Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Proniosomes Nanoparticle for the Treatment of Peripheral Arterial Disease

Author(s): Preyash A. Panchal, Shruti Patel, Asha Patel and Priyanka Ahlawat*

Volume 12, Issue 5, 2024

Published on: 04 October, 2023

Page: [428 - 437] Pages: 10

DOI: 10.2174/2211738511666230912160729

Price: $65

Abstract

Background: The common symptom of systemic atherosclerosis is peripheral arterial disease (PAD), which occurs when the artery lumen in the lower extremities gradually becomes blocked by atherosclerotic plaque. The most frequent symptom of lower extremity PAD, called "vascular claudication," which is pain experienced when walking. Partial or total blockage of the peripheral arteries in the upper and lower limbs is called PAD. The danger of death from concurrent coronary artery and cerebrovascular atherosclerosis outweighs the risk of amputation.

Objectives: However, niosomes have issues with fusion, aggregation, leakage, vesicle sedimentation, and difficulty in sterilizing. A more recent strategy known as pro-vesicular carriers was used to solve these issues. The formulations in Proniosomes are dry and anhydrous, protected with a non-ionic surfactant that serves as a carrier when combined with water.

Materials and Methods: Formulation prepared by organic solvent, surfactant, cholesterol, other components and hydration medium. Coacervation Phase separation Technique used for proniosome Nanoparticle. Box Bhenken Design is used for optimization batches.

Results: In this context, we shall discuss the development of Proniosome for the treatment of peripheral arterial diseases. From here, we know that proniosome nanoparticles is pro vesicular system good characteristics and effectiveness for treating peripheral arterial diseases.

Conclusion: Proniosomes may be created using various techniques, which may impact how they develop along with the drug's characteristics. They increase the drug's stability while being delivered while being entrapped. They don't need particular conditions for handling, protection, storage, or industrial manufacturing.

Graphical Abstract

[1]
Luther M, Lepäntalo M, Albäck A, Mätzke S. Amputation rates as a measure of vascular surgical results. Br J Surg 1996; 83(2): 241-4.
[PMID: 8689176]
[2]
Volpe KD. Walking for peripheral artery diseases: No pain, no gain. Clinical Advisor. 2022. Available From: https://www.clinicaladvisor.com/home/news/walking-peripheral-artery-diseases-pain
[3]
Anon . Peripheral artery diseases treatment at Arizona vein & Laset 2022. Available From: https://www.veinandvascularaz.com/vascular/peripheral-arterial-diseases-pad
[4]
Wolfe JN. Defining the outcome of critical ischaemia: A one year prospective study. Br J Surg 1986; 73: 321.
[5]
Long-term mortality and its predictors in patients with critical leg ischaemia. The I.C.A.I. Group (Gruppo di Studio dell’Ischemia Cronica Critica degli Arti Inferiori). The study group of criticial chronic ischemia of the lower exremities. Eur J Vasc Endovasc Surg 1997; 14(2): 91-5.
[6]
Hiatt WR, Hoag S, Hamman RF. Effect of diagnostic criteria on the prevalence of peripheral arterial disease. The San Luis Valley Diabetes Study. Circulation 1995; 91(5): 1472-9.
[http://dx.doi.org/10.1161/01.CIR.91.5.1472] [PMID: 7867189]
[7]
Stoffers HE, Kaiser V, Knottnerus JA. Prevalence in general practiceEpidemiology of peripheral vascular disease. London: Springer-Verlag 1991; pp. 109-15.
[http://dx.doi.org/10.1007/978-1-4471-1889-3_9]
[8]
Criqui MH, Langer RD, Fronek A, et al. Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med 1992; 326(6): 381-6.
[http://dx.doi.org/10.1056/NEJM199202063260605] [PMID: 1729621]
[9]
Erb W. Clinical contributions to the pathology of intermittent limping. Munch Med Wochenschr 1911; 2: 2487.
[10]
Bainton D, Sweetnam P, Baker I, Elwood P. Peripheral vascular disease: Consequence for survival and association with risk factors in the Speedwell prospective heart disease study. Heart 1994; 72(2): 128-32.
[http://dx.doi.org/10.1136/hrt.72.2.128] [PMID: 7917683]
[11]
Ingolfsson IÖ, Sigurdsson G, Sigvaldason H, Thorgeirsson G, Sigfusson N. A marked decline in the prevalence and incidence of intermittent claudication in icelandic men 1968–1986: A strong relationship to smoking and serum cholesterol—The Reykjavik study. J Clin Epidemiol 1994; 47(11): 1237-43.
[http://dx.doi.org/10.1016/0895-4356(94)90128-7] [PMID: 7722559]
[12]
Fowkes FG, Housley E, Riemersma RA, et al. Smoking, lipids, glucose intolerance, and blood pressure as risk factors for peripheral atherosclerosis compared with ischemic heart disease in the Edinburgh Artery Study. Am J Epidemiol 1992; 135(4): 331-40.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a116294] [PMID: 1550087]
[13]
Kannel WB, McGee DL. Update on some epidemiological features of intermittent claudication. J Am Geriatr Soc 1985; 33: 13-8.
[http://dx.doi.org/10.1111/j.1532-5415.1985.tb02853.x] [PMID: 3965550]
[14]
Newman AB, Sutton-Tyrrell K, Vogt MT, Kuller LH. Morbidity and mortality in hypertensive adults with a low ankle/arm blood pressure index. JAMA 1993; 270(4): 487-9.
[http://dx.doi.org/10.1001/jama.1993.03510040091035] [PMID: 8147959]
[15]
Libby P. Changing concepts of atherogenesis. J Intern Med 2000; 247(3): 349-58.
[http://dx.doi.org/10.1046/j.1365-2796.2000.00654.x] [PMID: 10762452]
[16]
Kim HO, Kim W. Elucidation of the diagnosis and treatment of peripheral arterial disease. Korean Circ J 2018; 48(9): 826-7.
[http://dx.doi.org/10.4070/kcj.2018.0155] [PMID: 30088357]
[17]
Smith I, Franks PJ, Greenhalgh RM, Poulter NR, Powell JT. The influence of smoking cessation and hypertriglyceridaemia on the progression of peripheral arterial disease and the onset of critical ischaemia. Eur J Vasc Endovasc Surg 1996; 11(4): 402-8.
[http://dx.doi.org/10.1016/S1078-5884(96)80170-5] [PMID: 8846171]
[18]
Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. BMJ 1994; 308(6921): 81-106.
[http://dx.doi.org/10.1136/bmj.308.6921.81] [PMID: 8298418]
[19]
Brewster DC, Darling RC. Optimal methods of aortoiliac reconstruction. Surgery 1978; 84(6): 739-48.
[PMID: 152480]
[20]
Jackson MR, Clagett GP. Antithrombotic therapy in peripheral arterial occlusive disease. Chest 2001; 119(1) (Suppl.): 283S-99S.
[http://dx.doi.org/10.1378/chest.119.1_suppl.283S] [PMID: 11157655]
[21]
Porter JM, Cutler BS, Lee BY, et al. Pentoxifylline efficacy in the treatment of intermittent claudication: Multicenter controlled double-blind trial with objective assessment of chronic occlusive arterial disease patients. Am Heart J 1982; 104(1): 66-72.
[http://dx.doi.org/10.1016/0002-8703(82)90642-1] [PMID: 7046409]
[22]
Lindgärde F, Jelnes R, Björkman H, et al. Conservative drug treatment in patients with moderately severe chronic occlusive peripheral arterial disease. Circulation 1989; 80(6): 1549-56.
[http://dx.doi.org/10.1161/01.CIR.80.6.1549] [PMID: 2688972]
[23]
Adhoute G, Bacourt F, Barral M, et al. Naftidrofuryl in chronic arterial disease. Results of a six month controlled multicenter study using Naftidrofuryl tablets 200 mg. Angiology 1986; 37(3): 160-7.
[http://dx.doi.org/10.1177/000331978603700304] [PMID: 3518547]
[24]
Trübestein G, Böhme H, Heidrich H, et al. Naftidrofuryl in chronic arterial disease. Results of a controlled multicenter study. Angiology 1984; 35(11): 701-8.
[http://dx.doi.org/10.1177/000331978403501103] [PMID: 6388425]
[25]
Trübestein G, Balzer K, Bisler H, et al. Buflomedil in arterial occlusive disease: Results of a controlled multicenter study. Angiology 1984; 35(8): 500-5.
[http://dx.doi.org/10.1177/000331978403500805] [PMID: 6383127]
[26]
Beebe HG, Dawson DL, Cutler BS, et al. A new pharmacological treatment for intermittent claudication: Results of a randomized, multicenter trial. Arch Intern Med 1999; 159(17): 2041-50.
[http://dx.doi.org/10.1001/archinte.159.17.2041] [PMID: 10510990]
[27]
Isner JM, Pieczek A, Schainfeld R, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 1996; 348(9024): 370-4.
[http://dx.doi.org/10.1016/S0140-6736(96)03361-2] [PMID: 8709735]
[28]
Baumgartner I, Pieczek A, Manor O, et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 1998; 97(12): 1114-23.
[http://dx.doi.org/10.1161/01.CIR.97.12.1114] [PMID: 9537336]
[29]
Blaisdell FW, Steele M, Allen RE. Management of acute lower extremity arterial ischemia due to embolism and thrombosis. Surgery 1978; 84(6): 822-34.
[PMID: 715701]
[30]
Holm J, Scherstén T. Anticoagulant treatment during and after embolectomy. Acta Chir Scand 1972; 138(7): 683-7.
[PMID: 4118600]
[31]
Caruana JA Jr, Gutierrez IZ, Andersen MN, Gage AA. Factors that affect the outcome of peripheral arterial embolization. Arch Surg 1981; 116(4): 423-5.
[http://dx.doi.org/10.1001/archsurg.1981.01380160039008] [PMID: 7212999]
[32]
Ouriel K, Shortell CK, Azodo MV, Guiterrez OH, Marder VJ. Acute peripheral arterial occlusion: Predictors of success in catheter-directed thrombolytic therapy. Radiology 1994; 193(2): 561-6.
[http://dx.doi.org/10.1148/radiology.193.2.7972780] [PMID: 7972780]
[33]
Anon. . Results of a prospective randomized trial evaluating surgery versus thrombolysis for ischemia of the lower extremity. The STILE trial. Ann Surg 1994; 220(3): 251-66.
[http://dx.doi.org/10.1097/00000658-199409000-00003] [PMID: 8092895]
[34]
Murdan S, Gregoriadis G, Florence AT. Interaction of a nonionic surfactant-based organogel with aqueous media. Int J Pharm 1999; 180(2): 211-4.
[http://dx.doi.org/10.1016/S0378-5173(99)00007-1] [PMID: 10370191]
[35]
Blazek-Welsh AI, Rhodes DG, Blazek-Welsh AI. Maltodextrin-based proniosomes. AAPS PharmSci 2001; 3(1): E1.
[http://dx.doi.org/10.1208/ps030101] [PMID: 11741252]
[36]
Katrolia A, Chauhan SB, Shukla VK. Formulation and evaluation of metformin hydrochloride-loaded curcumin-lycopene NIOSOMES – SN applied sciences. 2019. Available From: https://link.springer.com/article/10.1007/42452-019-1768-6
[37]
Pandey N. Proniosomes and ethosomes: New prospect in transdermal and dermal drugdelivery system. IJPSR 2011; 2(8): 1988-96.
[38]
Varsha VR, Savitha SK. Proniosomes: As a potential drug delivery system. J Pharm Sci Res 2019; 11(7): 2594-7.
[39]
Arunothayanun P, Bernard MS, Craig DQM, Uchegbu IF, Florence AT. The effect of processing variables on the physical characteristics of non-ionic surfactant vesicles (niosomes) formed from a hexadecyl diglycerol ether. Int J Pharm 2000; 201(1): 7-14.
[http://dx.doi.org/10.1016/S0378-5173(00)00362-8] [PMID: 10867260]
[40]
Azeem A, Anwer MK, Talegaonkar S. Niosomes in sustained and targeted drug delivery: Some recent advances. J Drug Target 2009; 17(9): 671-89.
[41]
Sanklecha VM, Pande VV, Pawar SS, Pagaro B, Jadhav AC. Review on niosomes. Austin Pharmacol Pharm 2018; 3(2): 1016.
[42]
Usman MR, Ghuge PR, Jain BV. Niosomes: A novel trend of drug delivery. Eur J Biomed Res 2017; 4(7): 436-42.
[43]
G DB, P VL. Recent advances of non-ionic surfactant-based nano-vesicles (niosomes and proniosomes): a brief review of these in enhancing transdermal delivery of drug. Futur J Pharm Sci 2020; 6: 100.
[44]
Blazek-Walsh AI, Rhodes DG. SEM imaging predicts quality of niosomes from maltodextrin-based proniosomes. Pharm Res 2001; 18(5): 656-61.
[45]
Mahdi Jufri, Effionora Anwar, Joshita Djajadisastra. Preparation of maltodextrin DE 5-10 based ibuprofen proniosomes. Majalah Ilmu kefarmasian 2004; 1: 10-20.
[46]
Solanki AB, Parikh JR, Parikh RH. Formulation and optimization of piroxicamproniosomes by 3-factor, 3-level box-behnken design. AAPS PharmSciTech 2007; 8(4): E1-7.
[47]
Sudhamani T, Priyadarisini N. A promising drug carriers. Int J Pharm Tech Res 2010; 2(2): 1446-54.
[48]
Ramesh YV, Jawahar N, Jakki SL. Proniosomes: A novel nano vesicular transdermal drug delivery. J Pharm Sci Res 2013; 5(8): 153-8.
[49]
Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B 2011; 1(4): 208-19.
[http://dx.doi.org/10.1016/j.apsb.2011.09.002]
[50]
Yadav K, Yadav D, Saroha K, Nanda S, Mathur P, Syan N. Proniosomal Gel: A provesicular approach for transdermal drug delivery. Pharm Lett 2010; 2(4): 189-98.
[51]
Lithaa T, Shomaa J, Viswanada V. Provesicularniosomes gel: A novel absorption modulator for transdermal delivery. Int J Drug Dev Res 2011; 3(3): 58-69.
[52]
Hait SK, Moulik SP. Determination of critical micelle concentration (CMC) of nonionic surfactants by donor-acceptor interaction with lodine and correlation of CMC with hydrophile-lipophile balance and other parameters of the surfactants. J Surfactants Deterg 2001; 4(3): 303-9.
[http://dx.doi.org/10.1007/s11743-001-0184-2]
[53]
Soliman SM, Abdelmalak NS, El-Gazayerly ON, Abdelaziz N. Novel non-ionic surfactant proniosomes for transdermal delivery of lacidipine: Optimization using 2 3 factorial design and in vivo evaluation in rabbits. Drug Deliv 2016; 23(5): 1608-22.
[http://dx.doi.org/10.3109/10717544.2015.1132797] [PMID: 26758033]
[54]
Babita B. Katare, Prakash O Development of optimized lipid based nanostructured drug delivery systems of darunavir and lopinavir for improved bioavailability and biodistribution. Shodhganga 2016.
[55]
Topical drug delivery with lipid excipients. Gattefosse 2019.
[56]
Fang JY, Yu SY, Wu PC, Huang YB, Tsai YH. In vitro skin permeation of estradiol from various proniosome formulations. Int J Pharm 2001; 215(1-2): 91-9.
[http://dx.doi.org/10.1016/S0378-5173(00)00669-4] [PMID: 11250095]
[57]
Vora B, Khopade AJ, Jain NK. Proniosome based transdermal delivery of levonorgestrel for effective contraception. J Control Release 1998; 54(2): 149-65.
[http://dx.doi.org/10.1016/S0168-3659(97)00100-4] [PMID: 9724902]
[58]
Rogerson A, Cummings J, Willmott N, Florence AT. The distribution of doxorubicin in mice following administration in niosomes. J Pharm Pharmacol 2011; 40(5): 337-42.
[http://dx.doi.org/10.1111/j.2042-7158.1988.tb05263.x] [PMID: 2899629]
[59]
Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 2019; 11(2): 55.
[http://dx.doi.org/10.3390/pharmaceutics11020055] [PMID: 30700021]
[60]
Gupta A, Prajapati SK, Balamurugan M, Singh M, Bhatia D. Design and development of a proniosomal transdermal drug delivery system for captopril. Trop J Pharm Res 2007; 6(2): 687-93.
[http://dx.doi.org/10.4314/tjpr.v6i2.14647]
[61]
Sankar V, Ruckmani K, Durga S, Jailani S. Proniosomes as drug carriers. Pak J Pharm Sci 2010; 23(1): 103-7.
[PMID: 20067875]
[62]
Rahimpour Y, Kouhsoltani M, Hamishehkar H. Proniosomes in transdermal drug delivery. Curr Pharm Des 2015; 21(20): 2883-91.
[http://dx.doi.org/10.2174/1381612821666150428145940] [PMID: 25925111]
[63]
Ahmad MZ, Mohammed AA, Mokhtar Ibrahim M. Technology overview and drug delivery application of proniosome. Pharm Dev Technol 2017; 22(3): 302-11.
[http://dx.doi.org/10.3109/10837450.2015.1135344] [PMID: 26794727]
[64]
Singh S, Chaudhari Y, Singh R, Kunwarpuriya A. Proniosomes: A recent advancement in vesicular drug delivery system. World J Pharm Res 2015; 4: 1671-89.
[65]
Akhilesh D, Faishal G, Kamath JV. Comparative Study of Carriers used in Proniosomes. Int J Pharm Chem Sci 2012; 1(1): 164-73.
[66]
Jukanti R, Annakula D, Errabelli MR, Bandari S. Provesicular drug delivery systems: An overview and appraisal. Arch Appl Sci Res 2010; 2(4): 135-46.
[67]
Nirosha M, Chandrashekar KB. Proniosomal gel-an an effective approach for topical and transdermal drug delivery. Int J Res Pharm Sci 2016; 7(2): 179-83.
[68]
Thakur R, Anwer MK, Shams MS, et al. Proniosomal transdermal therapeutic system of losartan potassium: Development and pharmacokinetic evaluation. J Drug Target 2009; 17(6): 442-9.
[http://dx.doi.org/10.1080/10611860902963039] [PMID: 19527115]
[69]
Shamsheer Ahmad S, Sabareesh M, Khan PR, Sai Krishna P, Sudheer B. Formulation and evaluation of lisinoprildihydrate transdermal proniosomal gels. J Appl Pharm Sci 2011; 1: 181-5.
[70]
Govindarajan S, et al. A comprehensive study on provesicular drug delivery system: Proniosomal gel. Indian J Pharm Sci 2022; 84(1): 1-13.
[71]
Staniforth JN. Pharmacuitics. In: The science dosage form design. Churchill Livingstone 1988; pp. 610-36.
[72]
Carr RL. Evaluation flow properties of solids, chem. Eng 1965; 72: 163-8.
[73]
Deepika C. Proniosome: A review. Asian J Biochem Pharm Res 2019; 1(2): 690-4.
[74]
EmadEldeeb A, Salah S, Ghorab M. Proniosomal gel-derived niosomes: An approach to sustain and improve the ocular delivery of brimonidine tartrate; formulation, in vitro characterization and in vivo pharmacodynamic study. Drug Deliv 2019; 26(1): 509-21.
[http://dx.doi.org/10.1080/10717544.2019.1609622] [PMID: 31090464]
[75]
Khalifa MKA, Abu El-Enin ASM, Dawaba A, Dawaba H. Proniosomal gel-mediated topical delivery of fluconazole: Development, in vitro characterization, and microbiological evaluation. J Adv Pharm Technol Res 2019; 10(1): 20-6.
[http://dx.doi.org/10.4103/japtr.JAPTR_332_18] [PMID: 30815384]
[76]
Murthy GK, Kishore S. Formulation and evaluation of transdermal gels of diltiazem hydrochloride. Indian J Pharm EducRes 2008; 42(3): 272-6.
[77]
Selvamani V. Stability studies on nanomaterials used in drugs. In: Characterization and biology of nanomaterials for drug delivery. Elsevier 2019; pp. 425-44.
[http://dx.doi.org/10.1016/B978-0-12-814031-4.00015-5]
[78]
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-A review (Part 1). Trop J Pharm Res 2013; 12(2): 255-64.
[79]
Ramkanth S, Chetty CM, Sudhakar Y, Thiruvengadarajan VS, Anitha P, Gopinath C. Development, characterization & in vivo evaluation of proniosomal based transdermal delivery system of Atenolol. Future J Pharm Sci 2018; 4(1): 80-7.
[http://dx.doi.org/10.1016/j.fjps.2017.10.003]
[80]
Shah J, Nair AB, Shah H, Jacob S, Shehata TM, Morsy MA. Enhancement in antinociceptive and anti-inflammatory effects of tramadol by transdermal proniosome gel. Asian J Pharm Sci 2020; 15(6): 786-96.
[http://dx.doi.org/10.1016/j.ajps.2019.05.001] [PMID: 33363633]
[81]
Lather V, Sharma D, Pandita D. Proniosomal gel-mediated transdermal delivery of bromocriptine: In vitro and ex vivo evaluation. J Exp Nanosci 2016; 11(13): 1044-57.
[http://dx.doi.org/10.1080/17458080.2016.1184768]
[82]
Sambhakar S, Paliwal S, Sharma S, Singh B. Formulation of risperidone loaded proniosomes for effective transdermal delivery: An in-vitro and in-vivo study. Bull Fac Pharm Cairo Univ 2017; 55(2): 239-47.
[http://dx.doi.org/10.1016/j.bfopcu.2017.09.003]
[83]
Radha GV, Rani TS, Sarvani B. A review on proniosomal drug delivery system for targeted drug action. J Basic Clin Pharm 2013; 4(2): 42-8.
[http://dx.doi.org/10.4103/0976-0105.113609] [PMID: 24808669]
[84]
Soujanya C, Ravi P, Soujanya P, Avi Prakash P. Formulation and evaluation of proniosomal gel-based transdermal delivery of atorvastatin calcium by box–behnken design. Asian J Pharm Clin Res 2019; 12(4): 335-43.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i4.26707]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy