Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Neuroprotective Effect of Natural Indole and β-carboline Alkaloids against Parkinson’s Disease: An Overview

Author(s): Abhimannu Shome, Chahat, Viney Chawla and Pooja A. Chawla*

Volume 31, Issue 38, 2024

Published on: 20 September, 2023

Page: [6251 - 6271] Pages: 21

DOI: 10.2174/0929867331666230913100624

Price: $65

Abstract

Parkinson’s disease (PD) is a devastating neurodegenerative condition that mostly damages dopaminergic neurons in the substantia nigra and impairs human motor function. Males are more likely than females to have PD. There are two main pathways associated with PD: one involves the misfolding of α-synuclein, which causes neuro-degeneration, and the other is the catalytic oxidation of dopamine via MAO-B, which produces hydrogen peroxide that can cause mitochondrial damage. Parkin (PRKN), α-synuclein (SNCA), heat shock protein (HSP), and leucine-rich repeat kinase-2 (LRRK2) are some of the target areas for genetic alterations that cause neurodegeneration in Parkinson's disease (PD). Under the impact of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which is also important in Parkinson's disease (PD), inhibition of mitochondrial complex 1 results in enhanced ROS generation in neuronal cells. Natural products are still a superior option in the age of synthetic pharmaceuticals because of their lower toxicity and moderate side effects. A promising treatment for PD has been discovered using beta-carboline (also known as "β-carboline") and indole alkaloids. However, there are not many studies done on this particular topic. In the herbs containing β-carbolines and in-doles, the secondary metabolites and alkaloids, β-carbolines and indoles, have shown neuroprotective and cognitive-enhancing properties.

In this review, we have presented results from 18 years of research on the effects of indole and β-carboline alkaloids against oxidative stress and MAO inhibition, two key targets in PD. In the SAR analysis, the activity has been correlated with their unique structural characteristics. This study will undoubtedly aid researchers in looking for new PD treatment options.

[1]
Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; Fisher, J.L.; Fitzmaurice, C.; Giussani, G.; Glennie, L.; James, S.L.; Johnson, C.O.; Kassebaum, N.J.; Logroscino, G.; Marin, B.; Mountjoy-Venning, W.C.; Nguyen, M.; Ofori-Asenso, R.; Patel, A.P.; Piccininni, M.; Roth, G.A.; Steiner, T.J.; Stovner, L.J.; Szoeke, C.E.I.; Theadom, A.; Vollset, S.E.; Wallin, M.T.; Wright, C.; Zunt, J.R.; Abbasi, N.; Abd-Allah, F.; Abdelalim, A.; Abdollahpour, I.; Aboyans, V.; Abraha, H.N.; Acharya, D.; Adamu, A.A.; Adebayo, O.M.; Adeoye, A.M.; Adsuar, J.C.; Afarideh, M.; Agrawal, S.; Ahmadi, A.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akinyemi, R.O.; Akseer, N.; Al-Eyadhy, A. Al-Shahi Salman, R.; Alahdab, F.; Alene, K.A.; Aljunid, S.M.; Altirkawi, K.; Alvis-Guzman, N.; Anber, N.H.; Antonio, C.A.T.; Arabloo, J.; Aremu, O.; Ärnlöv, J.; Asayesh, H.; Asghar, R.J.; Atalay, H.T.; Awasthi, A.; Ayala Quintanilla, B.P.; Ayuk, T.B.; Badawi, A.; Banach, M.; Banoub, J.A.M.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Baune, B.T.; Bedi, N.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Bekele, B.B.; Belachew, A.B.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Beuran, M.; Bhattacharyya, K.; Bhutta, Z.A.; Bi-adgo, B.; Bijani, A.; Bililign, N.; Bin Sayeed, M.S.; Blazes, C.K.; Brayne, C.; Butt, Z.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, M.; Cárdenas, R.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castro, F.; Catalá-López, F.; Cerin, E.; Chaiah, Y.; Chang, J-C.; Chatziralli, I.; Chiang, P.P-C.; Christensen, H.; Christopher, D.J.; Cooper, C.; Cortesi, P.A.; Costa, V.M.; Criqui, M.H.; Crowe, C.S.; Damasceno, A.A.M.; Daryani, A.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Leo, D.; Demoz, G.T.; Deribe, K.; Dharmaratne, S.D.; Diaz, D.; Dinberu, M.T.; Djalalinia, S.; Doku, D.T.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Edvardsson, D.; El-Khatib, Z.; Endres, M.; Endries, A.Y.; Eskandarieh, S.; Esteghamati, A.; Esteghamati, S.; Farhadi, F.; Faro, A.; Farzadfar, F.; Farzaei, M.H.; Fatima, B.; Fereshtehnejad, S-M.; Fernandes, E.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fukumoto, T.; Ganji, M.; Gankpe, F.G.; Garcia-Gordillo, M.A.; Gebre, A.K.; Gebremichael, T.G.; Gelaw, B.K.; Geleijnse, J.M.; Geremew, D.; Gezae, K.E.; Ghasemi-Kasman, M.; Gidey, M.Y.; Gill, P.S.; Gill, T.K.; Girma, E.T.; Gnedovskaya, E.V.; Goulart, A.C.; Grada, A.; Grosso, G.; Guo, Y.; Gupta, R.; Gupta, R.; Haagsma, J.A.; Hagos, T.B.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hao, Y.; Haro, J.M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hay, S.I.; Hegazy, M.I.; Heidari, B.; Henok, A.; Heydarpour, F.; Hoang, C.L.; Hole, M.K.; Homaie Rad, E.; Hosseini, S.M.; Hu, G.; Igumbor, E.U.; Ilesanmi, O.S.; Irvani, S.S.N.; Islam, S.M.S.; Jakovljevic, M.; Javanbakht, M.; Jha, R.P.; Jobanputra, Y.B.; Jonas, J.B.; Jozwiak, J.J.; Jürisson, M.; Kahsay, A.; Kalani, R.; Kalkonde, Y.; Kamil, T.A.; Kanchan, T.; Kara-mi, M.; Karch, A.; Karimi, N.; Kasaeian, A.; Kassa, T.D.; Kassa, Z.Y.; Kaul, A.; Kefale, A.T.; Keiyoro, P.N.; Khader, Y.S.; Khafaie, M.A.; Khalil, I.A.; Khan, E.A.; Khang, Y-H.; Khazaie, H.; Kiadaliri, A.A.; Kiirithio, D.N.; Kim, A.S.; Kim, D.; Kim, Y-E.; Kim, Y.J.; Kisa, A.; Kokubo, Y.; Koyanagi, A.; Krishnamurthi, R.V.; Kuate Defo, B.; Kucuk Bicer, B.; Kumar, M.; Lacey, B.; Lafranconi, A.; Lansingh, V.C.; Latifi, A.; Leshargie, C.T.; Li, S.; Liao, Y.; Linn, S.; Lo, W.D.; Lopez, J.C.F.; Lorkowski, S.; Lotufo, P.A.; Lucas, R.M.; Lunevicius, R.; Mackay, M.T.; Mahotra, N.B.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; März, W.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Mate, K.K.V.; McAlinden, C.; McGrath, J.J.; Mehta, V.; Meier, T.; Meles, H.G.; Melese, A.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mengistu, G.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Miller, T.R.; Mini, G.K.; Mirrakhimov, E.M.; Moazen, B.; Mohajer, B.; Mohammad Gholi Mezerji, N.; Mohammadi, M.; Mohammadi-Khanaposhtani, M.; Mohammadibakhsh, R.; Mo-hammadnia-Afrouzi, M.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Mondello, S.; Moodley, Y.; Moosazadeh, M.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Moreno Velásquez, I.; Morrison, S.D.; Mousavi, S.M.; Muhammed, O.S.; Muruet, W.; Musa, K.I.; Mustafa, G.; Naderi, M.; Nagel, G.; Naheed, A.; Naik, G.; Najafi, F.; Nangia, V.; Negoi, I.; Negoi, R.I.; Newton, C.R.J.; Ngunjiri, J.W.; Nguyen, C.T.; Nguyen, L.H.; Ningrum, D.N.A.; Nirayo, Y.L.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nourollahpour Shiadeh, M.; Nyasulu, P.S.; Ogah, O.S.; Oh, I-H.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Onwujekwe, O.E.; Oren, E.; Owolabi, M.O.; Pa, M.; Pakpour, A.H.; Pan, W-H.; Panda-Jonas, S.; Pandian, J.D.; Patel, S.K.; Pereira, D.M.; Petzold, M.; Pillay, J.D.; Piradov, M.A.; Polanczyk, G.V.; Polinder, S.; Postma, M.J.; Poulton, R.; Poustchi, H.; Prakash, S.; Prakash, V.; Qorbani, M.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, M.A.; Rajati, F.; Ram, U.; Ranta, A.; Rawaf, D.L.; Rawaf, S.; Reinig, N.; Reis, C.; Renzaho, A.M.N.; Resnikoff, S.; Rezaeian, S.; Rezai, M.S.; Rios González, C.M.; Roberts, N.L.S.; Roever, L.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rostami, A.; Sabbagh, P.; Sacco, R.L.; Sachdev, P.S.; Saddik, B.; Safari, H.; Safari-Faramani, R.; Safi, S.; Safiri, S.; Sagar, R.; Sahathevan, R.; Sahebkar, A.; Sahraian, M.A.; Salamati, P.; Salehi Zahabi, S.; Salimi, Y.; Samy, A.M.; Sanabria, J.; Santos, I.S.; Santric Milicevic, M.M.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Seedat, S.; Sepanlou, S.G.; Shabaninejad, H.; Shafieesabet, A.; Shaikh, M.A.; Shakir, R.A.; Shams-Beyranvand, M.; Shamsizadeh, M.; Sharif, M.; Sharif-Alhoseini, M.; She, J.; Sheikh, A.; Sheth, K.N.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shiue, I.; Siabani, S.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silberberg, D.H.; Silva, J.P.; Silveira, D.G.A.; Singh, J.A.; Sinha, D.N.; Skiadaresi, E.; Smith, M.; Sobaih, B.H.; Sobhani, S.; Soofi, M.; Soyiri, I.N.; Sposato, L.A.; Stein, D.J.; Stein, M.B.; Stokes, M.A.; Sufiyan, M.B.; Sykes, B.L.; Sylaja, P.N.; Tabarés-Seisdedos, R.; Te Ao, B.J.; Tehrani-Banihashemi, A.; Temsah, M-H.; Temsah, O.; Thakur, J.S.; Thrift, A.G.; Topor-Madry, R.; Tortajada-Girbés, M.; Tovani-Palone, M.R.; Tran, B.X.; Tran, K.B.; Truelsen, T.C.; Tsadik, A.G.; Tudor Car, L.; Ukwaja, K.N.; Ullah, I.; Usman, M.S.; Uthman, O.A.; Valdez, P.R.; Vasankari, T.J.; Vasanthan, R.; Veisani, Y.; Venketasubramanian, N.; Violante, F.S.; Vlassov, V.; Vosoughi, K.; Vu, G.T.; Vujcic, I.S.; Wagnew, F.S.; Waheed, Y.; Wang, Y-P.; Weiderpass, E.; Weiss, J.; Whiteford, H.A.; Wijeratne, T.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Xu, G.; Yadollahpour, A.; Yamada, T.; Yano, Y.; Yaseri, M.; Yatsuya, H.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yousefifard, M.; Yu, C.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zandian, H.; Zare, Z.; Zhang, Y.; Zodpey, S.; Naghavi, M.; Murray, C.J.L.; Vos, T. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(5), 459-480.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X]
[2]
Kowal, S.L.; Dall, T.M.; Chakrabarti, R.; Storm, M.V.; Jain, A. The current and projected economic burden of Parkinson’s disease in the United States. Mov. Disord., 2013, 28(3), 311-318.
[http://dx.doi.org/10.1002/mds.25292]
[3]
Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.; Ravina, B.M.; Schifitto, G.; Siderowf, A.; Tanner, C.M. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 2007, 68(5), 384-386.
[http://dx.doi.org/10.1212/01.wnl.0000247740.47667.03]
[4]
Ammar, A.; Trabelsi, K.; Hermassi, S.; Kolahi, A.A.; Mansournia, M.; Jahrami, H.; Boukhris, O.; Boujelbane, M.; Glenn, J.; Clark, C.; Nejadghaderi, A.; Puce, L.; Safiri, S.; Chtourou, H.; Schöllhorn, W.; Zmijewski, P.; Bragazzi, N. Global disease burden attributed to low physical activity in 204 countries and territories from 1990 to 2019: Insights from the global burden of disease 2019 study. Biol. Sport, 2023, 40(3), 835-855.
[http://dx.doi.org/10.5114/biolsport.2023.121322]
[5]
Lonikar, N.; Choudhari, P.; Bhusnuare, O. In silico analysis of marine indole alkaloids for design of adenosine A2A receptor antagonist. J. Biomol. Struct. Dyn., 2021, 39(10), 3515-3522.
[http://dx.doi.org/10.1080/07391102.2020.1765874]
[6]
German, D.C.; Manaye, K.; Smith, W.K.; Woodward, D.J.; Saper, C.B. Midbrain dopaminergic cell loss in parkinson’s disease: Computer visualization. Ann. Neurol., 1989, 26(4), 507-514.
[http://dx.doi.org/10.1002/ana.410260403]
[7]
Lotharius, J.; Brundin, P. Pathogenesis of parkinson’s disease: Dopamine, vesicles and α-synuclein. Nat. Rev. Neurosci., 2002, 3(12), 932-942.
[http://dx.doi.org/10.1038/nrn983]
[8]
Gottwald, M.D.; Aminoff, M.J. New frontiers in the pharmacological management of Parkinson's disease. Drugs Today., 2008, 44(7), 531-545.
[http://dx.doi.org/10.1358/dot.2008.44.7.1217105]
[9]
Simuni, T.; Jaggi, J.L.; Mulholland, H.; Hurtig, H.I.; Colcher, A.; Siderowf, A.D.; Ravina, B.; Skolnick, B.E.; Goldstein, R.; Stern, M.B.; Baltuch, G.H. Bilateral stimulation of the subthalamic nucleus in patients with Parkinson disease: A study of efficacy and safety. J. Neurosurg., 2002, 96(4), 666-672.
[http://dx.doi.org/10.3171/jns.2002.96.4.0666]
[10]
Ansah, T.A.; Ferguson, M.C.; Nayyar, T.; Deutch, A.Y. Age- and duration-dependent effects of MPTP on cortical serotonin systems. Neurosci. Lett., 2011, 504(2), 160-164.
[http://dx.doi.org/10.1016/j.neulet.2011.09.026]
[11]
Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry, 2008, 79(4), 368-376.
[http://dx.doi.org/10.1136/jnnp.2007.131045]
[12]
Hurley, M.J.; Brandon, B.; Gentleman, S.M.; Dexter, D.T. Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain, 2013, 136(7), 2077-2097.
[http://dx.doi.org/10.1093/brain/awt134]
[13]
Błaszczyk, J.W. Parkinson’s disease and neurodegeneration: GABA-collapse hypothesis. Front. Neurosci., 2016, 10, 269.
[http://dx.doi.org/10.3389/fnins.2016.00269]
[14]
Aosaki, T.; Miura, M.; Suzuki, T.; Nishimura, K.; Masuda, M. Acetylcholine-dopamine balance hypothesis in the striatum: An update. Geriatr. Gerontol. Int., 2010, 10, S148-S157.
[http://dx.doi.org/10.1111/j.1447-0594.2010.00588.x]
[15]
Stefanis, L. α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med., 2012, 2(2), a009399.
[http://dx.doi.org/10.1101/cshperspect.a009399]
[16]
Mouradian, M.M. Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology, 2002, 58(2), 179-185.
[http://dx.doi.org/10.1212/WNL.58.2.179]
[17]
Dauer, W.; Kholodilov, N.; Vila, M.; Trillat, A.C.; Goodchild, R.; Larsen, K.E.; Staal, R.; Tieu, K.; Schmitz, Y.; Yuan, C.A.; Rocha, M.; Jackson-Lewis, V.; Hersch, S.; Sulzer, D.; Przedborski, S.; Burke, R.; Hen, R. Resistance of α-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc. Natl. Acad. Sci. USA, 2002, 99(22), 14524-14529.
[http://dx.doi.org/10.1073/pnas.172514599]
[18]
Ostrerova-Golts, N.; Petrucelli, L.; Hardy, J.; Lee, J.M.; Farer, M.; Wolozin, B. The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. J. Neurosci., 2000, 20(16), 6048-6054.
[http://dx.doi.org/10.1523/JNEUROSCI.20-16-06048.2000]
[19]
Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Logan, J.; Pappas, N.; Shea, C.; MacGregor, R. Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol. Aging, 1997, 18(4), 431-435.
[http://dx.doi.org/10.1016/S0197-4580(97)00037-7]
[20]
Andrei, C.; Dazzi, C.; Lotti, L.; Torrisi, M.R.; Chimini, G.; Rubartelli, A. The secretory route of the leaderless protein interleukin 1β involves exocytosis of endolysosome-related vesicles. Mol. Biol. Cell, 1999, 10(5), 1463-1475.
[http://dx.doi.org/10.1091/mbc.10.5.1463]
[21]
Zhou, S.; Schuetz, J.D.; Bunting, K.D.; Colapietro, A.M.; Sampath, J.; Morris, J.J.; Lagutina, I.; Grosveld, G.C.; Osawa, M.; Nakauchi, H.; Sorrentino, B.P. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med., 2001, 7(9), 1028-1034.
[http://dx.doi.org/10.1038/nm0901-1028]
[22]
Flieger, O.; Engling, A.; Bucala, R.; Lue, H.; Nickel, W.; Bernhagen, J. Regulated secretion of macrophage migration inhibitory factor is mediated by a non-classical pathway involving an ABC transporter. FEBS Lett., 2003, 551(1-3), 78-86.
[http://dx.doi.org/10.1016/S0014-5793(03)00900-1]
[23]
Loebinger, M.R.; Giangreco, A.; Groot, K.R.; Prichard, L.; Allen, K.; Simpson, C.; Bazley, L.; Navani, N.; Tibrewal, S.; Davies, D.; Janes, S.M. Squamous cell cancers contain a side population of stem-like cells that are made chemosensitive by ABC transporter block-ade. Br. J. Cancer, 2008, 98(2), 380-387.
[http://dx.doi.org/10.1038/sj.bjc.6604185]
[24]
Frye, B.C.; Halfter, S.; Djudjaj, S.; Muehlenberg, P.; Weber, S.; Raffetseder, U.; En-Nia, A.; Knott, H.; Baron, J.M.; Dooley, S.; Bernhagen, J.; Mertens, P.R. Y‐box protein‐1 is actively secreted through a non‐classical pathway and acts as an extracellular mitogen. EMBO Rep., 2009, 10(7), 783-789.
[http://dx.doi.org/10.1038/embor.2009.81]
[25]
Maiti, P.; Manna, J.; Dunbar, G.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl. Neurodegener., 2017, 6(1), 28.
[http://dx.doi.org/10.1186/s40035-017-0099-z]
[26]
Kitada, T.; Asakawa, S.; Hattori, N.; Matsumine, H.; Yamamura, Y.; Minoshima, S.; Yokochi, M.; Mizuno, Y.; Shimizu, N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. nature, 1998, 392(6676), 605-608.
[http://dx.doi.org/10.1038/33416]
[27]
Bouhouche, A.; Tibar, H.; Ben El Haj, R.; El Bayad, K.; Razine, R.; Tazrout, S.; Skalli, A.; Bouslam, N.; Elouardi, L.; Benomar, A.; Yahyaoui, M.; Regragui, W. LRRK2 G2019S mutation: Prevalence and clinical features in moroccans with Parkinson’s disease. Parkinsons Dis., 2017, 2017, 1-7.
[http://dx.doi.org/10.1155/2017/2412486]
[28]
Rubinsztein, D.C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature, 2006, 443(7113), 780-786.
[http://dx.doi.org/10.1038/nature05291]
[29]
Chan, N.C.; Salazar, A.M.; Pham, A.H.; Sweredoski, M.J.; Kolawa, N.J.; Graham, R.L.J.; Hess, S.; Chan, D.C. Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet., 2011, 20(9), 1726-1737.
[http://dx.doi.org/10.1093/hmg/ddr048]
[30]
Dokladny, K.; Myers, O.B.; Moseley, P.L. Heat shock response and autophagy—cooperation and control. Autophagy, 2015, 11(2), 200-213.
[http://dx.doi.org/10.1080/15548627.2015.1009776]
[31]
Maiti, P.; Manna, J.; Veleri, S.; Frautschy, S. Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin. BioMed Res. Int., 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/495091]
[32]
Wyttenbach, A. Role of heat shock proteins during polyglutamine neurodegeneration. J. Mol. Neurosci., 2004, 23(1-2), 069-096.
[http://dx.doi.org/10.1385/JMN:23:1-2:069]
[33]
Parker, W.D., Jr; Parks, J.K.; Swerdlow, R.H. Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res., 2008, 1189, 215-218.
[http://dx.doi.org/10.1016/j.brainres.2007.10.061]
[34]
Cannon, J.R.; Tapias, V.; Na, H.M.; Honick, A.S.; Drolet, R.E.; Greenamyre, J.T. A highly reproducible rotenone model of Parkinson’s disease. Neurobiol. Dis., 2009, 34(2), 279-290.
[http://dx.doi.org/10.1016/j.nbd.2009.01.016]
[35]
Anderson, G.; Noorian, A.; Taylor, G.; Anitha, M.; Bernhard, D.; Srinivasan, S.; Greene, J. Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease. Exp. Neurol., 2007, 207(1), 4-12.
[http://dx.doi.org/10.1016/j.expneurol.2007.05.010]
[36]
Bezard, E.; Dovero, S.; Bioulac, B.; Gross, C.E. Kinetics of nigral degeneration in a chronic model of MPTP-treated mice. Neurosci. Lett., 1997, 234(1), 47-50.
[http://dx.doi.org/10.1016/S0304-3940(97)00663-0]
[37]
Mark, L.P.; Prost, R.W.; Ulmer, J.L.; Smith, M.M.; Daniels, D.L.; Strottmann, J.M.; Brown, W.D.; Hacein-Bey, L. Pictorial review of glutamate excitotoxicity: Fundamental concepts for neuroimaging. AJNR Am. J. Neuroradiol., 2001, 22(10), 1813-1824.
[PMID: 11733308]
[38]
Dong, X.; Wang, Y.; Qin, Z. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin., 2009, 30(4), 379-387.
[http://dx.doi.org/10.1038/aps.2009.24]
[39]
Paisán-Ruíz, C.; Jain, S.; Evans, E.W.; Gilks, W.P.; Simón, J.; van der Brug, M.; de Munain, A.L.; Aparicio, S.; Gil, A.M.; Khan, N.; Johnson, J.; Martinez, J.R.; Nicholl, D.; Carrera, I.M.; Peňa, A.S.; de Silva, R.; Lees, A.; Martí-Massó, J.F.; Pérez-Tur, J.; Wood, N.W.; Singleton, A.B. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron, 2004, 44(4), 595-600.
[http://dx.doi.org/10.1016/j.neuron.2004.10.023]
[40]
Galter, D.; Westerlund, M.; Carmine, A.; Lindqvist, E.; Sydow, O.; Olson, L. LRRK2 expression linked to dopamine-innervated areas. Ann. Neurol., 2006, 59(4), 714-719.
[http://dx.doi.org/10.1002/ana.20808]
[41]
Hauser, R.A.; Freeman, T.B.; Snow, B.J.; Nauert, M.; Gauger, L.; Kordower, J.H.; Olanow, C.W. Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch. Neurol., 1999, 56(2), 179-187.
[http://dx.doi.org/10.1001/archneur.56.2.179]
[42]
Polymeropoulos, M.H.; Higgins, J.J.; Golbe, L.I.; Johnson, W.G.; Ide, S.E.; Di Iorio, G.; Sanges, G.; Stenroos, E.S.; Pho, L.T.; Schaffer, A.A.; Lazzarini, A.M.; Nussbaum, R.L.; Duvoisin, R.C. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Sci., 1996, 274(5290), 1197-1199.
[http://dx.doi.org/10.1126/science.274.5290.1197]
[43]
Kuhla, A.; Ludwig, S.C.; Kuhla, B.; Münch, G.; Vollmar, B. Advanced glycation end products are mitogenic signals and trigger cell cycle reentry of neurons in Alzheimer’s disease brain. Neurobiol. Aging, 2015, 36(2), 753-761.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.09.025]
[44]
Ip, C.W.; Klaus, L.C.; Karikari, A.A.; Visanji, N.P.; Brotchie, J.M.; Lang, A.E.; Volkmann, J.; Koprich, J.B. AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: A new mouse model for Parkinson’s disease. Acta Neuropathol. Commun., 2017, 5(1), 11.
[http://dx.doi.org/10.1186/s40478-017-0416-x]
[45]
Richfield, E.K.; Thiruchelvam, M.J.; Cory-Slechta, D.A.; Wuertzer, C.; Gainetdinov, R.R.; Caron, M.G.; Di Monte, D.A.; Federoff, H.J. Behavioral and neurochemical effects of wild-type and mutated human α-synuclein in transgenic mice. Exp. Neurol., 2002, 175(1), 35-48.
[http://dx.doi.org/10.1006/exnr.2002.7882]
[46]
Jeon, M.Y.; Lee, W.Y.; Kang, H.Y.; Chung, E.J. The effects of L-3,4-dihydroxyphenylalanine and dopamine agonists on dopamine neurons in the progressive hemiparkinsonian rat models. Neurol. Res., 2007, 29(3), 289-295.
[http://dx.doi.org/10.1179/174313206X153996]
[47]
Barbeau, A. L-dopa therapy in Parkinson’s disease: A critical review of nine years’ experience. Can. Med. Assoc. J., 1969, 101(13), 59.
[PMID: 4903690]
[48]
Foster, H.D.; Hoffer, A. The two faces of L-DOPA: Benefits and adverse side effects in the treatment of Encephalitis lethargica, Parkinson’s disease, multiple sclerosis and amyotrophic lateral sclerosis. Med. Hypotheses, 2004, 62(2), 177-181.
[http://dx.doi.org/10.1016/S0306-9877(03)00318-9]
[49]
Cenci, M.A. Presynaptic mechanisms of l-DOPA-induced dyskinesia: The findings, the debate, and the therapeutic implications. Front. Neurol., 2014, 5, 242.
[http://dx.doi.org/10.3389/fneur.2014.00242]
[50]
Korczyn, A.D. Drug treatment of Parkinson’s disease. Dialogues Clin. Neurosci., 2022, 6(3), 315-322.
[http://dx.doi.org/10.31887/DCNS.2004.6.3/akorczyn]
[51]
Antonini, A.; Abbruzzese, G.; Barone, P.; Bonuccelli, U.; Lopiano, L.; Onofrj, M.; Zappia, M.; Quattrone, A. COMT inhibition with tolcapone in the treatment algorithm of patients with Parkinson’s disease (PD): Relevance for motor and non-motor features. Neuropsychiatr. Dis. Treat., 2008, 4(1), 1.
[http://dx.doi.org/10.2147/NDT.S2404]
[52]
Brooks, D.J. Dopamine agonists: Their role in the treatment of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 2000, 68(6), 685-689.
[http://dx.doi.org/10.1136/jnnp.68.6.685]
[53]
Tintner, R.; Jankovic, J. Dopamine agonists in Parkinson’s disease. Expert Opin. Investig. Drugs, 2003, 12(11), 1803-1820.
[http://dx.doi.org/10.1517/13543784.12.11.1803]
[54]
Jankovic, J.; Aguilar, L.G. Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr. Dis. Treat., 2008, 4(4), 743-757.
[http://dx.doi.org/10.2147/NDT.S2006]
[55]
Chen, J.J.; Marsh, L. Anxiety in Parkinson’s disease: Identification and management. Ther. Adv. Neurol. Disord., 2014, 7(1), 52-59.
[http://dx.doi.org/10.1177/1756285613495723]
[56]
Durif, F.; Debilly, B.; Galitzky, M.; Morand, D.; Viallet, F.; Borg, M.; Thobois, S.; Broussolle, E.; Rascol, O. Clozapine improves dyskinesias in Parkinson disease: A double-blind, placebo-controlled study. Neurology, 2004, 62(3), 381-388.
[http://dx.doi.org/10.1212/01.WNL.0000110317.52453.6C]
[57]
Huffman, J.C.; Alpert, J.E. An approach to the psychopharmacologic care of patients: Antidepressants, antipsychotics, anxiolytics, mood stabilizers, and natural remedies. Med. Clin. North Am., 2010, 94(6), 1141-1160.
[http://dx.doi.org/10.1016/j.mcna.2010.08.009]
[58]
Wink, M. In Alkaloids; Springer, 1998, pp. 11-44.
[http://dx.doi.org/10.1007/978-1-4757-2905-4_2]
[59]
Roberts, M.F. Alkaloids: Biochemistry, ecology, and medicinal applications; Springer Science & Business Media, 2013.
[http://dx.doi.org/10.1007/978-1-4757-2905-4]
[60]
Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T.; Dash, S.; Kim, H.S. Chapter 15: Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids).in Recent advances in natural products analysis; Elsevier, 2020, pp. 505-567.
[http://dx.doi.org/10.1016/B978-0-12-816455-6.00015-9]
[61]
Connolly, J.; Hill, R.; Robinson, J. Advances in flavours and fragrances. Dictionary of Terpenoids; Chapman & Hall: London, 1991, pp. 677-736.
[http://dx.doi.org/10.1007/978-1-4899-4513-6]
[62]
Talapatra, S.K.; Talapatra, B. Alkaloids. general introduction.In Chemistry of Plant Natural Products; Springer, 2015, pp. 717-724.
[http://dx.doi.org/10.1007/978-3-642-45410-3_15]
[63]
Henning, C.P. Compuestos secundarios nitrogenados: Alcaloides; Productos Naturales Vegetales, 2013, p. 18.
[64]
Gao, F.; Li, Y.Y.; Wang, D.; Huang, X.; Liu, Q. Diterpenoid alkaloids from the Chinese traditional herbal Fuzi and their cytotoxic activity. Molecules, 2012, 17(5), 5187-5194.
[http://dx.doi.org/10.3390/molecules17055187]
[65]
Wang, F.P.; Chen, Q.H.; Liu, X.Y. Diterpenoid alkaloids. Nat. Prod. Rep., 2010, 27(4), 529-570.
[http://dx.doi.org/10.1039/b916679c]
[66]
Borzeix, M.; Cahn, J. Cerebral antioedematous effect of Teproside and of some vincamine derivatives. Int. J. Clin. Pharmacol., 1984, 4(4), 259-261.
[PMID: 6500773]
[67]
Ng, Y.P.; Or, T.C.T.; Ip, N.Y. Plant alkaloids as drug leads for Alzheimer’s disease. Neurochem. Int., 2015, 89, 260-270.
[http://dx.doi.org/10.1016/j.neuint.2015.07.018]
[68]
Amirkia, V.; Heinrich, M. Alkaloids as drug leads – A predictive structural and biodiversity-based analysis. Phytochem. Lett., 2014, 10, xlviii-liii.
[http://dx.doi.org/10.1016/j.phytol.2014.06.015]
[69]
Dey, A. Plant-derived alkaloids: A promising window for neuroprotective drug discovery. In: Discovery and development of neuroprotective agents from natural products; Elsevier, 2018; pp. 237-320.
[http://dx.doi.org/10.1016/B978-0-12-809593-5.00006-9]
[70]
Cushnie, T.P.T.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents, 2014, 44(5), 377-386.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001]
[71]
Cortes, N.; Posada-Duque, R.A.; Alvarez, R.; Alzate, F.; Berkov, S.; Cardona-Gómez, G.P.; Osorio, E. Neuroprotective activity and acetylcholinesterase inhibition of five Amaryllidaceae species: A comparative study. Life Sci., 2015, 122, 42-50.
[http://dx.doi.org/10.1016/j.lfs.2014.12.011]
[72]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem. Soc. Rev., 2014, 43(13), 4633-4657.
[http://dx.doi.org/10.1039/C3CS60015G]
[73]
Kaur, R.; Arora, S. Alkaloids-important therapeutic secondary metabolites of plant origin. J. Crit. Rev., 2015, 2(3), 1-8.
[74]
Gutiérrez-Grijalva, E.P.; López-Martínez, L.X.; Contreras-Angulo, L.A.; Elizalde-Romero, C.A.; Heredia, J.B. Plant Alkaloids: Structures and bioactive properties. Plant-derived bioactives; Springer, 2020, pp. 85-117.
[http://dx.doi.org/10.1007/978-981-15-2361-8_5]
[75]
Goel, P.; Alam, O.; Naim, M.J.; Nawaz, F.; Iqbal, M.; Alam, M.I. Recent advancement of piperidine moiety in treatment of cancer- A review. Eur. J. Med. Chem., 2018, 157, 480-502.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.017]
[76]
Koleva, I.I.; van Beek, T.A.; Soffers, A.E.M.F.; Dusemund, B.; Rietjens, I.M.C.M. Alkaloids in the human food chain - Natural occurrence and possible adverse effects. Mol. Nutr. Food Res., 2012, 56(1), 30-52.
[http://dx.doi.org/10.1002/mnfr.201100165]
[77]
Mao, Z.; Huang, S.; Gao, L.; Wang, A.; Huang, P. A novel and versatile method for the enantioselective syntheses of tropane alkaloids. Sci. China Chem., 2014, 57(2), 252-264.
[http://dx.doi.org/10.1007/s11426-013-4998-2]
[78]
Jirschitzka, J.; Schmidt, G.W.; Reichelt, M.; Schneider, B.; Gershenzon, J.; D’Auria, J.C. Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proc. Natl. Acad. Sci. USA, 2012, 109(26), 10304-10309.
[http://dx.doi.org/10.1073/pnas.1200473109]
[79]
Byler, K.G.; Wang, C.; Setzer, W.N. Quinoline alkaloids as intercalative topoisomerase inhibitors. J. Mol. Model., 2009, 15(12), 1417-1426.
[http://dx.doi.org/10.1007/s00894-009-0501-6]
[80]
Cai, X.H.; Li, Y.; Su, J.; Liu, Y.P.; Li, X.N.; Luo, X.D. Novel indole and quinoline alkaloids from Melodinus yunnanensis. Nat. Prod. Bioprospect., 2011, 1(1), 25-28.
[http://dx.doi.org/10.1007/s13659-011-0001-0]
[81]
Khan, A.Y.; Suresh Kumar, G. Natural isoquinoline alkaloids: Binding aspects to functional proteins, serum albumins, hemoglobin, and lysozyme. Biophys. Rev., 2015, 7(4), 407-420.
[http://dx.doi.org/10.1007/s12551-015-0183-5]
[82]
Bhadra, K.; Kumar, G.S. Therapeutic potential of nucleic acid-binding isoquinoline alkaloids: Binding aspects and implications for drug design. Med. Res. Rev., 2011, 31(6), 821-862.
[http://dx.doi.org/10.1002/med.20202]
[83]
Szőke, É.; Lemberkovics, É.; Kursinszki, L. Alkaloids derived from lysine: Piperidine alkaloids; Natu. Produc, 2013, pp. 303-341.
[http://dx.doi.org/10.1007/978-3-642-22144-6_10]
[84]
Guirimand, G.; Courdavault, V.; St-Pierre, B.; Burlat, V. Biosynthesis and regulation of alkaloids. In: Plant developmental biology-biotechnological perspectives; Springer, 2010; pp. 139-160.
[http://dx.doi.org/10.1007/978-3-642-04670-4_8]
[85]
Sagi, S.; Avula, B.; Wang, Y.H.; Khan, I.A. Quantification and characterization of alkaloids from roots of Rauwolfia serpentina using ultra-high performance liquid chromatography-photo diode array-mass spectrometry. Anal. Bioanal. Chem., 2016, 408(1), 177-190.
[http://dx.doi.org/10.1007/s00216-015-9093-4]
[86]
Silva, V.G.; Silva, R.O.; Damasceno, S.R.B.; Carvalho, N.S.; Prudêncio, R.S.; Aragão, K.S.; Guimarães, M.A.; Campos, S.A.; Véras, L.M.C.; Godejohann, M.; Leite, J.R.S.A.; Barbosa, A.L.R.; Medeiros, J-V.R. Anti-inflammatory and antinociceptive activity of epiisopiloturine, an imidazole alkaloid isolated from Pilocarpus microphyllus. J. Nat. Prod., 2013, 76(6), 1071-1077.
[http://dx.doi.org/10.1021/np400099m]
[87]
Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem., 2018, 9, 56-72.
[http://dx.doi.org/10.1016/j.mtchem.2018.05.001]
[88]
Davis, R.A.; Carroll, A.R.; Quinn, R.J. Eudistomin V, a new β-Carboline from the Australian ascidian Pseudodistoma aureum. J. Nat. Prod., 1998, 61(7), 959-960.
[http://dx.doi.org/10.1021/np9800452]
[89]
Klein-Júnior, L.C.; Cretton, S.; Vander Heyden, Y.; Gasper, A.L.; Nejad-Ebrahimi, S.; Christen, P.; Henriques, A.T. Bioactive azepine-indole alkaloids from Psychotria nemorosa. J. Nat. Prod., 2020, 83(4), 852-863.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00469]
[90]
Schmidt, F.; Douaron, G.L.; Champy, P.; Amar, M.; Séon-Méniel, B.; Raisman-Vozari, R.; Figadère, B. Tryptamine-derived alkaloids from Annonaceae exerting neurotrophin-like properties on primary dopaminergic neurons. Bioorg. Med. Chem., 2010, 18(14), 5103-5113.
[http://dx.doi.org/10.1016/j.bmc.2010.05.067]
[91]
dos Santos Passos, C.; Klein-Júnior, L.C.; de Mello Andrade, J.M.; Matté, C.; Henriques, A.T. The catechol-O-methyltransferase inhibitory potential of Z-vallesiachotamine by in silico and in vitro approaches. Rev. Bras. Farmacogn., 2015, 25(4), 382-386.
[http://dx.doi.org/10.1016/j.bjp.2015.07.002]
[92]
Kozanecka-Okupnik, W.; Jasiewicz, B.; Pospieszny, T.; Jastrząb, R.; Skrobańska, M.; Mrówczyńska, L. Spectroscopy, molecular modeling and anti-oxidant activity studies on novel conjugates containing indole and uracil moiety. J. Mol. Struct., 2018, 1169, 130-137.
[http://dx.doi.org/10.1016/j.molstruc.2018.05.057]
[93]
Kumar, S.; Singh, A.; Kumar, B. Screening of monoterpene indole alkaloids in six Rauwolfia species by ultra‐high performance liquid chromatography orbitrap velos pro mass spectrometer. Separ. Sci. Plus, 2019, 2(8), 300-308.
[http://dx.doi.org/10.1002/sscp.201900029]
[94]
Sato, Y.; Oyobe, N.; Ogawa, T.; Suzuki, S.; Aoyama, H.; Nakamura, T.; Fujioka, H.; Shuto, S.; Arisawa, M. Design, synthesis, and monoamine oxidase inhibitory activity of (+)-cinchonaminone and its simplified derivatives. ACS Med. Chem. Lett., 2021, 12(9), 1464-1469.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00310]
[95]
Xiao, X.; Tong, Z.; Zhang, Y.; Zhou, H.; Luo, M.; Hu, T.; Hu, P.; Kong, L.; Liu, Z.; Yu, C.; Huang, Z.; Hu, L. Novel prenylated indole alkaloids with neuroprotection on sh-sy5y cells against oxidative stress targeting Keap1–Nrf2. Mar. Drugs, 2022, 20(3), 191.
[http://dx.doi.org/10.3390/md20030191]
[96]
Li, Y-J.; Li, J.; Xie, L.; Zhou, J-Y.; Li, Q-X.; Yang, R-Y.; Liu, Y-P.; Fu, Y-H. Monoterpenoid indole alkaloids with potential neuroprotective activities from the stems and leaves of Melodinus cochinchinensis. Nat. Prod. Res., 2021, 36(20), 5181-5188.
[http://dx.doi.org/10.1080/14786419.2021.1922406]
[97]
Krishnan, N.; Mariappanadar, V.; Dhanabalan, A.K.; Devadasan, V.; Gopinath, S.C.B.; Raman, P. Purification, identification and in silico models of alkaloids from Nardostachys jatamansi — bioactive compounds for neurodegenerative diseases. Biomass Convers. Biorefin., 2022, 1-12.
[http://dx.doi.org/10.1007/s13399-022-03237-y]
[98]
Xu, Y.; Wang, R.; Hou, T.; Li, H.; Han, Y.; Li, Y.; Xu, L.; Lu, S.; Liu, L.; Cheng, J.; Wang, J.X.; Xu, Q.; Liu, Y.; Liang, X. Un-cariphyllin A-J, indole alkaloids from Uncaria rhynchophylla as antagonists of dopamine D2 and Mu opioid receptors. Bioorg. Chem., 2023, 130, 106257.
[http://dx.doi.org/10.1016/j.bioorg.2022.106257]
[99]
Smirnova, O.B.; Golovko, T.V.; Granik, V.G. Carbolines. Part 2: Comparison of some of the properties of α-, γ-, and δ-carbolines (Review). Pharm. Chem. J., 2011, 45(7), 389-400.
[http://dx.doi.org/10.1007/s11094-011-0641-8]
[100]
Dai, J.; Dan, W.; Schneider, U.; Wang, J. β-Carboline alkaloid monomers and dimers: Occurrence, structural diversity, and biological activities. Eur. J. Med. Chem., 2018, 157, 622-656.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.027]
[101]
Herraiz, T.; Chaparro, C. Human monoamine oxidase enzyme inhibition by coffee and β-carbolines norharman and harman isolated from coffee. Life Sci., 2006, 78(8), 795-802.
[http://dx.doi.org/10.1016/j.lfs.2005.05.074]
[102]
Yang, Y.J.; Lee, J.J.; Jin, C.M.; Lim, S.C.; Lee, M.K. Effects of harman and norharman on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells. Eur. J. Pharmacol., 2008, 587(1-3), 57-64.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.050]
[103]
Samoylenko, V.; Rahman, M.M.; Tekwani, B.L.; Tripathi, L.M.; Wang, Y.H.; Khan, S.I.; Khan, I.A.; Miller, L.S.; Joshi, V.C.; Muhammad, I. Banisteriopsis caapi, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson’s disease. J. Ethnopharmacol., 2010, 127(2), 357-367.
[http://dx.doi.org/10.1016/j.jep.2009.10.030]
[104]
Adayev, T.; Wegiel, J.; Hwang, Y.W. Harmine is an ATP-competitive inhibitor for dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A). Arch. Biochem. Biophys., 2011, 507(2), 212-218.
[http://dx.doi.org/10.1016/j.abb.2010.12.024]
[105]
Shalgum, A.; Govindarajulu, M.; Majrashi, M.; Ramesh, S.; Collier, W.E.; Griffin, G.; Amin, R.; Bradford, C.; Moore, T.; Dhanasekaran, M. Neuroprotective effects of Hibiscus Sabdariffa against hydrogen peroxide-induced toxicity. J. Herb. Med., 2019, 17-18, 100253.
[http://dx.doi.org/10.1016/j.hermed.2018.100253]
[106]
Nurmaganbetov, Z.S.; Arystan, L.I.; Muldaeva, G.M.; Haydargalieva, L.S.; Adekenov, S.M. Experimental study of antiparkinsonian action of the harmine hydrochloride original compound. Pharmacol. Rep., 2019, 71(6), 1050-1058.
[http://dx.doi.org/10.1016/j.pharep.2019.06.002]
[107]
Cai, C.Z.; Zhou, H.F.; Yuan, N.N.; Wu, M.Y.; Lee, S.M.Y.; Ren, J.Y.; Su, H.X.; Lu, J.J.; Chen, X.P.; Li, M.; Tan, J-Q.; Lu, J-H. Natural alkaloid harmine promotes degradation of alpha-synuclein via PKA-mediated ubiquitin-proteasome system activation. Phytomedicine, 2019, 61, 152842.
[http://dx.doi.org/10.1016/j.phymed.2019.152842]
[108]
Katchborian-Neto, A.; Santos, W.T.; Nicácio, K.J.; Corrêa, J.O.A.; Murgu, M.; Martins, T.M.M.; Gomes, D.A.; Goes, A.M.; Soares, M.G.; Dias, D.F.; Chagas-Paula, D.A.; Paula, A.C.C. Neuroprotective potential of ayahuasca and untargeted metabolomics analyses: Applicability to Parkinson’s disease. J. Ethnopharmacol., 2020, 255, 112743.
[http://dx.doi.org/10.1016/j.jep.2020.112743]
[109]
Doskaliyev, A.; Seidakhmetova, R.; Tutai, D.; Goldaeva, K.; Surov, V.; Adekenov, S. S. Alkaloids of Peganum harmala L. and their pharmacological activity. Open Access Maced. J. Med. Sci., 2021, 9(A), 766-775.
[http://dx.doi.org/10.3889/oamjms.2021.6654]
[110]
Xu, J.; Ao, Y.L.; Huang, C.; Song, X.; Zhang, G.; Cui, W.; Wang, Y.; Zhang, X.Q.; Zhang, Z. Harmol promotes α-synuclein degradation and improves motor impairment in Parkinson’s models via regulating autophagy-lysosome pathway. NPJ Parkinsons Dis., 2022, 8(1), 100.
[http://dx.doi.org/10.1038/s41531-022-00361-4]
[111]
Senhaji, S.; Lamchouri, F.; Akabli, T.; Toufik, H. In vitro antioxidant activities of five β-carboline alkaloids, molecular docking, and dynamic simulations. Struct. Chem., 2022, 33(3), 883-895.
[http://dx.doi.org/10.1007/s11224-022-01886-3]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy