021, 31(11), 989-1007.
[http://dx.doi.org/10.1080/13543776.2021.1935872] [PMID: 34043477]
[38]
Gaber, H.M.; Gomha, S.M.; Farghaly, T.A.; Muhammad, Z.A.; Bagley, M.C. Chemistry of α-(arylhydrazono)-β-ketoaldehydes: Preparation and chemical reactivities. Curr. Org. Chem., 2019, 22(27), 2599-2633.
[http://dx.doi.org/10.2174/1385272822666181025145512]
[39]
Behbehani, H.; Dawood, K.M.; Farghaly, T.A. Biological evaluation of benzosuberones. Expert Opin. Ther. Pat., 2018, 28(1), 5-29.
[http://dx.doi.org/10.1080/13543776.2018.1389898] [PMID: 28994619]
[40]
Gaber, H.M.; Muhammad, Z.A.; Gomha, S.M.; Farghaly, T.A.; Bagley, M.C. Recent synthetic approaches to n,n-dimethyl-β-ketoenamines. Curr. Org. Chem., 2017, 21(21), 2168-2195.
[http://dx.doi.org/10.2174/1385272821666170523115019]
[41]
Mahmoud, H.; Abdallah, M.; Farghaly, T. The utility of hydrazonoyl halides in the synthesis of bioactive heterocyclic compounds. Curr. Org. Synth., 2017, 14(3), 430-461.
[http://dx.doi.org/10.2174/1570179413666160624105624]
[42]
Dawood, K.M.; Farghaly, T.A. Thiadiazole inhibitors: A patent review; Exp. Opin. Therap. Pat, 2017, pp. 1-29.
[http://dx.doi.org/10.1080/13543776.2017.1272575]
[43]
Farghaly, T.; Dawood, K.; Shaaban, M. Chemistry and biological activity of pyridotriazolopyrimidines. Curr. Org. Synth., 2015, 12(3), 230-260.
[http://dx.doi.org/10.2174/1570179412666150218202227]
[44]
Shawali, A.S.; Farghaly, T.A. Reactions of hydrazonoyl halides with heterocyclic thiones. convenient methodology for heteroannulation, synthesis of spiroheterocycles and heterocyclic ring transformation. ARKIVOC, 2008, 2008(1), 18-64.
[http://dx.doi.org/10.3998/ark.5550190.0009.102]
[45]
Mabkhot, Y.N.; Aladdi, S.S.; Al-Showiman, S.S.; Al-Majid, A.M.A.; Barakat, A.; Ghabbour, H.A.; Shaaban, M.R. Synthesis and characterization of novel thieno-fused bicyclic compounds through new enaminone containing thieno [2,3-b] pyridine scaffold. J. Chem., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/382381]
[46]
El Azab, I.H.; Khaled, K.M. Synthesis and reactivity of enaminone of naphtho [b] 1,4-oxazine: One pot synthesis of novel isolated and heterocycle-fused derivatives with antimicrobial and antifungal activities. Russ. J. Bioorg. Chem., 2015, 41, 421-436.
[http://dx.doi.org/10.1134/S106816201504007X]
[47]
Abo-Ashour, M.F.; Almahli, H.; Bonardi, A.; Khalil, A.; Al-Warhi, T.; Al-Rashood, S.T.; Abdel-Azizg, A.; Nocentinic, A.; Supuran, C.T.; Eldehna, W.M. Enaminone-based carboxylic acids as novel non-classical carbonic anhydrases inhibitors: Design, synthesis and in vitro biological assessment. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 2226-2256.
[http://dx.doi.org/10.1080/14756366.2022.2114079]
[48]
Jiang, T.S.; Zhou, Y.; Dai, L.; Liu, X.; Zhang, X. Acid-promoted metal-free synthesis of 3-ketoquinolines from amines, enaminones and DMSO. Tetrahedron Lett., 2019, 60(31), 2078-2083.
[http://dx.doi.org/10.1016/j.tetlet.2019.07.010]
[49]
Dao-Lin, W.; Qing-Tao, C.; Shan-Shan, F. New synthetic approach to azuleno [2,1-b] pyridin-4 (1h)-ones. Heterocycles: An Int. J. Rev. Commun. Heterocy. Chem., 2012, 85(3), 697-704.
[http://dx.doi.org/10.3987/COM-12-12422]
[50]
Bunce, R.A.; Nammalwar, B. Ethyl 1,4‐dihydro‐4‐oxo‐1,8‐naphthyridine‐3‐carboxylates by a tandem snar‐addition‐elimination reaction. J. Heterocycl. Chem., 2012, 49(3), 658-663.
[http://dx.doi.org/10.1002/jhet.917]
[51]
Liu, Y.; Zhou, R.; Wan, J.P. Water-promoted synthesis of enaminones: Mechanism investigation and application in multicomponent reactions. Synthe. Commun., 2013, 43(18), 2475-2483.
[http://dx.doi.org/10.1080/00397911.2012.715712]
[52]
Tong, G.; Xu, H.; Fan, W.; Jiang, B.; Wang, S.; Tu, S. Highly diastereoselective three‐component domino reaction in water yielding poly‐substituted 4, 5‐dihydropyrroles. Chin. J. Chem., 2013, 31(8), 1039-1044.
[http://dx.doi.org/10.1002/cjoc.201300249]
[53]
El-Hameed Hassan, A.A. Heterocyclic synthesis via enaminones: Synthesis and molecular docking studies of some novel heterocyclic compounds containing sulfonamide moiety. Int. J. Org. Chem., 2014, 4(1), 68-81.
[http://dx.doi.org/10.4236/ijoc.2014.41009]
[54]
Kibou, Z.; Aissaoui, N.; Daoud, I.; Seijas, J.A.; Vázquez-Tato, M. P.; Klouche Khelil, N.; Choukchou-Braham, N. Efficient synthesis of 2-aminopyridine derivatives: Antibacterial activity assessment and molecular docking studies. Molecules, 2022, 27(11), 3439.
[http://dx.doi.org/10.3390/molecules27113439]
[55]
Yuan, L.; Liu, J.; Huang, K.; Wang, S.; Jin, Y.; Lin, J. Cascade reaction of tertiary enaminones, KSCN, and Anilines: Temperature-controlled synthesis of 2-aminothiazoles and 2-iminothiazoline. J. Org. Chem., 2022, 87(14), 9171-9183.
[http://dx.doi.org/10.1021/acs.joc.2c00918]
[56]
Guo, H.; Tian, L.; Liu, Y.; Wan, J.P. DMSO as a C1 source for [2+ 2+ 1] pyrazole ring construction via metal-free annulation with enaminones and hydrazines. Org. Lett., 2021, 24(1), 228-233.
[http://dx.doi.org/10.1021/acs.orglett.1c03879]
[57]
Feng, J.; Wang, Y.; Gao, L.; Yu, Y.; Baell, J.B.; Huang, F. Electrochemical synthesis of polysubstituted sulfonated pyrazoles via cascade intermolecular condensation, radical–radical cross coupling sulfonylation, and pyrazole annulation. J. Org. Chem., 2022, 87(19), 13138-1315.
[http://dx.doi.org/10.1021/acs.joc.2c01609]
[58]
Riyadh, S.M. Enaminones as building blocks for the synthesis of substituted pyrazoles with antitumor and antimicrobial activities. Molecules, 2011, 16(2), 1834-1853.
[http://dx.doi.org/10.3390/molecules16021834]
[59]
Fahim, A.M.; Tolan, H.E.; Awad, H.; Ismael, E.H. Synthesis, antimicrobial and antiproliferative activities, molecular docking, and computational studies of novel heterocycles. J. Iran. Chem. Soc., 2021, 18(11), 2965-2981.
[http://dx.doi.org/10.1007/s13738-021-02251-7]
[60]
El‐Mekabaty, A.; Etman, H. A.; Mosbah, A.; Fadda, A. A. Synthesis, In Vitro cytotoxicity and bleomycin‐dependent DNA damage evaluation of some heterocyclic‐fused pyrimidinone derivatives. ChemistrySelect, 2020, 5(16), 4856-4861.
[http://dx.doi.org/10.1002/slct.202001006]
[61]
Fahim, A.M.; Shalaby, M.A. Synthesis, biological evaluation, molecular docking and DFT calculations of novel benzenesulfonamide derivatives. J. Mol. Struct., 2019, 1176, 408-421.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.087]
[62]
Abdelrazek, F.M.; Farghaly, M.S.; Abdelrahman, H.E. Synthesis of some novel heterocyclic xylidinyl amines and carboxamides. J. Heterocycl. Chem., 2015, 52(1), 163-168.
[http://dx.doi.org/10.1002/jhet.1996]
[63]
Ali, K.A.; Elsayed, M.A.; Farag, A.M. Cheminform abstract: Synthesis of some new pyridine-2,6-bis-heterocycles. ChemInform, 2012, 43(49)
[http://dx.doi.org/10.1002/chin.201249150]
[64]
Riyadh, S.M.; Farghaly, T.A.; Gomha, S.M. Novel polyazaheterocyclic systems: Synthesis, antitumor, and antimicrobial activities. Arch. Pharm. Res., 2010, 33(11), 1721-1728.
[http://dx.doi.org/10.1007/s12272-010-1102-8] [PMID: 21116773]
[65]
Farghaly, T.A.; Abdel Hafez, N.A.; Ragab, E.A.; Awad, H.M.; Abdalla, M.M. Synthesis, anti-HCV, antioxidant, and peroxynitrite inhibitory activity of fused benzosuberone derivatives. Eur. J. Med. Chem., 2010, 45(2), 492-500.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.033] [PMID: 19913334]
[66]
Hernandez, S.; Moreno, I.; SanMartin, R.; Gomez, G.; Herrero, M.T.; Gómez, G.; Herrero, T. H.; Dominguez, E. Toward safer processes for C− C biaryl bond construction: catalytic direct C− H arylation and tin-free radical coupling in the synthesis of pyrazolophenanthridines. J. Org. Chem., 2010, 75(2), 434-441.
[http://dx.doi.org/10.1021/jo902257j]
[67]
Behbehani, H.; Ibrahim, H.M. 4-Thiazolidinones in heterocyclic synthesis: Synthesis of novel enaminones, azolopyrimidines and 2-arylimino-5-arylidene-4-thiazolidinones. Molecules, 2012, 17(6), 6362-6385.
[http://dx.doi.org/10.3390/molecules17066362]
[68]
Al-Soliemy, A.M.; Sabour, R.; Farghaly, T.A. Pyrazoles and fused pyrimidines: Synthesis, structure elucidation, antitubercular activity and molecular docking study. Med. Chem., 2022, 18(2), 181-198.
[http://dx.doi.org/10.2174/1573406417666210324131951]
[69]
Farghaly, T. A.; Abdulwahab, H. G.; Medrasi, H. Y.; Al-Sheikh, M. A.; Katowah, D. F.; Alsaedi, A. M. Novel 6, 7, 8-trihydrobenzo [6', 7'] cyclohepta [2', 1'-e] pyrazolo [2, 3-a] pyrimidine derivatives as Topo IIα inhibitors with potential cytotoxic activity. Bioorg. Chem., 2022, 128, 106043.
[http://dx.doi.org/10.1016/j.bioorg.2022.106043]
[70]
Al‐Bogami, A. S.; Saleh, T. S.; Moussa, T. A. Green synthesis, antimicrobial activity and cytotoxicity of novel fused pyrimidine derivatives possessing a trifluoromethyl moiety. ChemistrySelect, 2018, 3(28), 8306-5311.
[http://dx.doi.org/10.1002/slct.201801050]
[71]
Ibrahim, H.M.; Behbehani, H. Synthesis of a new class of pyridazin-3-one and 2-amino-5-arylazopyridine derivatives and their utility in the synthesis of fused azines. Molecules, 2014, 19(2), 2637-2657.
[http://dx.doi.org/10.3390/molecules19022637]
[72]
Xu, Z.; Geng, X.; Cai, Y.; Wang, L. A straightforward approach to fluorinated pyrimido [1,2-b] indazole derivatives via metal/additive-free annulation with enaminones, 3-aminoindazoles, and selectfluor. J. Org. Chem., 2022, 87(10), 6562-6572.
[http://dx.doi.org/10.1021/acs.joc.2c00136]
[73]
Abbas, E.M.; Farghaly, T.A. Synthesis, reactions, and biological activity of 1,4-benzothiazine derivatives. Monatshefte für Chemie-Chemical Monthly, 2010, 141, 661-667.
[http://dx.doi.org/10.1007/s00706-010-0312-6]
[74]
Sanad, S.M.; Mekky, A.E. Enaminone incorporating a dibromobenzofuran moiety: Versatile precursor for novel azines and azolotriazines. J. Heterocycl. Chem., 2018, 55(4), 836-843.
[http://dx.doi.org/10.1002/jhet.3107]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy