Abstract
Background: MicroRNA (miR)-125a-3p is reported to play an important role in some central nervous system diseases, such as Alzheimer’s disease (AD). However, a study has not been conducted on the mechanism of miR-125a-3p in the pathological process of AD.
Methods: First, we assessed the expression of miR-125a-3p in AD cohort. Subsequently, we altered the expressions of miR-125a-3p to assess its role in cell viability, cell apoptosis, amyloid-β (Aβ) metabolism, and synaptic activity. Finally, we identified its potential mechanism underlying AD pathology.
Results: This study unveiled the potential function of miR-125a-3p through modulating amyloid precursor protein processing. Additionally, miR-125a-3p influenced cell survival and activated synaptic expression through the modulation of Aβ metabolism in the mitogen-activated protein kinase (MAPK) pathway via fibroblast growth factor receptor 2.
Conclusion: Our study indicates that targeting miR-125a-3p may be an applicable therapy for AD in the future. However, more in vitro and in vivo studies with more samples are needed to confirm these results.
[http://dx.doi.org/10.1111/neup.12626] [PMID: 31863504]
b) Doxtater, K.; Tripathi, M.K.; Khan, M.M. Recent advances on the role of long non-coding RNAs in Alzheimer’s disease. Neural Regen. Res., 2020, 15(12), 2253-2254.
(b) Zolochevska, O.; Taglialatela, G. Selected microRNAs increase synaptic resilience to the damaging binding of the Alzheimer’s disease amyloid beta oligomers. Mol Neurobiol., 2020, 57(5), 2232-43;
(c) Brito, L.M.; Ribeiro-Dos-Santos, A.; Vidal, A.F.; de Araujo, G.S. Differential Expression and miRNA-Gene Interactions in early and late mild cognitive impairment. Biology (Basel), 2020, 9(9)
[PMID: 27814298]
[http://dx.doi.org/10.1007/s12035-020-02029-7] [PMID: 32737762]
[http://dx.doi.org/10.1016/j.lfs.2017.05.023] [PMID: 28533191]
(b) Dickson, J.R.; Kruse, C.; Montagna, D.R.; Finsen, B.; Wolfe, M.S. Alternative polyadenylation and miR-34 family members regulate tau expression. J. Neurochem., 2013, 127(6), 739-749.
[PMID: 24032460]
[http://dx.doi.org/10.1371/journal.pone.0116759] [PMID: 25560389]
[http://dx.doi.org/10.1002/glia.23819] [PMID: 32163190]
[http://dx.doi.org/10.1007/s10072-015-2149-6] [PMID: 25809569]
[http://dx.doi.org/10.1007/s12031-020-01600-0] [PMID: 32472396]
[http://dx.doi.org/10.1016/j.ydbio.2016.03.026] [PMID: 27034231]
[http://dx.doi.org/10.1111/exd.13901] [PMID: 30758073]
[http://dx.doi.org/10.1093/abbs/gmy072] [PMID: 29939221]
[http://dx.doi.org/10.3390/ijms21165624] [PMID: 32781522]
[http://dx.doi.org/10.1515/revneuro-2018-0008] [PMID: 29804103]
[PMID: 22755191]
[http://dx.doi.org/10.1080/15287394.2019.1684007] [PMID: 31739764]
[http://dx.doi.org/10.1177/15333175211021712] [PMID: 34080437]
[PMID: 28847283]
[http://dx.doi.org/10.1186/1756-8722-6-6] [PMID: 23321005]
[http://dx.doi.org/10.1038/srep34503] [PMID: 27698367]
[http://dx.doi.org/10.1186/s13195-020-00735-x] [PMID: 33278902]
b) Caceres, A.; Gonzalez, J.R. When pitch adds to volume: Coregulation of transcript diversity predicts gene function. BMC Genomics, 2018, 19(1), 926.
[PMID: 30545302]
[http://dx.doi.org/10.1096/fj.201902731RR] [PMID: 32475008]
[http://dx.doi.org/10.3389/fneur.2013.00161] [PMID: 24146661]
[http://dx.doi.org/10.3390/molecules22081287] [PMID: 28767069]
[http://dx.doi.org/10.1186/s12974-020-01809-1] [PMID: 32326963]
b) Calkins, M.J.; Reddy, P.H. Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer’s disease neurons. Biochim. Biophys. Acta, 2011, 1812(4), 507-513.
[PMID: 21241801]
[http://dx.doi.org/10.1371/journal.pone.0111594] [PMID: 25380251]