Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

The In silico and In vitro Anti-inflammatory and Antibacterial Activities of Flavonoids from Artemisia vulgaris in Vietnam

Author(s): Pham Thi Nhat Trinh, Tran Nguyen Minh An*, Tong Thanh Danh, Hong Anh Nguyen Thi, Van-Kieu Nguyen, Thuc-Huy Duong and Le Tien Dung*

Volume 27, Issue 13, 2023

Published on: 13 September, 2023

Page: [1179 - 1190] Pages: 12

DOI: 10.2174/1385272827666230913105836

Price: $65

Abstract

Artemisia vulgaris is used to treat rheumatism, scabies, and trauma-related pain in traditional Vietnamese medicine. However, there is a lack of in vitro and in silico studies on the antibacterial and anti-inflammatory effects of Artemisia vulgaris in Vietnam. This research was designed to evaluate the bioactivities of extracts and isolated flavonoids from this plant. The results indicated that crude extract (AVE) and sub-fractions (hexane - AVH; ethyl acetate - AVEA; and methanol - AVM) showed a strong suppression of nitric oxide creation and proinflammatory TNF-α secretion in LPS-activated RAW 264.7 macrophages. Moreover, AVE, AVEA, and AVH demonstrated moderate antibacterial activity against Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa strains with MICs of 2 mg/mL. Among five isolated flavonoids (1-5), apigenin (1) attenuated LPS-induced inflammation in RAW 264.7 macrophages by downregulating TNF-a and NO production, while apigenin (1) and luteolin (2) were the effective inhibitors of MRSA and P. aeruginosa strains. These results are in accordance with in-silico molecular docking investigations. Among docking poses of compounds (1-5), pose 483, the best docking pose among 500 docking conformations of compound apigenin (1), has been docked to the 4WCU:PDB enzyme with the values of the binding affinity and inhibition constant of -7.27 Kcal.mol-1 and 4.73 μM, respectively and proved to be the best anti-inflammatory compound that linked well to this enzyme and was responsible for explaining anti-inflammatory activity. In silico docking to explain why luteolin (2) inhibits bacteria via a general enzyme inhibition mechanism, glucosamine-6-phosphate synthase: 2VF5. Luteolin (2) or pose 148 anchored well to 2VF5 with binding affinity and inhibition constants of -6.90 Kcal.mol-1 and 8.80 μM, respectively. The study demonstrated that apigenin, or pose 483, was an excellent anti-inflammatory compound with meta-hydroxy in ring B, while luteolin, or pose 148, with orto-hydroxy in ring B, exhibited good anti-bacterial activity.

Graphical Abstract

[1]
Ragasa, C.Y.; de Jesus, J.P.; Apuada, M.J.; Rideout, J.A. A new sesquiterpene from Artemisia vulgaris. J. Nat. Med., 2008, 62(4), 461-463.
[http://dx.doi.org/10.1007/s11418-008-0253-0] [PMID: 18438634]
[2]
Lee, S-J.; Chung, H-Y.; Maier, C.G-A.; Wood, A.R.; Dixon, R.A.; Mabry, T.J. Estrogenic flavonoids from Artemisia vulgaris L. J. Agric. Food Chem., 1998, 46(8), 3325-3329.
[http://dx.doi.org/10.1021/jf9801264]
[3]
Carnat, A.; Heitz, A.; Fraisse, D.; Carnat, A.P.; Lamaison, J.L. Major dicaffeoylquinic acids from Artemisia vulgaris. Fitoterapia, 2000, 71(5), 587-589.
[http://dx.doi.org/10.1016/S0367-326X(00)00163-5] [PMID: 11449516]
[4]
Wang, J.; Zhu, F.; Zhou, X.M.; Niu, C.Y.; Lei, C.L. Repellent and fumigant activity of essential oil from Artemisia vulgaris to Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Stored Prod. Res., 2006, 42(3), 339-347.
[http://dx.doi.org/10.1016/j.jspr.2005.06.001]
[5]
Hoffmann, B.; Herrmann, K. Flavonolglykoside des beifu (Artemisia vulgaris L.), Estragon (Artemisia dracunculus L.) und wermut (Artemisia absinthium L.). Z. Lebensm. Unters. Forsch., 1982, 174(3), 211-215.
[http://dx.doi.org/10.1007/BF01079976]
[6]
Van Nguyen, T.T.; Phan, T.; Phan, T.; Kim Thi Tran, L.; Tiet Thi Tran, N.; Hoang Dang, P.; Nguyen, L.; Ton, Q. Chemical constituents of the ethyl acetate extract from the leaf of mugwort (Artemisia vulgaris L.). Sci. Technol. Develop. J., 2019, 22(4), 255-352.
[7]
Hanh, T.T.H.; Hang, L.T.T.; Huong, P.T.T.; Trung, N.Q.; Cuong, T.V.; Thanh, N.V.; Cuong, N.X.; Nam, N.H.; Minh, C.V. Two new guaiane sesquiterpene lactones from the aerial parts of Artemisia vulgaris. J. Asian Nat. Prod. Res., 2018, 20(8), 752-756.
[http://dx.doi.org/10.1080/10286020.2017.1356826] [PMID: 28942674]
[8]
Ingersoll, D.W.; Bronstein, P.M.; Bonventre, J.; Ruth, H.; William, E.H.; Arthur, J.O. Chemical modulation of agonistic display in Betta splendens. J. Comp. Physiol. Psychol., 1976, 90(2), 198-202.
[http://dx.doi.org/10.1037/h0077195]
[9]
Firas, H.K.; Stanley, M.S. ,Eds. Neuroproteomics (Methods and Protocols); Springer: New York, NY, 2016.
[http://dx.doi.org/10.1007/978-1-4939-6952-4]
[10]
Agrawal, P.; Singh, H.; Srivastava, H.K.; Singh, S.; Kishore, G.; Raghava, G.P.S. Benchmarking of different molecular docking methods for protein-peptide docking. BMC Bioinf., 2019, 19(S13), 426.
[http://dx.doi.org/10.1186/s12859-018-2449-y] [PMID: 30717654]
[11]
Guedes, I.A.; de Magalhães, C.S.; Dardenne, L.E. Receptor-ligand molecular docking. Biophys. Rev., 2014, 6(1), 75-87.
[http://dx.doi.org/10.1007/s12551-013-0130-2] [PMID: 28509958]
[12]
Wang, G.; Peng, Y.; Xie, Z.; Wang, J.; Chen, M. Synthesis,α-glucosidase inhibition and molecular docking studies of novel thiazolidine-2,4-dione or rhodanine derivatives. MedChemComm, 2017, 8(7), 1477-1484.
[http://dx.doi.org/10.1039/C7MD00173H] [PMID: 30108859]
[13]
Staker, B.L.; Feese, M.D.; Cushman, M.; Pommier, Y.; Zembower, D.; Stewart, L.; Burgin, A.B. Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J. Med. Chem., 2005, 48(7), 2336-2345.
[http://dx.doi.org/10.1021/jm049146p] [PMID: 15801827]
[14]
Eze, F.U.; Okoro, U.C.; Ugwu, D.I.; Okafor, S.N. Biological activity evaluation of some new benzenesulphonamide derivatives. Front Chem., 2019, 7, 634.
[http://dx.doi.org/10.3389/fchem.2019.00634] [PMID: 31620427]
[15]
Mai, T.C.; Tran, N.T.; Mai, D.T.; Ngoc Mai, T.T.; Thuc Duyen, N.H.; Minh An, T.N.; Alam, M.; Dang, C.H.; Nguyen, T.D. Supercritical CO2 assisted extraction of essential oil and naringin from Citrus grandis peel: In vitro antimicrobial activity and docking study. RSC Advances, 2022, 12(40), 25962-25976.
[http://dx.doi.org/10.1039/D2RA04068A] [PMID: 36199614]
[16]
Zhang, H.J.; Wang, X.Z.; Cao, Q.; Gong, G.H.; Quan, Z.S. Design, synthesis, anti-inflammatory activity, and molecular docking studies of perimidine derivatives containing triazole. Bioorg. Med. Chem. Lett., 2017, 27(18), 4409-4414.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.014] [PMID: 28823493]
[17]
Khan, S.U.; Ahemad, N.; Chuah, L.H.; Naidu, R.; Htar, T.T. Illustrated step by step protocol to perform molecular docking: Human estrogen receptor complex with 4-hydroxytamoxifen as a case study. Prog. . Drug Discov. Biomed. Sci.,, 2020, 3(1)
[http://dx.doi.org/ 10.36877/pddbs.a0000054]
[18]
Aamir, M.; Singh, V.K.; Dubey, M.K.; Meena, M.; Kashyap, S.P.; Katari, S.K.; Upadhyay, R.S.; Umamaheswari, A.; Singh, S. In silico prediction, characterization, molecular docking, and dynamic studies on fungal SDRs as novel targets for searching potential fungicides against fusarium wilt in tomato. Front. Pharmacol., 2018, 9(9), 1038.
[http://dx.doi.org/10.3389/fphar.2018.01038] [PMID: 30405403]
[19]
Bell, E.W.; Zhang, Y. DockRMSD: An open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. J. Cheminform., 2019, 11(1), 40.
[http://dx.doi.org/10.1186/s13321-019-0362-7] [PMID: 31175455]
[20]
Sargsyan, K.; Grauffel, C.; Lim, C. How molecular size impacts RMSD applications in molecular dynamics simulations. J. Chem. Theory Comput., 2017, 13(4), 1518-1524.
[http://dx.doi.org/10.1021/acs.jctc.7b00028] [PMID: 28267328]
[21]
Duong, T.H.; Paramita Devi, A.; Tran, N.M.A.; Phan, H.V.T.; Huynh, N.V.; Sichaem, J.; Tran, H.D.; Alam, M.; Nguyen, T.P.; Nguyen, H.H.; Chavasiri, W.; Nguyen, T.C. Synthesis,α-glucosidase inhibition, and molecular docking studies of novel N-substituted hydrazide derivatives of atranorin as antidiabetic agents. Bioorg. Med. Chem. Lett., 2020, 30(17), 127359.
[http://dx.doi.org/10.1016/j.bmcl.2020.127359] [PMID: 32738998]
[22]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[23]
Bitew, M.; Desalegn, T.; Demissie, T.B.; Belayneh, A.; Endale, M.; Eswaramoorthy, R. Pharmacokinetics and drug-likeness of antidiabetic flavonoids: Molecular docking and DFT study. PLoS One, 2021, 16(12), e0260853.
[http://dx.doi.org/10.1371/journal.pone.0260853] [PMID: 34890431]
[24]
Wang, Y.; Xing, J.; Xu, Y.; Zhou, N.; Peng, J.; Xiong, Z.; Liu, X.; Luo, X.; Luo, C.; Chen, K.; Zheng, M.; Jiang, H. In silico ADME/T modelling for rational drug design. Q. Rev. Biophys., 2015, 48(4), 488-515.
[http://dx.doi.org/10.1017/S0033583515000190] [PMID: 26328949]
[25]
Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14.
[http://dx.doi.org/10.1093/nar/gkab255] [PMID: 33893803]
[26]
Addo-Mensa, A.; Garcia, G.; Maldonado, I.A.; Anaya, E.; Cadena, G.; Lee, L.G. Evaluation of antibacterial activity of Artemisia vulgaris extracts. Res. J. Med. Plant, 2015, 9(5), 234-240.
[http://dx.doi.org/10.3923/rjmp.2015.234.240]
[27]
Lee, S.; So, Y.J.; Shin, M.; Cho, J.; Lee, J. Antibacterial effects of afzelin isolated from Cornus macrophylla on Pseudomonas aeruginosa, a leading cause of illness in immunocompromised individuals. Molecules, 2014, 19(3), 3173-3180.
[http://dx.doi.org/10.3390/molecules19033173] [PMID: 24642906]
[28]
Xie, Z.; Huang, J.; Xie, Z.; Yu, X.; Yang, M.; Yang, D.; Xu, X. Isolation and purification of isoquercitrin and quercitrin from sf Hypericum japonicum thunb.ex murray by counter-current chromatography. Sep. Sci. Technol., 2014, 49(5), 778-782.
[http://dx.doi.org/10.1080/01496395.2013.864310]
[29]
Van Loo, P.; De Bruyn, A. Buděšínský, M. Reinvestigation of the structural assignment of signals in the1H and13C NMR spectra of the flavone apigenin. Magn. Reson. Chem., 1986, 24(10), 879-882.
[http://dx.doi.org/10.1002/mrc.1260241007]
[30]
Kasinee, T.; Chatchai, C.; Boonchoo, S.; Kittisak, L. Cytotoxic and anti-metastatic activities of phenolic compounds from dendrobium ellipsophyllum., Anticancer Res., 2014, 34, 6573-6580ss.
[31]
Zhong, X-N.; Otsuka, H.; Ide, T.; Hirata, E.; Takushi, A.; Takeda, Y. Three flavonol glycosides from leaves of Myrsine seguinii. Phytochemistry, 1997, 46(5), 943-946.
[http://dx.doi.org/10.1016/S0031-9422(97)00366-X]
[32]
Giannini, G.; Cabri, W.; Fattorusso, C.; Rodriquez, M. Histone deacetylase inhibitors in the treatment of cancer: Overview and perspectives. Future Med. Chem., 2012, 4(11), 1439-1460.
[http://dx.doi.org/10.4155/fmc.12.80] [PMID: 22857533]
[33]
Nathan, C. Nitric oxide as a secretory product of mammalian cells. FASEB J., 1992, 6(12), 3051-3064.
[http://dx.doi.org/10.1096/fasebj.6.12.1381691] [PMID: 1381691]
[34]
Hilliquin, P.; Borderie, D.; Hernvann, A.; Menkès, C.J.; Ekindjian, O.G. Nitric oxide as s-nitrosoproteins in Rheumatoid arthritis. Arthritis Rheum., 1997, 40(8), 1512-1517.
[http://dx.doi.org/10.1002/art.1780400820] [PMID: 9259433]
[35]
Lyu, S.Y.; Park, W.B. Production of cytokine and NO by RAW 264.7 macrophages and PBMC in vitro incubation with flavonoids. Arch. Pharm. Res., 2005, 28(5), 573-581.
[http://dx.doi.org/10.1007/BF02977761] [PMID: 15974445]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy