Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

A Visible-Light-Induced Cyclization Reaction

Author(s): Siqi Li and Jun Dong*

Volume 27, Issue 12, 2023

Published on: 27 September, 2023

Page: [1020 - 1035] Pages: 16

DOI: 10.2174/1385272827666230911115749

Price: $65

Abstract

Visible light-catalyzed organic chemical transformations with the benefits of green and sustainable, streamlined steps, and mild conditions have drawn increasing interest and attention due to the abundance of visible light, green and non-toxic, and low-cost. These reactions undoubtedly offer new ways, new methods, and new technologies for organic synthetic chemistry, which has developed quickly in the field of organic synthesis in recent years. Cyclization reactions stand out as a significant tool since they allow for the creation of many bonds, even stereocenters, in a single step while maintaining predictable stereochemistry. In this review, we summarize the development of visible-light-induced cyclization reactions.

Graphical Abstract

[1]
Glusac, K. What has light ever done for chemistry? Nat. Chem., 2016, 8(8), 734-735.
[http://dx.doi.org/10.1038/nchem.2582] [PMID: 27442273]
[2]
Albini, A.; Fagnoni, M. Green chemistry and photochemistry were born at the same time. Green Chem., 2004, 6(1), 1-6.
[http://dx.doi.org/10.1039/b309592d]
[3]
Ciamician, G. Photochemistry of the future. Science, 1912, 36(926), 385-394.
[http://dx.doi.org/10.1126/science.36.926.385] [PMID: 17836492]
[4]
Poplata, S.; Tröster, A.; Zou, Y.Q.; Bach, T. Recent advances in the synthesis of cyclobutanes by olefin [2+2] photocycloaddition reactions. Chem. Rev., 2016, 116(17), 9748-9815.
[http://dx.doi.org/10.1021/acs.chemrev.5b00723] [PMID: 27018601]
[5]
Zhang, T.; Zhang, Y.; Das, S. Deal: Photoredox catalysis for the cycloaddition reactions. ChemCatChem, 2020, 12(24), 6173-6185.
[http://dx.doi.org/10.1002/cctc.202001195]
[6]
Sicignano, M.; Rodríguez, R.I.; Alemán, J. Recent visible light and metal free strategies in [2+2] and [4+2] photocycloadditions. Eur. J. Org. Chem., 2021, 2021(22), 3303-3321.
[http://dx.doi.org/10.1002/ejoc.202100518] [PMID: 34248414]
[7]
Gao, R.; Zuo, L.; Wang, F.; Li, C.; Jiang, H.; Li, P.; Wang, L. Recent advances in controllable organic reactions induced by visible light without external photocatalyst. Youji Huaxue, 2022, 42(7), 1883-1903.
[http://dx.doi.org/10.6023/cjoc202203006]
[8]
Skubi, K.L.; Blum, T.R.; Yoon, T.P. Dual catalysis strategies in photochemical synthesis. Chem. Rev., 2016, 116(17), 10035-10074.
[http://dx.doi.org/10.1021/acs.chemrev.6b00018] [PMID: 27109441]
[9]
Bos, M.; Poisson, T.; Pannecoucke, X.; Charette, A.B.; Jubault, P. Recent progress toward the synthesis of trifluoromethyl- and difluoromethyl-substituted cyclopropanes. Chemistry, 2017, 23(21), 4950-4961.
[http://dx.doi.org/10.1002/chem.201604564] [PMID: 27813216]
[10]
Adly, F.G.; Ghanem, A. Chiral dirhodium(II) carboxylates and carboxamidates as effective chemzymes in asymmetric synthesis of three-membered carbocycles. Chirality, 2014, 26(11), 692-711.
[http://dx.doi.org/10.1002/chir.22347] [PMID: 25042238]
[11]
Doyle, M.P.; Duffy, R.; Ratnikov, M.; Zhou, L. Catalytic carbene insertion into C-H bonds. Chem. Rev., 2010, 110(2), 704-724.
[http://dx.doi.org/10.1021/cr900239n] [PMID: 19785457]
[12]
Davies, H.M.L.; Beckwith, R.E.J. Catalytic enantioselective C-H activation by means of metal-carbenoid-induced C-H insertion. Chem. Rev., 2003, 103(8), 2861-2904.
[http://dx.doi.org/10.1021/cr0200217] [PMID: 12914484]
[13]
Baik, T.G.; Luis, A.L.; Wang, L.C.; Krische, M.J. A diastereoselective metal-catalyzed [2+2] cycloaddition of bis-enomes. J. Am. Chem. Soc., 2001, 123(27), 6716-6717.
[http://dx.doi.org/10.1021/ja010800p] [PMID: 11439068]
[14]
Ischay, M.A.; Anzovino, M.E.; Du, J.; Yoon, T.P. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J. Am. Chem. Soc., 2008, 130(39), 12886-12887.
[http://dx.doi.org/10.1021/ja805387f] [PMID: 18767798]
[15]
Du, J.; Yoon, T.P. Crossed intermolecular [2+2] cycloadditions of acyclic enones via visible light photocatalysis. J. Am. Chem. Soc., 2009, 131(41), 14604-14605.
[http://dx.doi.org/10.1021/ja903732v] [PMID: 19473018]
[16]
Ischay, M.A.; Ament, M.S.; Yoon, T.P. Crossed intermolecular [2+2] cycloaddition of styrenes by visible light photocatalysis. Chem. Sci., 2012, 3(9), 2807-2811.
[http://dx.doi.org/10.1039/c2sc20658g] [PMID: 22984640]
[17]
Blum, T.R.; Miller, Z.D.; Bates, D.M.; Guzei, I.A.; Yoon, T.P. Enantioselective photochemistry through Lewis acid–catalyzed triplet energy transfer. Science, 2016, 354(6318), 1391-1395.
[http://dx.doi.org/10.1126/science.aai8228] [PMID: 27980203]
[18]
Huang, X.; Quinn, T.R.; Harms, K.; Webster, R.D.; Zhang, L.; Wiest, O.; Meggers, E. Direct visible-light-excited asymmetric lewis acid catalysis of intermolecular [2+2] photocycloadditions. J. Am. Chem. Soc., 2017, 139(27), 9120-9123.
[http://dx.doi.org/10.1021/jacs.7b04363] [PMID: 28644024]
[19]
Luque, A.; Groß, J.; Zähringer, T.J.B.; Kerzig, C.; Opatz, T. Vinylcyclopropane [3+2] cycloaddition with acetylenic sulfones based on visible light photocatalysis. Chemistry, 2022, 28(18), e202104329.
[http://dx.doi.org/10.1002/chem.202104329] [PMID: 35133690]
[20]
Lu, Z.; Shen, M.; Yoon, T.P. [3+2] cycloadditions of aryl cyclopropyl ketones by visible light photocatalysis. J. Am. Chem. Soc., 2011, 133(5), 1162-1164.
[http://dx.doi.org/10.1021/ja107849y] [PMID: 21214249]
[21]
Amador, A.G.; Sherbrook, E.M.; Yoon, T.P. Enantioselective photocatalytic [3 + 2] cycloadditions of aryl cyclopropyl ketones. J. Am. Chem. Soc., 2016, 138(14), 4722-4725.
[http://dx.doi.org/10.1021/jacs.6b01728] [PMID: 27015009]
[22]
Huang, X.; Lin, J.; Shen, T.; Harms, K.; Marchini, M.; Ceroni, P.; Meggers, E. Asymmetric [3+2] photocycloadditions of cyclopropanes with alkenes or alkynes through visible-light excitation of catalyst-bound substrates. Angew. Chem. Int. Ed., 2018, 57(19), 5454-5458.
[http://dx.doi.org/10.1002/anie.201802316] [PMID: 29543370]
[23]
Tucker, J.W.; Narayanam, J.M.R.; Krabbe, S.W.; Stephenson, C.R.J. Electron transfer photoredox catalysis: Intramolecular radical addition to indoles and pyrroles. Org. Lett., 2010, 12(2), 368-371.
[http://dx.doi.org/10.1021/ol902703k] [PMID: 20014770]
[24]
Gao, H.; Hu, B.; Dong, W.; Gao, X.; Jiang, L.; Xie, X.; Zhang, Z. Synthesis of 3-CF2-Containing chromones via a visible-light-induced radical cascade reaction of o-hydroxyaryl enaminones. ACS Omega, 2017, 2(7), 3168-3174.
[http://dx.doi.org/10.1021/acsomega.7b00383] [PMID: 31457645]
[25]
Dong, W.; Yuan, Y.; Liang, C.; Wu, F.; Zhang, S.; Xie, X.; Zhang, Z. Photocatalytic radical Ortho-dearomative cyclization: Access to spiro[4.5]deca-1,7,9-trien-6-ones. J. Org. Chem., 2021, 86(5), 3697-3705.
[http://dx.doi.org/10.1021/acs.joc.0c02477] [PMID: 33464083]
[26]
Xiao, T.; Dong, X.; Tang, Y.; Zhou, L. Phenanthrene synthesis by eosin Y-catalyzed, visible light- induced [4+2] benzannulation of biaryldiazonium salts with alkynes. Adv. Synth. Catal., 2012, 354(17), 3195-3199.
[http://dx.doi.org/10.1002/adsc.201200569]
[27]
Fu, W.; Xu, F.; Fu, Y.; Zhu, M.; Yu, J.; Xu, C.; Zou, D. Synthesis of 3,3-disubstituted oxindoles by visible-light-mediated radical reactions of aryl diazonium salts with N-arylacrylamides. J. Org. Chem., 2013, 78(23), 12202-12206.
[http://dx.doi.org/10.1021/jo401894b] [PMID: 24131145]
[28]
Jiang, H.; Cheng, Y.; Wang, R.; Zhang, Y.; Yu, S. Synthesis of isoquinolines via visible light-promoted insertion of vinyl isocyanides with diaryliodonium salts. Chem. Commun., 2014, 50(46), 6164-6167.
[http://dx.doi.org/10.1039/c4cc01122h] [PMID: 24776694]
[29]
Dai, P.; Ma, J.; Huang, W.; Chen, W.; Wu, N.; Wu, S.; Li, Y.; Cheng, X.; Tan, R. Photoredox C–F quaternary annulation catalyzed by a strongly reducing iridium species. ACS Catal., 2018, 8(2), 802-806.
[http://dx.doi.org/10.1021/acscatal.7b03089]
[30]
Li, C.G.; Xu, G.Q.; Xu, P.F. Synthesis of fused pyran derivatives via visible-light-induced cascade cyclization of 1,7-enynes with acyl chlorides. Org. Lett., 2017, 19(3), 512-515.
[http://dx.doi.org/10.1021/acs.orglett.6b03684] [PMID: 28111953]
[31]
Xu, S.M.; Chen, J.Q.; Liu, D.; Bao, Y.; Liang, Y.M.; Xu, P.F. Aroyl chlorides as novel acyl radical precursors via visible-light photoredox catalysis. Org. Chem. Front., 2017, 4(7), 1331-1335.
[http://dx.doi.org/10.1039/C7QO00012J]
[32]
Wei, Y.L.; Chen, J.Q.; Sun, B.; Xu, P.F. Synthesis of indolo[2,1-a]isoqu-inoline derivatives via visible-light-induced radical cascade cyclization reactions. Chem. Commun., 2019, 55(42), 5922-5925.
[http://dx.doi.org/10.1039/C9CC02388G] [PMID: 31045182]
[33]
Shi, W.; Ma, F.; Li, P.; Wang, L.; Miao, T. Visible-light-induced decarboxylative cyclization/hydrogenation cascade reaction to access phenanthridin-6-yl(aryl)methanol by an electron donor–acceptor complex. J. Org. Chem., 2020, 85(21), 13808-13817.
[http://dx.doi.org/10.1021/acs.joc.0c01916] [PMID: 33063514]
[34]
Zhang, X.; Zhu, P.; Zhang, R.; Li, X.; Yao, T. Visible-light-induced decarboxylative cyclization of 2-alkenylarylisocyanides with α-oxocarboxylic acids: Access to 2-acylindoles. J. Org. Chem., 2020, 85(15), 9503-9513.
[http://dx.doi.org/10.1021/acs.joc.0c00039] [PMID: 32600039]
[35]
Yan, J.; Cheo, H.W.; Teo, W.K.; Shi, X.; Wu, H.; Idres, S.B.; Deng, L.W.; Wu, J. A radical smiles rearrangement promoted by neutral eosin Y as a direct hydrogen atom transfer photocatalyst. J. Am. Chem. Soc., 2020, 142(26), 11357-11362.
[http://dx.doi.org/10.1021/jacs.0c02052] [PMID: 32543192]
[36]
Fan, X.; He, C.; Ji, M.; Sun, X.; Luo, H.; Li, C.; Tong, H.; Zhang, W.; Sun, Z.; Chu, W. Visible light-induced deoxygenation/cyclization of salicylic acid derivatives and aryl acetylene for the synthesis of flavonoids. Chem. Commun., 2022, 58(43), 6348-6351.
[http://dx.doi.org/10.1039/D2CC01538B] [PMID: 35536025]
[37]
Gui, Q.W.; Teng, F.; Yang, H.; Xun, C.; Huang, W.J.; Lu, Z.Q.; Zhu, M.X.; Ouyang, W.T.; He, W.M. Visible-light photosynthesis of CHF2/CClF2/CBrF2-substituted ring-fused quinazolinones in dimethyl carbonate. Chem. Asian J., 2022, 17(1), e202101139.
[http://dx.doi.org/10.1002/asia.202101139] [PMID: 34837338]
[38]
Yang, W.; Yang, S.; Li, P.; Wang, L. Visible-light initiated oxidative cyclization of phenyl propiolates with sulfinic acids to coumarin derivatives under metal-free conditions. Chem. Commun., 2015, 51(35), 7520-7523.
[http://dx.doi.org/10.1039/C5CC00878F] [PMID: 25838160]
[39]
Zhang, Y.; Chen, W.; Jia, X.; Wang, L.; Li, P. A visible-light-induced oxidative cyclization of N-propargylanilines with sulfinic acids to 3-sulfonated quinoline derivatives without external photocatalysts. Chem. Commun., 2019, 55(19), 2785-2788.
[http://dx.doi.org/10.1039/C8CC10235J] [PMID: 30758355]
[40]
Liu, Q.; Mei, Y.; Wang, L.; Ma, Y.; Li, P. Visible-light-induced radical cascade cyclizations of 1,7-enynes with sulfinic acids: Direct access to sulfonated chromanes and sulfonated tetrahydroquinolines under metal-free conditions. Adv. Synth. Catal., 2020, 362(24), 5669-5680.
[http://dx.doi.org/10.1002/adsc.202000846]
[41]
Wang, L.; Zhang, M.; Zhang, Y.; Liu, Q.; Zhao, X.; Li, J.S.; Luo, Z.; Wei, W. Metal-free visible-light-induced oxidative cyclization reaction of 1,6-enynes and arylsulfinic acids leading to sulfonylated benzofurans. Chin. Chem. Lett., 2020, 31(1), 67-70.
[http://dx.doi.org/10.1016/j.cclet.2019.05.041]
[42]
Chen, H.; Yan, Y.; Zhang, N.; Mo, Z.; Xu, Y.; Chen, Y. Visible-light-induced cyclization/aromatization of 2-vinyloxy arylalkynes: Synthesis of thio-substituted dibenzofuran derivatives. Org. Lett., 2021, 23(2), 376-381.
[http://dx.doi.org/10.1021/acs.orglett.0c03876] [PMID: 33351638]
[43]
Li, G.H.; Han, Q.Q.; Sun, Y.Y.; Chen, D.M.; Wang, Z.L.; Xu, X.M.; Yu, X.Y. Visible-light induced cascade radical cyclization of sulfinic acids and o-(allyloxy)arylaldehydes towards functionalized chroman-4-ones. Chin. Chem. Lett., 2020, 31(12), 3255-3258.
[http://dx.doi.org/10.1016/j.cclet.2020.03.007]
[44]
Rohokale, R.S.; Tambe, S.D.; Kshirsagar, U.A. Eosin Y photoredox catalyzed net redox neutral reaction for regiospecific annulation to 3-sulfonylindoles via anion oxidation of sodium sulfinate salts. Org. Biomol. Chem., 2018, 16(4), 536-540.
[http://dx.doi.org/10.1039/C7OB02977B] [PMID: 29308489]
[45]
Xie, S.; Li, Y.; Liu, P.; Sun, P. Visible light-induced radical addition/annulation to construct phenylsulfonyl-functionalized dihydrobenzofurans involving an intramolecular 1,5-hydrogen atom transfer process. Org. Lett., 2020, 22(22), 8774-8779.
[http://dx.doi.org/10.1021/acs.orglett.0c03038] [PMID: 33147046]
[46]
Zhou, N.; Kuang, K.; Wu, M.; Wu, S.; Xia, Z.; Xu, Q.; Zhang, M. Visible-light-induced radical cascade cyclization of 1-(allyloxy)-2-(1-arylvinyl)benzenes with sulfonyl chlorides for the synthesis of sulfonated benzoxepines. Org. Chem. Front., 2021, 8(15), 4095-4100.
[http://dx.doi.org/10.1039/D1QO00611H]
[47]
Sun, B.; Tian, H.X.; Ni, Z.G.; Huang, P.Y.; Ding, H.; Li, B.Q.; Jin, C.; Wu, C.L.; Shen, R.P. Photocatalyst-, metal- and additive-free regioselective radical cascade sulfonylation/cyclization of benzimidazole derivatives with sulfonyl chlorides induced by visible light. Org. Chem. Front., 2022, 9(14), 3669-3676.
[http://dx.doi.org/10.1039/D2QO00518B]
[48]
Huang, A.X.; Zhu, H.L.; Zeng, F.L.; Chen, X.L.; Huang, X.Q.; Qu, L.B.; Yu, B. 1-Acryloyl-2-cyanoindole: A skeleton for visible-light-induced cascade annulation. Org. Lett., 2022, 24(16), 3014-3018.
[http://dx.doi.org/10.1021/acs.orglett.2c00927] [PMID: 35420829]
[49]
Li, C.X.; Tu, D.S.; Yao, R.; Yan, H.; Lu, C.S. Visible-light-induced cascade reaction of isocyanides and N-arylacrylamides with diphenylphosphine oxide via radical C-P and C-C bond formation. Org. Lett., 2016, 18(19), 4928-4931.
[http://dx.doi.org/10.1021/acs.orglett.6b02413]
[50]
Liu, X.C.; Chen, X.L.; Liu, Y.; Sun, K.; Peng, Y.Y.; Qu, L.B.; Yu, B. Visible-light-induced metal-free synthesis of 2-phosphorylated thioflavones in water. ChemSusChem, 2020, 13(2), 298-303.
[http://dx.doi.org/10.1002/cssc.201902817] [PMID: 31713317]
[51]
Yuan, X.Y.; Zeng, F.L.; Zhu, H.L.; Liu, Y.; Lv, Q.Y.; Chen, X.L.; Peng, L.; Yu, B. A metal-free visible-light-promoted phosphorylation/cyclization reaction in water towards 3-phosphorylated benzothiophenes. Org. Chem. Front., 2020, 7(14), 1884-1889.
[http://dx.doi.org/10.1039/D0QO00222D]
[52]
Hu, X.Q.; Chen, J.R.; Wei, Q.; Liu, F.L.; Deng, Q.H.; Beauchemin, A.M.; Xiao, W.J. Photocatalytic generation of N-centered hydrazonyl radicals: A strategy for hydroamination of βγ-unsaturated hydrazones. Angew. Chem. Int. Ed., 2014, 53(45), 12163-12167.
[http://dx.doi.org/10.1002/anie.201406491] [PMID: 25513705]
[53]
Hu, X.Q.; Qi, X.; Chen, J.R.; Zhao, Q.Q.; Wei, Q.; Lan, Y.; Xiao, W.J. Catalytic N-radical cascade reaction of hydrazones by oxidative deprotonation electron transfer and TEMPO mediation. Nat. Commun., 2016, 7(1), 11188.
[http://dx.doi.org/10.1038/ncomms11188] [PMID: 27048886]
[54]
Hu, X.Q.; Chen, J.; Chen, J.R.; Yan, D.M.; Xiao, W.J. Organophotocatalytic generation of N- and O-centred radicals enables aerobic oxyamination and dioxygenation of alkenes. Chemistry, 2016, 22(40), 14141-14146.
[http://dx.doi.org/10.1002/chem.201602597] [PMID: 27258972]
[55]
Zhao, Q.Q.; Chen, J.; Yan, D.M.; Chen, J.R.; Xiao, W.J. Photocatalytic hydrazonyl radical-mediated radical cyclization/allylation cascade: Synthesis of dihydropyrazoles and tetrahydropyridazines. Org. Lett., 2017, 19(13), 3620-3623.
[http://dx.doi.org/10.1021/acs.orglett.7b01609] [PMID: 28640626]
[56]
Zhao, Q.Q.; Hu, X.Q.; Yang, M.N.; Chen, J.R.; Xiao, W.J. A visible-light photocatalytic N-radical cascade of hydrazones for the synthesis of dihydropyrazole-fused benzosultams. Chem. Commun., 2016, 52(86), 12749-12752.
[http://dx.doi.org/10.1039/C6CC05897C] [PMID: 27722541]
[57]
Choi, G.J.; Knowles, R.R. Catalytic alkene carboaminations enabled by oxidative proton-coupled electron transfer. J. Am. Chem. Soc., 2015, 137(29), 9226-9229.
[http://dx.doi.org/10.1021/jacs.5b05377] [PMID: 26166022]
[58]
Miller, D.C.; Choi, G.J.; Orbe, H.S.; Knowles, R.R. Catalytic olefin hydroamidation enabled by proton-coupled electron transfer. J. Am. Chem. Soc., 2015, 137(42), 13492-13495.
[http://dx.doi.org/10.1021/jacs.5b09671] [PMID: 26439818]
[59]
Nguyen, S.T.; Zhu, Q.; Knowles, R.R. PCET-Enabled olefin hydroamidation reactions with N-alkyl amides. ACS Catal., 2019, 9(5), 4502-4507.
[http://dx.doi.org/10.1021/acscatal.9b00966] [PMID: 32292642]
[60]
Zhu, Q.; Graff, D.E.; Knowles, R.R. Intermolecular anti-markovnikov hydroamination of unactivated alkenes with sulfonamides enabled by proton-coupled electron transfer. J. Am. Chem. Soc., 2018, 140(2), 741-747.
[http://dx.doi.org/10.1021/jacs.7b11144] [PMID: 29268020]
[61]
Roos, C.B.; Demaerel, J.; Graff, D.E.; Knowles, R.R. Enantioselective hydroamination of alkenes with sulfonamides enabled by proton-coupled electron transfer. J. Am. Chem. Soc., 2020, 142(13), 5974-5979.
[http://dx.doi.org/10.1021/jacs.0c01332] [PMID: 32182054]
[62]
Ruccolo, S.; Qin, Y.; Schnedermann, C.; Nocera, D.G. General strategy for improving the quantum efficiency of photoredox hydroamidation catalysis. J. Am. Chem. Soc., 2018, 140(44), 14926-14937.
[http://dx.doi.org/10.1021/jacs.8b09109] [PMID: 30372046]
[63]
Jia, J.; Ho, Y.A.; Bülow, R.F.; Rueping, M. Brønsted base assisted photoredox catalysis: Proton coupled electron transfer for remote C−C bond formation via amidyl radicals. Chemistry, 2018, 24(53), 14054-14058.
[http://dx.doi.org/10.1002/chem.201802907] [PMID: 29939456]
[64]
Moon, Y.; Jang, E.; Choi, S.; Hong, S. Visible-light-photocatalyzed synthesis of phenanthridinones and quinolinones via direct oxidative C–H amidation. Org. Lett., 2018, 20(1), 240-243.
[http://dx.doi.org/10.1021/acs.orglett.7b03600] [PMID: 29239619]
[65]
Zou, S.; Geng, S.; Chen, L.; Wang, H.; Huang, F. Visible light driven metal-free intramolecular cyclization: A facile synthesis of 3-position substituted 3,4-dihydroisoquinolin-1(2 H)-one. Org. Biomol. Chem., 2019, 17(2), 380-387.
[http://dx.doi.org/10.1039/C8OB02560F] [PMID: 30556559]
[66]
Yu, X.; Zhou, F.; Chen, J.; Xiao, W. Visible light photocatalytic N-radicalbased intramolecular hydroamination of benzamides. Acta Chimi. Sin., 2017, 75(1)
[67]
Jiang, H.; An, X.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Visible-light-promoted iminyl-radical formation from acyl oximes: A unified approach to pyridines, quinolines, and phenanthridines. Angew. Chem. Int. Ed., 2015, 54(13), 4055-4059.
[http://dx.doi.org/10.1002/anie.201411342] [PMID: 25650356]
[68]
Brachet, E.; Marzo, L.; Selkti, M.; König, B.; Belmont, P. Visible light amination/Smiles cascade: Access to phthalazine derivatives. Chem. Sci., 2016, 7(8), 5002-5006.
[http://dx.doi.org/10.1039/C6SC01095D] [PMID: 30155150]
[69]
Rueping, M.; Leonori, D.; Poisson, T. Visible light mediated azomethine ylide formation-photoredox catalyzed [3+2] cycloadditions. Chem. Commun., 2011, 47(34), 9615-9617.
[http://dx.doi.org/10.1039/c1cc13660g] [PMID: 21792444]
[70]
Xuan, J.; Cheng, Y.; An, J.; Lu, L.Q.; Zhang, X.X.; Xiao, W.J. Visible light-induced intramolecular cyclization reactions of diamines: A new strategy to construct tetrahydroimidazoles. Chem. Commun., 2011, 47(29), 8337-8339.
[http://dx.doi.org/10.1039/c1cc12203g] [PMID: 21698332]
[71]
Zou, Y.Q.; Lu, L.Q.; Fu, L.; Chang, N.J.; Rong, J.; Chen, J.R.; Xiao, W.J. Visible-light-induced oxidation/[3+2] cycloaddition/oxidative aromatization sequence: A photocatalytic strategy to construct pyrrolo[2,1-a]isoquinolines. Angew. Chem. Int. Ed., 2011, 50(31), 7171-7175.
[http://dx.doi.org/10.1002/anie.201102306] [PMID: 21698733]
[72]
Maity, S.; Zheng, N. A visible-light-mediated oxidative C-N bond formation/aromatization cascade: Photocatalytic preparation of N-arylindoles. Angew. Chem. Int. Ed., 2012, 51(38), 9562-9566.
[http://dx.doi.org/10.1002/anie.201205137] [PMID: 22915489]
[73]
Maity, S.; Zhu, M.; Shinabery, R.S.; Zheng, N. Intermolecular [3+2] cycloaddition of cyclopropylamines with olefins by visible-light photocatalysis. Angew. Chem. Int. Ed., 2012, 51(1), 222-226.
[http://dx.doi.org/10.1002/anie.201106162] [PMID: 22109785]
[74]
Xuan, J.; Xia, X.D.; Zeng, T.T.; Feng, Z.J.; Chen, J.R.; Lu, L.Q.; Xiao, W.J. Visible-light-induced formal [3+2] cycloaddition for pyrrole synthesis under metal-free conditions. Angew. Chem. Int. Ed., 2014, 53(22), 5653-5656.
[http://dx.doi.org/10.1002/anie.201400602] [PMID: 24729379]
[75]
Zeng, T.T.; Xuan, J.; Ding, W.; Wang, K.; Lu, L.Q.; Xiao, W.J. [3 + 2] Cycloaddition/oxidative aromatization sequence via photoredox catalysis: One-pot synthesis of oxazoles from 2 h-azirines and aldehydes. Org. Lett., 2015, 17(16), 4070-4073.
[http://dx.doi.org/10.1021/acs.orglett.5b01994] [PMID: 26250789]
[76]
Musacchio, A.J.; Nguyen, L.Q.; Beard, G.H.; Knowles, R.R. Catalytic olefin hydroamination with aminium radical cations: A photoredox method for direct C-N bond formation. J. Am. Chem. Soc., 2014, 136(35), 12217-12220.
[http://dx.doi.org/10.1021/ja5056774] [PMID: 25127420]
[77]
Chandrasekhar, D.; Borra, S.; Kapure, J.S.; Shivaji, G.S.; Srinivasulu, G.; Maurya, R.A. Visible-light photoredox catalysis: Direct synthesis of fused β-carbolines through an oxidation/[3+2] cycloaddition/oxidative aromatization reaction cascade in batch and flow microreactors. Org. Chem. Front., 2015, 2(10), 1308-1312.
[http://dx.doi.org/10.1039/C5QO00207A]
[78]
Wu, C.J.; Meng, Q.Y.; Lei, T.; Zhong, J.J.; Liu, W.Q.; Zhao, L.M.; Li, Z.J.; Chen, B.; Tung, C.H.; Wu, L.Z. An oxidant-free strategy for indole synthesis via intramolecular C–C bond construction under visible light irradiation: Cross-coupling hydrogen evolution reaction. ACS Catal., 2016, 6(7), 4635-4639.
[http://dx.doi.org/10.1021/acscatal.6b00917]
[79]
Cheng, Y.; Yang, J.; Qu, Y.; Li, P.; Aerobic Visible-Light Photoredox Radical, C-H. Aerobic visible-light photoredox radical C-H functionalization: Catalytic synthesis of 2-substituted benzothiazoles. Org. Lett., 2012, 14(1), 98-101.
[http://dx.doi.org/10.1021/ol2028866] [PMID: 22146071]
[80]
Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.X.; Wu, L.Z.; Lei, A. External oxidant-free oxidative cross-coupling: A photoredox cobalt-catalyzed aromatic C–H thiolation for constructing C–S bonds. J. Am. Chem. Soc., 2015, 137(29), 9273-9280.
[http://dx.doi.org/10.1021/jacs.5b05665] [PMID: 26158688]
[81]
Honeker, R.; Garza-Sanchez, R.A.; Hopkinson, M.N.; Glorius, F. Visible-light-promoted trifluoromethylthiolation of styrenes by dual photoredox/halide catalysis. Chemistry, 2016, 22(13), 4395-4399.
[http://dx.doi.org/10.1002/chem.201600190] [PMID: 26880666]
[82]
Yadav, L.; Srivastava, V.; Yadav, A.; Eosin, Y. Eosin Y catalyzed visible-light-driven aerobic oxidative cyclization of thioamides to 1,2,4-thiadiazoles. Synlett, 2013, 24(4), 465-470.
[http://dx.doi.org/10.1055/s-0032-1318158]
[83]
Quint, V.; Morlet-Savary, F.; Lohier, J.F.; Lalevée, J.; Gaumont, A.C.; Lakhdar, S. Metal-free, visible light-photocatalyzed synthesis of benzo[b]phosphole oxides: Synthetic and mechanistic investigations. J. Am. Chem. Soc., 2016, 138(23), 7436-7441.
[http://dx.doi.org/10.1021/jacs.6b04069] [PMID: 27186629]
[84]
Li, C.X.; Tu, D.S.; Yao, R.; Yan, H.; Lu, C.S. Visible-light-induced cascade reaction of isocyanides and N-arylacrylamides with diphenylphosphine oxide via radical C–P and C–C bond formation. Org. Lett., 2016, 18(19), 4928-4931.
[http://dx.doi.org/10.1021/acs.orglett.6b02413] [PMID: 27681056]
[85]
Ovalles, S.R.; Hansen, J.H.; Davies, H.M.L. Thermally induced cycloadditions of donor/acceptor carbenes. Org. Lett., 2011, 13(16), 4284-4287.
[http://dx.doi.org/10.1021/ol201628d] [PMID: 21766801]
[86]
Jurberg, I.D.; Davies, H.M.L. Blue light-promoted photolysis of aryldiazoacetates. Chem. Sci., 2018, 9(22), 5112-5118.
[http://dx.doi.org/10.1039/C8SC01165F] [PMID: 29938043]
[87]
Bunyamin, A.; Hua, C.; Polyzos, A.; Priebbenow, D.L. Intramolecular photochemical [2+1]-cycloadditions of nucleophilic siloxy carbenes. Chem. Sci., 2022, 13(11), 3273-3280.
[http://dx.doi.org/10.1039/D2SC00203E] [PMID: 35414869]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy