Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Diverse Pharmacological Potential of Pyridazine Analogs against Various Diseases

Author(s): Ahad Amer Alsaiari, Mazen M. Almehmadi and Mohammad Asif*

Volume 20, Issue 3, 2024

Published on: 25 September, 2023

Page: [245 - 267] Pages: 23

DOI: 10.2174/1573406419666230913102835

Price: $65

Abstract

Pyridazinone analogs possess diverse types of pharmacological activities, such as anticancer, antimicrobial, anticonvulsant, analgesic, anti-inflammatory, antioxidant, antihypertensive, antisecretory, antiulcer, and other useful pharmacological activities. They also possess cyclooxygenase (COX) inhibitors, dipeptidyl peptidase inhibitors, phosphodiesterase inhibitors, glutamate transporter activators, adenosine receptor antagonists, serotonin receptors antagonists, lipooxygenase, cholinesterase, vasodilator, and anesthetics. Pyridazine rings are the essential structure for some marketed drugs, such as pimobendan, levosimendan as a cardiotonic drug, and emorfozan as an analgesic and anti-inflammatory (Non-steroidal anti-inflammatory drug) agent. So, researchers all over the world have paid attention to synthesizing various pyridazinone compounds mainly due to the ease of design and synthesis of different analogs and variables in the pharmacological responses. This review article focuses on the pharmacological activities of different pyridazine analogs.

Next »
Graphical Abstract

[1]
Gökçe, M.; Dündar, Y.; Küpelg, E. Synthesis of (6-substituted-3 (2H)-pyridazinon-2-yl) acetic acid and (6-substituted-3 (2H)-pyridazinon-2-yl) acetamide derivatives and investigation of their analgesic and anti-inflammatory activities. FABAD J. Pharm. Sci., 2010, 35, 1-11.
[2]
Asif, M.; Alghamdi, S. A mini-review on pyridazine analogs: Chemical and pharmacological potentials. Mini Rev. Org. Chem., 2023, 20(2), 100-123.
[http://dx.doi.org/10.2174/1570193X19666220329155551]
[3]
Alang, G.; Kaur, R.; Singh, A.; Budhlakoti, P.; Singh, A. Synthesis, characterization and anti-bacterial activity of certain 2,3,4,5-tetrahydropyridazinone analogues. Turk. J. Pharm. Sci., 2011, 8, 71-80.
[4]
Al-Karmalawy, A.A.; Nafie, M.S.; Shaldam, M.A.; Elmaaty, A.A.; Antar, S.A.; El-Hamaky, A.A.; Saleh, M.A.; Elkamhawy, A.; Tawfik, HO. Ligand-based design on the dog-bone-shaped BIBR1532 pharmacophoric features and synthesis of novel analogues as promising telomerase inhibitors with in vitro and in vivo evaluations. J. Med. Chem., 2023, 66, 777-792.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01668]
[5]
Samanta, K.C.; Asif, M.; Garg, V.; Sharma, P.; Singh, R. Synthesis of different substituted pyridazinone derivatives and their anticonvulsant activity. J. Chem., 2011, 8, 245-251.
[6]
Youness Boukharsa, Y.Z.; Taoufik, J.; Ansar, M. Pyridazin-3(2H)-ones: Synthesis, reactivity, applications in pharmacology and agriculture. J. Chem. Pharm. Res., 2014, 6, 297-310.
[7]
Abbas, S.H.; Abuo-Rahma, G.E.D.A.A.; Abdel-Aziz, M.; Aly, O.M.; Beshr, E.A.; Gamal-Eldeen, A.M. Synthesis, cytotoxic activity, and tubulin polymerization inhibitory activity of new pyrrol-2(3H)-ones and pyridazin-3(2H)-ones. Bioorg. Chem., 2016, 66, 46-62.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.007] [PMID: 27016713]
[8]
Abdelbaset, M.; Abdel-Aziz, M.; Abuo-Rahma, G.; Ramadan, M.; Abdelrahman, M. Pyridazinones and pyrrolones as promising Scaffolds in Medicinal Chemistry. J. Adv. Biomed. Pharm. Sci., 2018, 2(1), 19-28.
[http://dx.doi.org/10.21608/jabps.2018.5283.1023]
[9]
Nieminen, M.S.; Fruhwald, S.; Heunks, L.M.; Suominen, P.K.; Gordon, A.C.; Kivikko, M.; Pollesello, P. Levosimendan: Current data, clinical use and future development. Heart Lung Vessel., 2013, 5(4), 227-245.
[PMID: 24364017]
[10]
Alghamdi, S.; Imran, M.; Kamal, M.; Asif, M. Synthesis, characterization and antimycobacterial activity of some substituted phenylpyridazinone derivatives. Pharm. Chem. J., 2021, 55(12), 1345-1349.
[11]
Mohd, I.; Mohammad, A. Study of various pyridazine and phthalazine drugs with diverse therapeutical and agrochemical activities. Russ. J. Bioorganic Chem., 2020, 46(5), 745-767.
[http://dx.doi.org/10.1134/S1068162020050167]
[12]
Asif, M.; Imran, M. Antitubercular and anticonvulsant activities of Phenyl-di-hydropyridazinone derivatives containing 2-Substituted amin-1-yl-methyl and 2-(2- 1H -amin-1-yl) ethyl moieties. Anal. Chem. Lett., 2020, 10(3), 414-427.
[http://dx.doi.org/10.1080/22297928.2020.1776633]
[13]
Siddiqui, A.A.; Mishra, R.; Shaharyar, M.; Husain, A.; Rashid, M.; Pal, P. Triazole incorporated pyridazinones as a new class of antihypertensive agents: Design, synthesis and in vivo screening. Bioorg. Med. Chem. Lett., 2011, 21(3), 1023-1026.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.028] [PMID: 21211966]
[14]
Thota, S.; Bansal, R. Synthesis of new pyridazinone derivatives as platelet aggregation inhibitors. Med. Chem. Res., 2010, 19(8), 808-816.
[http://dx.doi.org/10.1007/s00044-009-9232-6]
[15]
Bansal, R.; Kumar, D.; Sharma, D.; Calle, C.; Carron, R. Synthesis and pharmacological evaluation of 6-arylpyridazinones as potent vasorelaxants. Drug Dev. Res., 2013, 74(5), 296-305.
[http://dx.doi.org/10.1002/ddr.21079]
[16]
Lee, J.; Shin, A.Y.; Lee, H.S. Isolation and synthesis of luffariellolide derivatives and evaluation of antibacterial activities against gram-negative bacteria. Bull. Korean Chem. Soc., 2017, 38(7), 804-807.
[http://dx.doi.org/10.1002/bkcs.11156]
[17]
Asif, M.; Singh, D.; Singh, A. Analgesic activity of some 6-phenyl-4-substituted benzylidene tetrahydro pyridazin-3(2H)-ones. Glob. J. Pharmacol., 2011, 5, 18-22.
[18]
Gökçe, M.; Colak, M.S.; Küpeli, E.; Sahin, M.F. Synthesis and analgesic and anti-inflammatory activity of 6-phenyl/(4-methylphenyl)-3(2H)-pyridazinon-2-propionamide derivatives. Arzneimittelforschung, 2009, 59(7), 357-363.
[PMID: 19728563]
[19]
Asif, M.; Singh, A. Anticonvulsant activity of 4-(substituted benzylidene)-6-(3-nitrophenyl)-4,5-dihydro pyridazin-3(2H)-ones against maximal electro shock induced seizure. Middle East J. Sci. Res., 2011, 9, 481485.
[20]
Kummari, B.; Ramesh, P.; Parsharamulu, R.; Allaka, T.R.; Anantaraju, H.; Yogeeswari, P.; Balasubramanian, S.; Guggilapu, S.D.; Babu, B.N.; Anireddy, J.S. Design and synthesis of new Etodolac‐Pyridazinones as Potent Anticancer Agents Using Pb(OAc) 4 to assist N‐N Bond formation. ChemistrySelect, 2018, 3(18), 5050-5054.
[http://dx.doi.org/10.1002/slct.201800459]
[21]
Costas, T.; Besada, P.; Piras, A.; Acevedo, L.; Yañez, M.; Orallo, F.; Laguna, R.; Terán, C. New pyridazinone derivatives with vasorelaxant and platelet antiaggregatory activities. Bioorg. Med. Chem. Lett., 2010, 20(22), 6624-6627.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.031] [PMID: 20880705]
[22]
El-Ghaffar, N.A.; Mohamed, M.K.; Kadah, M.S.; Radwan, A.M.; Said, G.H.; Abd, S.N. Synthesis and anti-tumor activities of some new pyridazinones containing the 2-phenyl-1h-indolyl moiety. J. Chem. Pharm. Res., 2011, 3, 248-259.
[23]
El-Hashash, M.A.; Essawy, A.; Sobhy Fawzy, A. Synthesis and antimicrobial activity of some novel heterocyclic candidates via Michael addition involving 4-(4-acetamidophenyl)-4-oxobut-2-enoic acid. Adv. Chem., 2014, 1-10.
[24]
Mohd, I.; Mohammad, A. Biologically active pyridazines and pyridazinone derivatives: A scaffold for the highly functionalized compounds. Russ. J. Bioorganic Chem., 2020, 46(5), 726-744.
[http://dx.doi.org/10.1134/S1068162020050155]
[25]
Khan, A.; Diwan, A.; Thabet, H.K.; Imran, M.; Bakht, M.A. Discovery of novel Pyridazine-based cyclooxygenase-2 inhibitors with a promising gastric safety profile. Molecules, 2020, 25(9), 2002.
[http://dx.doi.org/10.3390/molecules25092002] [PMID: 32344801]
[26]
Verma, S.K.; Irrchhaiya, R.; Namdeo, K.P.; Singh, V.K.; Khurana, S.; Singh, A. Synthesis and antimicrobial activity of some pyridazinone derivatives. Biomed. Pharmacol. J., 2008, 1, 213-218.
[27]
Islam, M.; Siddiqui, A.A.; Rajesh, R. Synthesis, antitubercular, antifungal and antibacterial activities of 6-substituted phenyl-2-(3′-substituted phenyl pyridazin-6′-yl)-2,3,4,5-tetrahydropyridazin-3-one. Acta Pol. Pharm., 2008, 65(3), 353-362.
[PMID: 18646555]
[28]
Islam, M.; Siddiqui, A.A.; Rajesh, R.; Bakht, A.; Goyal, S. Synthesis and antimicrobial activity of some novel oxadiazole derivatives. Acta Pol. Pharm., 2008, 65(4), 441-447.
[PMID: 19051585]
[29]
Siddiqui, A.A.; Hasan, H.; Islam, M. Synthesis and antitubercular activity of some novel pyridazinone derivatives. J. Ultra Chem., 2009, 5, 295-304.
[30]
Siddiqui, A.A.; Islam, M.; Kumar, S. Synthesis and antituberculostic activity of 5-{3′-oxo-6′-(substitutedphenyl)-2′,3′,4′,5′-tetrahydropyridazin-2′-yl}methyl-2-substituted-1,3,4-oxadiazole. Pharm. Lett., 2010, 2, 319-327.
[31]
Islam, M.; Siddiqui, A.A. Synthesis, antituberculostatic, antifungal and antibacterial activities of 3-substituted phenyl-6-substituted phenyl-1,2,4-triazolo[4,3-b]pyridazines. Acta Pol. Pharm., 2010, 67(5), 555-562.
[PMID: 20873426]
[32]
Asif, M.; Singh, A.; Lakshmayya, L. Lakshmayya. In-vivo anticonvulsant and in-vitro antimycobacterial activities of 6-aryl pyridazine-3(2H)-one derivatives. Am. J. Pharmacol. Sci., 2014, 2(1), 1-6.
[http://dx.doi.org/10.12691/ajps-2-1-1]
[33]
Mogle, P.P.; Kamble, R.D.; Hese, S.V.; Hebade, M.J.; More, R.A.; Kamble, S.S.; Gacche, R.N.; Dawane, B.S. Synthesis of new dihydropyridazin-3(2H)-ylidene)hydrazine carbothioamide derivatives as an antituberculosis agent. Chemica Sinica, 2014, 5, 129-134.
[34]
Islam, M.; Aljaiyash, A.A.H. Synthesis, antifungal and antibacterial activities of 3-substituted phenyl-6-substituted phenyl-(1,2,4)-triazolo[4,3-b]pyridazines. Pharm. Lett., 2013, 5, 27-34.
[35]
Alam, M.; Zaman, M.S.; Alam, M.M.; Husain, A. Studies on 3,5-disubstituted-phenyl-3,3a,4,7-tetrahydro-2H-pyrazolo[3,4-c]pyridazine derivatives. J. Pharm. Res., 2014, 8, 1586-1591.
[36]
Kandi, N.G.; Mohamed, M.I.; Zaky, H.T.; Mohamed, M.S. New pyridazine derivatives. Effects on a biological system. Tinctoria, 1996, 93, 40-49.
[37]
Budhlakoti, P.; Kumar, Y.; Verma, A.; Alok, S. Synthesis, antibacterial activity, and molecular properties prediction of some pyridazine-3-one derivatives. Int. J. Pharm. Sci. Res., 2013, 4, 1524-1528.
[38]
Siddiqui, A.A.; Ahamad, S.R.; Mir, M.S.; Hussain, S.A.; Raish, M.; Kaur, R. Synthesis and in-vitro antifungal activity of 6-substituted-phenyl-2-{[(4′-substituted phenyl-5′-thioxo)-1,2,4-triazol-3-yl]-methyl}-2,3,4,5-tetrahydropyridazin-3-one derivatives. Acta Pol. Pharm., 2008, 65, 223-228.
[PMID: 18666429]
[39]
Siddiqui, A.A.; Hasan, H.M.I.; Islam, M. Antifungal potential of 1,2-4triazole derivatives and therapeutic efficacy of Tineacorporis in albino rats. Pharm. Lett., 2011, 3, 228-236.
[40]
Islam, M.; Albratty, M. Antiviral activity of some novel synthesized 1,3,4-oxadiazoles. J. Chem. Biol. Phys. Sci., 2016, 6, 624-633.
[41]
Sukuroglu, M.; Onkol, T.; Onurdağ, F.K.; Akalın, G.; Şahin, M.F. Synthesis and in vitro biological activity of new 4,6-disubstituted 3(2H)-pyridazinone-acetohydrazide derivatives. Z. Naturforsch. C J. Biosci., 2012, 67(5-6), 257-265.
[http://dx.doi.org/10.1515/znc-2012-5-604] [PMID: 22888530]
[42]
Doğruer, D.S.; Önkol, T.; Özkan, S.; Oezgen, S.; Ġ ahġn, M.F. Synthesis and antimicrobial activity of some 3(2H)-pyridazinone and 1(2H)-phthalazinone derivatives. Turk. J. Chem., 2008, 32, 469-479.
[43]
Zou, X.J.; Lai, L.H.; Jin, G.Y.; Zhang, Z.X. Synthesis, fungicidal activity, and 3D-QSAR of pyridazinone-substituted 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. J. Agric. Food Chem., 2002, 50(13), 3757-3760.
[http://dx.doi.org/10.1021/jf0201677] [PMID: 12059155]
[44]
Sönmez, M.; Berber, I.; Akbaş, E. Synthesis, antibacterial and antifungal activity of some new pyridazinone metal complexes. Eur. J. Med. Chem., 2006, 41(1), 101-105.
[http://dx.doi.org/10.1016/j.ejmech.2005.10.003] [PMID: 16293349]
[45]
Husain, A.; Ahmad, A.; Bhandari, A.; Ram, V. Synthesis and antitubercular activity of pyridazinone derivatives. J. Chil. Chem. Soc., 2011, 56(3), 778-780.
[http://dx.doi.org/10.4067/S0717-97072011000300013]
[46]
Utku, S.; Gökçe, M.; Aslan, G.; Bayram, G.; Ülger, M.; Emekdaş, G.; Şahi̇n, M.F. Synthesis and in vitro antimycobacterial activities of novel 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(substituted/nonsubstituted acetophenone) hydrazone. Turk. J. Chem., 2011, 35, 331-339.
[http://dx.doi.org/10.3906/kim-1009-63]
[47]
Lien, V.T.; Kristiansen, M.K.; Pettersen, S.; Haugen, M.H.; Olberg, D.E.; Waaler, J.; Klaveness, J. Towards dual inhibitors of the MET kinase and WNT signaling pathway; design, synthesis and biological evaluation. RSC Advances, 2019, 9(63), 37092-37100.
[http://dx.doi.org/10.1039/C9RA08954C] [PMID: 35539091]
[48]
George, R.F.; Fouad, M.A.; Gomaa, I.E.O. Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers. Eur. J. Med. Chem., 2016, 112, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.048] [PMID: 26874744]
[49]
George, R.F.; Saleh, D.O. Synthesis, vasorelaxant activity and 2D-QSAR study of some novel pyridazine derivatives. Eur. J. Med. Chem., 2016, 108, 663-673.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.015] [PMID: 26735908]
[50]
Combs, D.W.; Reese, K.; Cornelius, L.A.M.; Gunnet, J.W.; Cryan, E.V.; Granger, K.S.; Jordan, J.J.; Demarest, K.T. Nonsteroidal progesterone receptor ligands. 2. High-affinity ligands with selectivity for bone cell progesterone receptors. J. Med. Chem., 1995, 38(25), 4880-4884.
[http://dx.doi.org/10.1021/jm00025a004] [PMID: 8523400]
[51]
Rakib, E.M.; Abouricha, S.; Hannioui, A.; Benchat, N.; Ait-M’barek, L.; Zyad, A. Synthesis and in vitro cytotoxicity studies of novel triazolo[4,3-b]pyridazinones. J. Iran. Chem. Soc., 2006, 3, 272-276.
[52]
Asif, M.; Acharya, M. Lakshmayya, Singh, A. Bioactivity of 6-aryl-4,5-dihydropyridazin-3(2H)-ones using brine shrimp (Artemia salina) lethality assay. Int. J. Pharm. Chem., 2013, 3, 40-44.
[53]
Al-Tel, T.H. Design and synthesis of novel tetrahydro-2H-Pyrano[3,2-c]Pyridazin-3(6H)-one derivatives as potential anticancer agents. Eur. J. Med. Chem., 2010, 45(12), 5724-5731.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.029] [PMID: 20884086]
[54]
Pau, A.; Murineddu, G.; Asproni, B.; Murruzzu, C.; Grella, G.; Pinna, G.; Curzu, M.; Marchesi, I.; Bagella, L. Synthesis and cytotoxicity of novel hexahydrothienocycloheptapyridazinone derivatives. Molecules, 2009, 14(9), 3494-3508.
[http://dx.doi.org/10.3390/molecules14093494] [PMID: 19783939]
[55]
Selvakumar, P.; Thennarasu, S.; Mandal, A.B. Synthesis of novel pyridopyridazin-3(2H)-one derivatives and evaluation of their cytotoxic activity against mcf-7 cells. ISRN Org. Chem., 2014, 1-7.
[56]
Liu, Y.; Jin, S.; Peng, X.; Lu, D.; Zeng, L.; Sun, Y.; Ai, J.; Geng, M.; Hu, Y. Pyridazinone derivatives displaying highly potent and selective inhibitory activities against c-Met tyrosine kinase. Eur. J. Med. Chem., 2016, 108, 322-333.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.042] [PMID: 26698536]
[57]
Xu, P.; Wang, S.; Liu, W. Synthesis, anticonvulsant activity, and the structure-activity relationships of phenyl pyridazinones and their GABA derivatives. J. Chin. Pharm. Sci., 1992, 1, 27-34.
[58]
Xu, P.; Wang, S.Y.; Chen, Y.; Liu, W.Q.; Tao, C. Studies on synthesis, anticonvulsant activity and the structure--activity relationships of 6-(substituted phenyl)-3 (2H) pyridazinones. Yao Xue Xue Bao, 1991, 26(9), 656-660.
[PMID: 1821084]
[59]
Xu, P.; Wang, S.; Zhang, C.; Liang, H.; Liu, W. Synthesis and anticonvulsant activity of 6-aryl-3-(4-methylpiperazinyl) pyridazines. Zhongguo Yaowu Huaxue Zazhi, 1990, 1, 42-48.
[60]
Kane, J.M.; Huber, E.W.; Miller, F.P.; Kehne, J.H. Synthesis and pharmacology of 3-aryl-5,6-dihydro-6-oxo-1(4H)-pyridazineacetic acid derivatives. Pharmazie, 1992, 47(4), 249-251.
[PMID: 1518880]
[61]
Rybczynski, P.J.; Combs, D.W.; Jacobs, K.; Shank, R.P.; Dubinsky, B. γ -Aminobutyrate-A Receptor Modulation by 3-Aryl-1-(arylsulfonyl)- 1,4,5,6-tetrahydropyridazines. J. Med. Chem., 1999, 42(13), 2403-2408.
[http://dx.doi.org/10.1021/jm9805889] [PMID: 10395481]
[62]
Siddiqui, A.A.; Shahroz, M.M.; Amir, M. Synthesis and anticonvulsant activity of 6-(substituted aryl)-2,3,4,5-tetrahydro-3-pyridazinones. Orient. J. Chem., 2004, 20, 303-306.
[63]
Siddiqui, A.A.; Sharma, B.; Namdev, K.P.; Chauhan, D. Synthesis and anticonvulsant activity of [6-oxo-3-(substituted phenyl)-5,6-dihydro-4H-pyridazine-1-yl]acetic acid hydrazide. J. Ultra Chem., 2008, 4, 65-70.
[64]
Namdeo, K.P.; Abdullah, M.M.; Sidhquee, A.A. Synthesis and anti-convulsant activity of some N,N′-substituted arylmethane-dipyridazinones. J. Institutional Chemists, 2009, 81, 97-101.
[65]
Sharma, B.; Verma, A.; Sharma, U.K.; Prajapati, S. Efficient synthesis, anticonvulsant and muscle relaxant activities of new 2-((5-amino-1,3,4-thiadiazol-2-yl)methyl)-6-phenyl-4,5-dihydropyridazin-3(2H)-one derivatives. Med. Chem. Res., 2014, 23(1), 146-157.
[http://dx.doi.org/10.1007/s00044-013-0618-0]
[66]
Partap, S.; Yar, M.S.; Hassan, M.Z.; Akhtar, M.J.; Siddiqui, A.A. Design, synthesis, and pharmacological screening of pyridazinone hy-brids as anticonvulsant agents. Arch. Pharm., 2017, 350(10), 1700135.
[http://dx.doi.org/10.1002/ardp.201700135] [PMID: 28863231]
[67]
Partap, S.; Akhtar, M.J.; Yar, M.S.; Hassan, M.Z.; Siddiqui, A.A. Pyridazinone hybrids: Design, synthesis and evaluation as potential anti-convulsant agents. Bioorg. Chem., 2018, 77, 74-83.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.001] [PMID: 29334622]
[68]
Banerjee, P.; Sharma, P.; Nema, R. Synthesis and anticonvulsant activity of pyridazinone derivatives. Int. J. Chemtech Res., 2009, 1, 522-525.
[69]
Husain, A.; Khokra, S.; Thakur, P.; Choudhary, D.; Kohli, S.; Ahmad, A.; Khan, S. Molecular modeling and in silico evaluation of novel pyridazinones derivatives as anticonvulsant agents. J. Insilico & In-vitro Pharmacol., 2015, 1, 15.
[70]
Asif, M.; Singh, A.; Lakshmayya, ; Husain, A.; Siddiqui, A.A. Anticonvulsant and antitubercular activities of 6-phenyl/biphenyl-4-yl-2-[2-(pyridin-2-ylamino)-ethyl]- and 6-(biphenyl-4yl)-2-(2N-substituted amin-1-yl)-ethyl derivatives of 4,5-dihydropyridazin-3(2H)-one. Lett. Drug Des. Discov., 2013, 10, 651-660.
[http://dx.doi.org/10.2174/1570180811310070013]
[71]
Abouzid, K.A.M.; Khalil, N.A.; Ahmed, E.M.; El-Latif, H.A.A.; El-Araby, M.E. Structure-based molecular design, synthesis, and in vivo anti-inflammatory activity of pyridazinone derivatives as nonclassic COX-2 inhibitors. Med. Chem. Res., 2010, 19(7), 629-642.
[http://dx.doi.org/10.1007/s00044-009-9218-4]
[72]
Abouzid, K.; Bekhit, S.A. Novel anti-inflammatory agents based on pyridazinone scaffold; design, synthesis and in vivo activity. Bioorg. Med. Chem., 2008, 16(10), 5547-5556.
[http://dx.doi.org/10.1016/j.bmc.2008.04.007] [PMID: 18430576]
[73]
Doğruer, D.S.; Ġ ahġn, M.F.; Küpeli, E.; Yeġġlada, E. Synthesis and analgesic and anti-inflammatory activity of new pyridazinones. Turk. J. Chem., 2003, 27, 727-738.
[74]
Ökçelik, B.; Ünlü, S.; Banoglu, E.; Küpeli, E.; Yeşilada, E.; Şahin, M.F. Investigations of new pyridazinone derivatives for the synthesis of potent analgesic and anti-inflammatory compounds with cyclooxygenase inhibitory activity. Arch. Pharm., 2003, 336(9), 406-412.
[http://dx.doi.org/10.1002/ardp.200300778] [PMID: 14528488]
[75]
Özdemir, Z.; Gökçe, M.; Karakurt, A. Synthesis and analgesic antiinflammatory and antimicrobial evaluation of 6 substituted 3(2H)pyridazinone-2-acetyl-2-substituted benzal hydrazone derivatives. FABAD J. Pharm. Sci., 2012, 37, 111-122.
[76]
Saeed, M.M.; Khalil, N.A.; Ahmed, E.M.; Eissa, K.I. Synthesis and anti-inflammatory activity of novel pyridazine and pyridazinone derivatives as non-ulcerogenic agents. Arch. Pharm. Res., 2012, 35(12), 2077-2092.
[http://dx.doi.org/10.1007/s12272-012-1205-5] [PMID: 23263802]
[77]
Barberot, C.; Moniot, A.; Allart-Simon, I.; Malleret, L.; Yegorova, T.; Laronze-Cochard, M.; Bentaher, A.; Médebielle, M.; Bouillon, J.P.; Hénon, E.; Sapi, J.; Velard, F.; Gérard, S. Synthesis and biological evaluation of pyridazinone derivatives as potential anti-inflammatory agents. Eur. J. Med. Chem., 2018, 146, 139-146.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.035] [PMID: 29407945]
[78]
Rama, K.; Sumakanth, M.; Anupama, S.P. Synthesis and docking studies of novel series of 7-(o-triazolo pyridazin-3yl)-4-methyl coumarins. J. Chem. Pharm. Res., 2016, 8, 1125-1135.
[79]
Sukuroglu, M.; Yamali, C.; Tiryaki, D.; Onurdag, F.K.; Akkol, E.; Dogruer, D.S. Synthesis of some new 3(2H)-pyridazinone derivatives and evaluation of their analgesic-anti-inflammatory and antimicrobial activities. Lett. Drug Des. Discov., 2013, 10(6), 507-514.
[http://dx.doi.org/10.2174/1570180811310060006]
[80]
Baytaş, S.; İnceler, N.; Mavaneh, K.F.; Uludağ, M.O.; Abacioğlu, N.; Gökçe, M. Synthesis of antipyrine/pyridazinone hybrids and investigation of their in vivo analgesic and anti-inflammatory activities. Turk. J. Chem., 2012, 36, 734-748.
[http://dx.doi.org/10.3906/kim-1111-29]
[81]
Tiryaki, D.; Sukuroglu, M.; Dogruer, D.S.; Akkol, E.; Ozgen, S.; Sahin, M.F. Synthesis of some new 2,6-disubstituted-3(2H)-pyridazinone derivatives and investigation of their analgesic, anti-inflammatory and antimicrobial activities. Med. Chem. Res., 2013, 22(6), 2553-2560.
[http://dx.doi.org/10.1007/s00044-012-0253-1]
[82]
Sumakanth, M.; Malla Reddy, V.; Krishnan, V.S.H.; Sastry, B.S. Synthesis and pharmacological evaluation of new 2,6-disubstituted-2H-pyridazin-3-ones. J. Pharm. Res., 2007, 6, 166-169.
[83]
Kümmerle, A.E.; Vieira, M.M.; Schmitt, M.; Miranda, A.L.P.; Fraga, C.A.M.; Bourguignon, J.J.; Barreiro, E.J. Design, synthesis and analgesic properties of novel conformationally-restricted N-acylhydrazones (NAH). Bioorg. Med. Chem. Lett., 2009, 19(17), 4963-4966.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.075] [PMID: 19646868]
[84]
Brooks, D.W.; Basha, A.; Kerdesky, F.A.J.; Holms, J.H.; Ratajcyk, J.D.; Bhatia, P.; Moore, J.L.; Martin, J.G.; Schmidt, S.P.; Albert, D.H.; Dyer, R.D.; Young, P.; Carter, G.W. Structure-activity relationships of the pyridazinone series of 5-lipoxygenase inhibitors. Bioorg. Med. Chem. Lett., 1992, 2(11), 1357-1360.
[http://dx.doi.org/10.1016/S0960-894X(00)80512-0]
[85]
Giovannoni, M.P.; Schepetkin, I.A.; Cilibrizzi, A.; Crocetti, L.; Khlebnikov, A.I.; Dahlgren, C.; Graziano, A.; Dal Piaz, V.; Kirpotina, L.N.; Zerbinati, S.; Vergelli, C.; Quinn, M.T. Further studies on 2-arylacetamide pyridazin-3(2H)-ones: Design, synthesis and evaluation of 4,6-disubstituted analogs as formyl peptide receptors (FPRs) agonists. Eur. J. Med. Chem., 2013, 64, 512-528.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.066] [PMID: 23685570]
[86]
Khan, M.S.Y.; Siddiqui, A.A. Syntheses and antiinflammatory activity of some 6-aryl -2,3,4,5-tetrahydro-3-pyridazinones. Ind. J. Chem., Sec B, 2000, 39B, 614-619.
[87]
Biancalani, C.; Giovannoni, M.P.; Pieretti, S.; Cesari, N.; Graziano, A.; Vergelli, C.; Cilibrizzi, A.; Di Gianuario, A.; Colucci, M.; Mangano, G.; Garrone, B.; Polenzani, L.; Dal Piaz, V. Further studies on arylpiperazinyl alkyl pyridazinones: discovery of an exceptionally potent, orally active, antinociceptive agent in thermally induced pain. J. Med. Chem., 2009, 52(23), 7397-7409.
[http://dx.doi.org/10.1021/jm900458r] [PMID: 19788200]
[88]
Singh, A.; Asif, M. Analgesic and anti-inflammatory activities of several 4-substituted-6-(3′-nitrophenyl)pyridazin-(2H)-3-one deriva-tives. Braz. J. Pharm. Sci., 2013, 49(4), 903-909.
[http://dx.doi.org/10.1590/S1984-82502013000400030]
[89]
Süküroglu, M.; Ergün, B.Ç.; ünlü, S.; Sahin, M.F.; Küpeli, E.; Yesilada, E.; Banoglu, E. Synthesis, analgesic, and anti-inflammatory activities of [6-(3,5-dimethyl-4-chloropyrazole-1-yl)-3(2H)-pyridazinon-2-yl]acetamides. Arch. Pharm. Res., 2005, 28(5), 509-517.
[http://dx.doi.org/10.1007/BF02977751] [PMID: 15974435]
[90]
Siddiqui, A.A.; Kushnoor, A.; Wani, S.M. Synthesis and antiinflammatory activity of 6-(substituted-aryl)-2,3,4,5-tetrahydro-3-thiopyridazinones. Indian J. Heterocycl. Chem., 2004, 13, 257-260.
[91]
Bondar, K.V.; Klimenko, K.O.; Alexandrova, O.I.; Kravchenko, I.A.; Schepetkin, I.A.; Lyakhov, S.A. Indeno[1,2,3-de]phthalazin-3(2H)-one and its analogs-synthesis and antiinflammatory properties. Visnik Odes’koho Natsional’noho Universitetu. Khimiya, 2016, 21, 59-71.
[92]
Pitarch, L.; Coronas, R.; Mallol, J. Chemical and pharmacological study of a series of substituted pyridazones. Eur. J. Med. Chem., 1974, 1974(9), 644-650.
[93]
Allam, H.A.; Kamel, A.A.; El-Daly, M.; George, R.F. Synthesis and vasodilator activity of some pyridazin-3(2 H)-one based compounds. Future Med. Chem., 2020, 12(1), 37-50.
[http://dx.doi.org/10.4155/fmc-2019-0160] [PMID: 31710239]
[94]
Jha, K.K.; Kumar, Y.; Shaharyar, M.; Sharma, G.J. Microwave assisted synthesis, characterization and pharmacological evaluation of pyridazinone derivatives. Asian J. Chem., 2009, 21, 6491-6496.
[95]
Curran, W.V.; Ross, A. 6-Phenyl-4,5-dihydro-3(2H)-pyridazinones. Series of hypotensive agents. J. Med. Chem., 1974, 17(3), 273-281.
[http://dx.doi.org/10.1021/jm00249a004] [PMID: 4204335]
[96]
Shatalov, G.V.; Gridchin, S.A.; Kovalev, G.V.; Mikhant’ev, B.I.; Gofman, S.M. Allylation of compounds containing a pyridazine ring. Izvestiya Vysshikh Uchebnykh Zavedenii. Khimiyai Khimicheskaya Tekhnologiya, 1982, 25, 1179-1184.
[97]
Robertson, D.W.; Krushinski, J.H.; Pollock, G.D.; Hayes, J.S. Imidazole-pyridine bioisosterism: Comparison of the inotropic activities of pyridine- and imidazole-substituted 6-phenyldihydro-pyridazinone cardiotonics. J. Med. Chem., 1988, 31(2), 461-465.
[http://dx.doi.org/10.1021/jm00397a033] [PMID: 3339616]
[98]
Mátyus, P.; Kosáry, J.; Kasztreiner, E.; Makk, N.; Diesler, E.; Czakó, K.; Rabloczky, G.; Jaszlits, L.; Horváth, E.; Tömösközi, Z.; Cseh, G.; Horváth, E.; Arányi, P. Synthesis, antihypertensive and α-adrenoceptor activity of novel 2-aminoalkyl-3(2H)-pyridazinones. Eur. J. Med. Chem., 1992, 27(2), 107-114.
[http://dx.doi.org/10.1016/0223-5234(92)90098-L]
[99]
Siddiqui, A.A.; Mishra, R.; Shaharyar, M. Synthesis, characterization and antihypertensive activity of pyridazinone derivatives. Eur. J. Med. Chem., 2010, 45(6), 2283-2290.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.003] [PMID: 20189270]
[100]
Mishra, R.; Siddiqui, A.A.; Husain, A.; Rashid, M.; Goda, C. Design, synthesis and antihypertensive screening of novel pyridazine substituted s-triazin-2-imine/one/thione derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(3), 552-559.
[http://dx.doi.org/10.3109/14756366.2012.656623] [PMID: 22380781]
[101]
Gouault, N.; Martin-Chouly, C.A.E.; Lugnier, C.; Cupif, J.F.; Tonnelier, A.; Feger, F.; Lagente, V.; David, M. Solid-phase synthesis and evaluation of libraries of substituted 4,5-dihydropyridazinones as vasodilator agents. J. Pharm. Pharmacol., 2010, 56(8), 1029-1037.
[http://dx.doi.org/10.1211/0022357043905] [PMID: 15285848]
[102]
Imran, M.; Nayeem, N. Synthesis and antihypertensive activity of some novel pyridazinones. Orient. J. Chem., 2016, 32(1), 267-274.
[http://dx.doi.org/10.13005/ojc/320129]
[103]
Abouzid, K.; Abdel Hakeem, M.; Khalil, O.; Maklad, Y. Pyridazinone derivatives: Design, synthesis, and in vitro vasorelaxant activity. Bioorg. Med. Chem., 2008, 16(1), 382-389.
[http://dx.doi.org/10.1016/j.bmc.2007.09.031] [PMID: 17905589]
[104]
Mishra, R.; Siddiqui, A.A.; Husain, A.; Rashid, M.; Prakash, A.; Tailang, M.; Kumar, M.; Srivastava, N. Synthesis, characterization and antihypertensive activity of some new substituted pyridazine derivatives. J. Chelian. Chem Soc, 2011, 56, 856-859.
[105]
Jakhmola, V.; Jawla, S.; Mishra, R. Synthesis, characterization and antihypertensive activity of 4,5 dihydropyridazin-3(2H)-one derivatives. Acta Sci. Pharm. Sci., 2018, 2, 2-7.
[106]
Sotelo, E.; Fraiz, N.; Yáñez, M.; Terrades, V.; Laguna, R.; Cano, E.; Raviña, E. Pyridazines. Part XXIX: synthesis and platelet aggregation inhibition activity of 5-substituted-6-phenyl-3(2H)-pyridazinones. Novel aspects of their biological actions. Bioorg. Med. Chem., 2002, 10(9), 2873-2882.
[http://dx.doi.org/10.1016/S0968-0896(02)00146-3] [PMID: 12110307]
[107]
Laguna, R.; Rodriguez-Linared, B.; Cano, E.; Estevez, I.; Raviña, E.; Sotelo, E. Pyridazines. XIII. Synthesis of 6-aryl-5-oxygenated substituted-3(2H)-pyridazinones and evaluation as platelet aggregation inhibitors. Chem. Pharm. Bull., 1997, 45(7), 1151-1155.
[http://dx.doi.org/10.1248/cpb.45.1151] [PMID: 9246748]
[108]
Yamada, T.; Tsukamoto, Y.; Shimamura, H.; Banno, S.; Sato, M.; Pyridazinones, I.V. Synthesis, antisecretory and antiulcer activities of urea derivatives. Eur. J. Med. Chem., 1983, 18, 209-214.
[109]
Yamada, T.; Shimamura, H.; Tsukamoto, Y.; Yamaguchi, A.; Ohki, M. Pyridazinones. 3. Synthesis, antisecretory, and antiulcer activities of 2-cyanoguanidine derivatives. J. Med. Chem., 1983, 26(8), 1144-1149.
[http://dx.doi.org/10.1021/jm00362a011] [PMID: 6876082]
[110]
Yamada, T.; Nobuhara, Y.; Shimamura, H.; Tsukamoto, Y.; Yoshihara, K.; Yamaguchi, A.; Ohki, M. Pyridazinones. 2. Synthesis and antisecretory and antiulcer activities of thiourea and 2-cyanoguanidine derivatives. J. Med. Chem., 1983, 26(3), 373-381.
[http://dx.doi.org/10.1021/jm00357a012] [PMID: 6402597]
[111]
Yamada, T.; Nobuhara, Y.; Yamaguchi, A.; Ohki, M. Pyridazinones. 1. Synthesis, antisecretory, and antiulcer activities of thio amide derivatives. J. Med. Chem., 1982, 25(8), 975-982.
[http://dx.doi.org/10.1021/jm00350a018] [PMID: 6126589]
[112]
Yamalı, C.; Ozan Gülcan, H.; Kahya, B.; Çobanoğlu, S.; Kadir Şüküroğlu, M.; Doğruer, D.S. Synthesis of some 3(2H)-pyridazinone and 1(2H)-phthalazinone derivatives incorporating aminothiazole moiety and investigation of their antioxidant, acetylcholinesterase, and butyrylcholinesterase inhibitory activities. Med. Chem. Res., 2015, 24(3), 1210-1217.
[http://dx.doi.org/10.1007/s00044-014-1205-8]
[113]
Xing, W.; Fu, Y.; Shi, Z.; Lu, D.; Zhang, H.; Hu, Y. Discovery of novel 2,6-disubstituted pyridazinone derivatives as acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 63, 95-103.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.056] [PMID: 23466605]
[114]
Contreras, J.M.; Rival, Y.M.; Chayer, S.; Bourguignon, J.J.; Wermuth, C.G. Aminopyridazines as acetylcholinesterase inhibitors. J. Med. Chem., 1999, 42(4), 730-741.
[http://dx.doi.org/10.1021/jm981101z] [PMID: 10052979]
[115]
Gelain, A. Pyridazine derivatives as novel acyl-coa:cholesterol acyltransferase (acat) inhibitors. J. Heterocycl. Chem., 2005, 42(3), 395-400.
[http://dx.doi.org/10.1002/jhet.5570420306]
[116]
Gelain, A.; Bettinelli, I.; Barlocco, D.; Kwon, B.M.; Jeong, T.S.; Cho, K.H.; Toma, L. Mono- or diphenylpyridazines connected to N-(2,4-difluorophenyl)-N′-heptylurea as acyl-CoA:cholesterol acyltransferase inhibitors. J. Med. Chem., 2005, 48(24), 7708-7713.
[http://dx.doi.org/10.1021/jm050703x] [PMID: 16302810]
[117]
Önkol, T.; Gökçe, M.; Orhan, Ġ.; Kaynak, F. Design, synthesis and evaluation of some novel 3(2H)-pyridazinone-2-yl acetohydrazides as acetylcholinesterase and butyryl-cholnesterase inhibitors. Org. Comm., 2013, 6, 55.
[118]
Rival, Y.; Hoffmann, R.; Didier, B.; Rybaltchenko, V.; Bourguignon, J.J.; Wermuth, C.G. 5-HT3 antagonists derived from amino-pyridazine-type muscarinic M1 agonists. J. Med. Chem., 1998, 41(3), 311-317.
[http://dx.doi.org/10.1021/jm9705418] [PMID: 9464362]
[119]
Corsano, S.; Strappaghetti, G.; Leonardi, A.; Rhazri, K.; Barbaro, R. New 3(2H)-pyridazinone derivatives: Synthesis and affinity towards α1AR subtypes and 5HT1A receptors. Eur. J. Med. Chem., 1997, 32(4), 339-342.
[http://dx.doi.org/10.1016/S0223-5234(97)89086-1]
[120]
Strappaghetti, G.; Corsano, S.; Barbaro, R.; Giannaccini, G.; Betti, L. Structure–activity relationships in a series of 8-substituted xanthines as A1-adenosine receptor antagonists. Bioorg. Med. Chem., 2001, 9(3), 575-583.
[http://dx.doi.org/10.1016/S0968-0896(00)00271-6] [PMID: 11310591]
[121]
McKinstry-Wu, A.R.; Bu, W.; Rai, G.; Lea, W.A.; Weiser, B.P.; Liang, D.F.; Simeonov, A.; Jadhav, A.; Maloney, D.J.; Eckenhoff, R.G. Discovery of a novel general anesthetic chemotype using high-throughput screening. Anesthesiology, 2015, 122(2), 325-333.
[http://dx.doi.org/10.1097/ALN.0000000000000505] [PMID: 25603205]
[122]
Namoto, K.; Sirockin, F.; Ostermann, N.; Gessier, F.; Flohr, S.; Sedrani, R.; Gerhartz, B.; Trappe, J.; Hassiepen, U.; Duttaroy, A.; Ferreira, S.; Sutton, J.M.; Clark, D.E.; Fenton, G.; Beswick, M.; Baeschlin, D.K. Discovery of C-(1-aryl-cyclohexyl)-methylamines as selective, orally available inhibitors of dipeptidyl peptidase IV. Bioorg. Med. Chem. Lett., 2014, 24(3), 731-736.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.118] [PMID: 24439847]
[123]
Xing, X.; Chang, L.C.; Kong, Q.; Colton, C.K.; Lai, L.; Glicksman, M.A.; Lin, C.L.G.; Cuny, G.D. Structure–activity relationship study of pyridazine derivatives as glutamate transporter EAAT2 activators. Bioorg. Med. Chem. Lett., 2011, 21(19), 5774-5777.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.009] [PMID: 21875806]
[124]
Kumar, D.; Carron, R.; La Calle, C.; Jindal, D.; Bansal, R. Synthesis and evaluation of 2-substituted-6-phenyl-4,5-dihydropyridazin-3(2H)-ones as potent inodilators. Acta Pharm., 2008, 58(4), 393-405.
[http://dx.doi.org/10.2478/v1007-008-0021-4] [PMID: 19103574]
[125]
Piaz, V.D.; Castellana, M.C.; Vergelli, C.; Giovannoni, M.P.; Gavaldà, A.; Segarra, V.; Beleta, J.; Ryder, H.; Palacios, J.M. Synthesis and evaluation of some pyrazolo[3,4-d]pyridazinones and analogues as PDE 5 inhibitors potentially useful as peripheral vasodilator agents. J. Enzyme Inhib. Med. Chem., 2002, 17(4), 227-233.
[http://dx.doi.org/10.1080/1475636021000008494] [PMID: 12530475]
[126]
Bollenbach, M.; Lugnier, C.; Kremer, M.; Salvat, E.; Megat, S.; Bihel, F.; Bourguignon, J.J.; Barrot, M.; Schmitt, M. Design and synthesis of 3-aminophthalazine derivatives and structural analogues as PDE5 inhibitors: Anti-allodynic effect against neuropathic pain in a mouse model. Eur. J. Med. Chem., 2019, 177, 269-290.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.026] [PMID: 31158744]
[127]
Kilian, U.; Amschler, H.; Beume, R.; Eltze, M.; Kolassa, N.; Schudt, C. Bronchospasmolytic effects of substituted 6-phenyl-3 [2H]-pyridazinones in comparison to theophylline and enprofylline. Curr. Clin. Prac. Series, 1985, 19, 209-213.
[128]
Javed, T.; Baker, N.R. The role of cAMP and structure-activity relationships of phosphodiesterase inhibitors in cardiac muscle contraction. Pharmacol. Aspects Cardiovasc. Med., 2002, 1-14.
[129]
Asif, M.; Imran, M.; Kamal, M.; Acharya, M. Brine Shrimp (Artemia salina) lethality bioassay of some 2-(alkyl/aryl)-6-phenyl-4,5-dihydropyridazin-3(2H)-one derivatives. Indian J. Heterocycl. Chem., 2021, 31(01), 57-61.
[130]
Asif, M.; Singh, A.; Bilkanti, L. In-vivo anticonvulsant and in-vitro antitubercular activity of methyl indole derivative of some 6-aryl-4,5-dihydropyridazin-3(2H)-ones and their expected anticonvulsant mechanisms. Iran. J. Pharm. Sci., 2013, 9, 67-80.
[131]
Allart-Simon, I.; Moniot, A.; Bisi, N.; Ponce-Vargas, M.; Audonnet, S.; Laronze-Cochard, M.; Sapi, J.; Hénon, E.; Velard, F.; Gérard, S. Pyridazinone derivatives as potential anti-inflammatory agents: Synthesis and biological evaluation as PDE4 inhibitors. RSC Med. Chem., 2021, 12(4), 584-592.
[http://dx.doi.org/10.1039/D0MD00423E] [PMID: 34046629]
[132]
Cermola, F.; Vella, S.; DellaGreca, M.; Tuzi, A.; Iesce, M. A one-pot approach to novel pyridazine C-nucleosides. Molecules, 2021, 26(8), 2341.
[http://dx.doi.org/10.3390/molecules26082341] [PMID: 33920588]
[133]
Kalai, F.E.; Çınar, E.B.; Lai, C.H.; Daoui, S.; Chelfi, T.; Allali, M.; Dege, N.; Karrouchi, K.; Benchat, N. Synthesis, spectroscopy, crystal structure, TGA/DTA study, DFT and molecular docking investigations of (E)-4-(4-methylbenzyl)-6-styrylpyridazin-3(2H)-one. J. Mol. Struct., 2021, 1228, 129435.
[http://dx.doi.org/10.1016/j.molstruc.2020.129435] [PMID: 33071353]
[134]
Hoffman, G.R.; Schoffstall, A.M. Syntheses and applications of 1,2,3-triazole-fused pyrazines and pyridazines. Molecules, 2022, 27(15), 4681.
[http://dx.doi.org/10.3390/molecules27154681] [PMID: 35897857]
[135]
Isopi, J.; Quartapelle Procopio, E.; Veronese, L.; Malferrari, M.; Valenti, G.; Panigati, M.; Paolucci, F.; Marcaccio, M. Electrochemical characterization and CO2 reduction reaction of a family of pyridazine-bridged dinuclear Mn(I) Carbonyl complexes. Molecules, 2023, 28(3), 1138.
[http://dx.doi.org/10.3390/molecules28031138] [PMID: 36770804]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy