Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Pathways from the Superior Colliculus to the Basal Ganglia

Author(s): Fernando Falkenburger Melleu* and Newton Sabino Canteras

Volume 22, Issue 9, 2024

Published on: 11 September, 2023

Page: [1431 - 1453] Pages: 23

DOI: 10.2174/1570159X21666230911102118

Price: $65

Abstract

The present work aims to review the structural organization of the mammalian superior colliculus (SC), the putative pathways connecting the SC and the basal ganglia, and their role in organizing complex behavioral output. First, we review how the complex intrinsic connections between the SC’s laminae projections allow for the construction of spatially aligned, visual-multisensory maps of the surrounding environment. Moreover, we present a summary of the sensory-motor inputs of the SC, including a description of the integration of multi-sensory inputs relevant to behavioral control. We further examine the major descending outputs toward the brainstem and spinal cord. As the central piece of this review, we provide a thorough analysis covering the putative interactions between the SC and the basal ganglia. To this end, we explore the diverse thalamic routes by which information from the SC may reach the striatum, including the pathways through the lateral posterior, parafascicular, and rostral intralaminar thalamic nuclei. We also examine the interactions between the SC and subthalamic nucleus, representing an additional pathway for the tectal modulation of the basal ganglia. Moreover, we discuss how information from the SC might also be relayed to the basal ganglia through midbrain tectonigral and tectotegmental projections directed at the substantia nigra compacta and ventrotegmental area, respectively, influencing the dopaminergic outflow to the dorsal and ventral striatum. We highlight the vast interplay between the SC and the basal ganglia and raise several missing points that warrant being addressed in future studies.

Graphical Abstract

[1]
Butler, A.B.; Hodos, W. Comparative vertebrate neuroanatomy: Evolution and adaptation; John Wiley & Sons, 2005.
[http://dx.doi.org/10.1002/0471733849]
[2]
Basso, M.A.; Bickford, M.E.; Cang, J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron, 2021, 109(6), 918-937.
[http://dx.doi.org/10.1016/j.neuron.2021.01.013] [PMID: 33548173]
[3]
Altman, J.; Carpenter, M.B. Fiber projections of the superior colliculus in the cat. J. Comp. Neurol., 1961, 116(2), 157-177.
[http://dx.doi.org/10.1002/cne.901160206] [PMID: 13682733]
[4]
Cajal, S.R. Histology of the nervous system of man and vertebrates; Oxford Univ Press: New York, 1995.
[5]
Werner, W.; Dannenberg, S.; Hoffmann, K.P. Arm-movement-related neurons in the primate superior colliculus and underlying reticular formation: comparison of neuronal activity with EMGs of muscles of the shoulder, arm and trunk during reaching. Exp. Brain Res., 1997, 115(2), 191-205.
[http://dx.doi.org/10.1007/PL00005690] [PMID: 9224849]
[6]
Fischer, B.; Ramsperger, E. Human express saccades: Extremely short reaction times of goal directed eye movements. Exp. Brain Res., 1984, 57(1), 191-195.
[http://dx.doi.org/10.1007/BF00231145] [PMID: 6519226]
[7]
Savjani, R.R.; Katyal, S.; Halfen, E.; Kim, J.H.; Ress, D. Polar-angle representation of saccadic eye movements in human superior colliculus. Neuroimage, 2018, 171, 199-208.
[http://dx.doi.org/10.1016/j.neuroimage.2017.12.080] [PMID: 29292132]
[8]
Frost, B.J.; Wise, L.Z.; Morgan, B.; Bird, D. Retinotopic representation of the bifoveate eye of the kestrel (Falco sparverius) on the optic tectum. Vis. Neurosci., 1990, 5(3), 231-239.
[http://dx.doi.org/10.1017/S0952523800000304] [PMID: 2134846]
[9]
Hunt, S.P.; Künzle, H. Observations on the projections and intrinsic organization of the pigeon optic tectum: An autoradiographic study based on anterograde and retrograde, axonal and dendritic flow. J. Comp. Neurol., 1976, 170(2), 153-172.
[http://dx.doi.org/10.1002/cne.901700203] [PMID: 62764]
[10]
Qu, J.; Zhou, X.; Zhu, H.; Cheng, G.; Ashwell, K.W.; Lu, F. Development of the human superior colliculus and the retinocollicular projection. Exp. Eye Res., 2006, 82(2), 300-310.
[http://dx.doi.org/10.1016/j.exer.2005.07.002] [PMID: 16125175]
[11]
Abplanalp, P. Some subcortical connections of the visual system in tree shrews and squirrels. Brain Behav. Evol., 1970, 3(1-4), 155-168.
[http://dx.doi.org/10.1159/000125468] [PMID: 5522341]
[12]
Goldberg, M.E.; Wurtz, R.H. Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. J. Neurophysiol., 1972, 35(4), 560-574.
[http://dx.doi.org/10.1152/jn.1972.35.4.560] [PMID: 4624740]
[13]
Wurtz, R.H.; Mohler, C.W. Organization of monkey superior colliculus: Enhanced visual response of superficial layer cells. J. Neurophysiol., 1976, 39(4), 745-765.
[http://dx.doi.org/10.1152/jn.1976.39.4.745] [PMID: 823303]
[14]
Andrade da Costa, B.L.S.; Hokoç, J.N.; Pinaud, R.R.; Gattass, R. GABAergic retinocollicular projection in the new world monkey Cebus apella. Neuroreport, 1997, 8(8), 1797-1802.
[http://dx.doi.org/10.1097/00001756-199705260-00001] [PMID: 9223054]
[15]
Apter, J.T. Projection of the retina on superior colliculus of cats. J. Neurophysiol., 1945, 8(2), 123-134.
[http://dx.doi.org/10.1152/jn.1945.8.2.123]
[16]
Berson, D.M. Retinal and cortical inputs to cat superior colliculus: composition, convergence and laminar specificity. Prog. Brain Res., 1988, 75, 17-26.
[http://dx.doi.org/10.1016/S0079-6123(08)60462-8]
[17]
Cusick, C.G.; Kaas, J.H. Retinal projections in adult and newborn grey squirrels. Brain Res. Dev. Brain Res., 1982, 4(3), 275-284.
[http://dx.doi.org/10.1016/0165-3806(82)90139-0] [PMID: 6179578]
[18]
Perry, V.H.; Cowey, A. Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience, 1984, 12(4), 1125-1137.
[http://dx.doi.org/10.1016/0306-4522(84)90007-1] [PMID: 6483194]
[19]
Bickford, M.E.; Zhou, N.; Krahe, T.E.; Govindaiah, G.; Guido, W. Retinal and tectal “Driver-Like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. J. Neurosci., 2015, 35(29), 10523-10534.
[http://dx.doi.org/10.1523/JNEUROSCI.3375-14.2015] [PMID: 26203147]
[20]
Gandhi, N.J.; Katnani, H.A. Motor functions of the superior colliculus. Annu. Rev. Neurosci., 2011, 34(1), 205-231.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113728] [PMID: 21456962]
[21]
Ghitani, N.; Bayguinov, P.O.; Vokoun, C.R.; McMahon, S.; Jackson, M.B.; Basso, M.A. Excitatory synaptic feedback from the motor layer to the sensory layers of the superior colliculus. J. Neurosci., 2014, 34(20), 6822-6833.
[http://dx.doi.org/10.1523/JNEUROSCI.3137-13.2014] [PMID: 24828636]
[22]
Helmbrecht, T.O.; dal Maschio, M.; Donovan, J.C.; Koutsouli, S.; Baier, H. Topography of a visuomotor transformation. Neuron, 2018, 100(6), 1429-1445.e4.
[http://dx.doi.org/10.1016/j.neuron.2018.10.021] [PMID: 30392799]
[23]
Isa, T.; Endo, T.; Saito, Y. The visuo-motor pathway in the local circuit of the rat superior colliculus. J. Neurosci., 1998, 18(20), 8496-8504.
[http://dx.doi.org/10.1523/JNEUROSCI.18-20-08496.1998] [PMID: 9763492]
[24]
Wurtz, R.H.; Albano, J.E. Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci., 1980, 3(1), 189-226.
[http://dx.doi.org/10.1146/annurev.ne.03.030180.001201] [PMID: 6774653]
[25]
Ghose, D.; Maier, A.; Nidiffer, A.; Wallace, M.T. Multisensory response modulation in the superficial layers of the superior colliculus. J. Neurosci., 2014, 34(12), 4332-4344.
[http://dx.doi.org/10.1523/JNEUROSCI.3004-13.2014] [PMID: 24647954]
[26]
Bednárová, V.; Grothe, B.; Myoga, M.H. Complex and spatially segregated auditory inputs of the mouse superior colliculus. J. Physiol., 2018, 596(21), 5281-5298.
[http://dx.doi.org/10.1113/JP276370] [PMID: 30206945]
[27]
Wang, N.; Perkins, E.; Zhou, L.; Warren, S.; May, P.J. Reticular formation connections underlying horizontal gaze: the central mesencephalic reticular formation (cMRF) as a conduit for the collicular saccade signal. Front. Neuroanat., 2017, 11, 36.
[http://dx.doi.org/10.3389/fnana.2017.00036] [PMID: 28487639]
[28]
Coimbra, N.C.; De Oliveira, R.; Freitas, R.L.; Ribeiro, S.J.; Borelli, K.G.; Pacagnella, R.C.; Moreira, J.E.; da Silva, L.A.; Melo, L.L.; Lunardi, L.O.; Brandão, M.L. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia. Exp. Neurol., 2006, 197(1), 93-112.
[http://dx.doi.org/10.1016/j.expneurol.2005.08.022] [PMID: 16303128]
[29]
Chen, B.; May, P.J. The feedback circuit connecting the superior colliculus and central mesencephalic reticular formation: a direct morphological demonstration. Exp. Brain Res., 2000, 131(1), 10-21.
[http://dx.doi.org/10.1007/s002219900280] [PMID: 10759167]
[30]
Chevalier, G.; Deniau, J.M. Spatio-temporal organization of a branched tecto-spinal/tecto-diencephalic neuronal system. Neuroscience, 1984, 12(2), 427-439.
[http://dx.doi.org/10.1016/0306-4522(84)90063-0] [PMID: 6462457]
[31]
Cowie, R.J.; Holstege, G. Dorsal mesencephalic projections to pons, medulla, and spinal cord in the cat: Limbic and non-limbic components. J. Comp. Neurol., 1992, 319(4), 536-559.
[http://dx.doi.org/10.1002/cne.903190406] [PMID: 1619044]
[32]
Dean, P.; Redgrave, P.; Sahibzada, N.; Tsuji, K. Head and body movements produced by electrical stimulation of superior colliculus in rats: Effects of interruption of crossed tectoreticulospinal pathway. Neuroscience, 1986, 19(2), 367-380.
[http://dx.doi.org/10.1016/0306-4522(86)90267-8] [PMID: 3774146]
[33]
Sahibzada, N.; Yamasaki, D.; Rhoades, R.W. The spinal and commissural projections from the superior colliculus in rat and hamster arise from distinct neuronal populations. Brain Res., 1987, 415(2), 242-256.
[http://dx.doi.org/10.1016/0006-8993(87)90206-X] [PMID: 3607496]
[34]
Meredith, M.A.; Wallace, M.T.; Stein, B.E. Visual, auditory and somatosensory convergence in output neurons of the cat superior colliculus: multisensory properties of the tecto-reticulo-spinal projection. Exp. Brain Res., 1992, 88(1), 181-186.
[http://dx.doi.org/10.1007/BF02259139] [PMID: 1541354]
[35]
Redgrave, P.; Dean, P.; Mitchell, I.J.; Odekunle, A.; Clark, A. The projection from superior colliculus to cuneiform area in the rat I. Anatomical studies. Exp. Brain Res., 1988, 72(3), 611-625.
[http://dx.doi.org/10.1007/BF00250606] [PMID: 2466683]
[36]
Benavidez, N.L.; Bienkowski, M.S.; Zhu, M.; Garcia, L.H.; Fayzullina, M.; Gao, L.; Bowman, I.; Gou, L.; Khanjani, N.; Cotter, K.R.; Korobkova, L.; Becerra, M.; Cao, C.; Song, M.Y.; Zhang, B.; Yamashita, S.; Tugangui, A.J.; Zingg, B.; Rose, K.; Lo, D.; Foster, N.N.; Boesen, T.; Mun, H.S.; Aquino, S.; Wickersham, I.R.; Ascoli, G.A.; Hintiryan, H.; Dong, H.W. Organization of the inputs and outputs of the mouse superior colliculus. Nat. Commun., 2021, 12(1), 4004.
[http://dx.doi.org/10.1038/s41467-021-24241-2] [PMID: 34183678]
[37]
Redgrave, P.; Mitchell, I.J.; Dean, P. Descending projections from the superior colliculus in rat: a study using orthograde transport of wheatgerm-agglutinin conjugated horseradish peroxidase. Exp. Brain Res., 1987, 68(1), 147-167.
[http://dx.doi.org/10.1007/BF00255241] [PMID: 2826204]
[38]
Isa, T.; Marquez-Legorreta, E.; Grillner, S.; Scott, E.K. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr. Biol., 2021, 31(11), R741-R762.
[http://dx.doi.org/10.1016/j.cub.2021.04.001] [PMID: 34102128]
[39]
Jay, M.F.; Sparks, D.L. Sensorimotor integration in the primate superior colliculus. I. Motor convergence. J. Neurophysiol., 1987, 57(1), 22-34.
[http://dx.doi.org/10.1152/jn.1987.57.1.22] [PMID: 3559673]
[40]
Butler, B.E.; Chabot, N.; Lomber, S.G. A quantitative comparison of the hemispheric, areal, and laminar origins of sensory and motor cortical projections to the superior colliculus of the cat. J. Comp. Neurol., 2016, 524(13), 2623-2642.
[http://dx.doi.org/10.1002/cne.23980] [PMID: 26850989]
[41]
Savier, E.; Eglen, S.J.; Bathélémy, A.; Perraut, M.; Pfrieger, F.W.; Lemke, G.; Reber, M. A molecular mechanism for the topographic alignment of convergent neural maps. elife, 2017, 6, e20470.
[42]
Chalupa, L.M.; Rhoades, R.W. Responses of visual, somatosensory, and auditory neurones in the golden hamster’s superior colliculus. J. Physiol., 1977, 270(3), 595-626.
[http://dx.doi.org/10.1113/jphysiol.1977.sp011971] [PMID: 903907]
[43]
Dräger, U.C.; Hubel, D.H. Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J. Neurophysiol., 1975, 38(3), 690-713.
[http://dx.doi.org/10.1152/jn.1975.38.3.690] [PMID: 1127462]
[44]
Knudsen, E.I. Auditory and visual maps of space in the optic tectum of the owl. J. Neurosci., 1982, 2(9), 1177-1194.
[http://dx.doi.org/10.1523/JNEUROSCI.02-09-01177.1982] [PMID: 7119872]
[45]
Palmer, A.R.; King, A.J. The representation of auditory space in the mammalian superior colliculus. Nature, 1982, 299(5880), 248-249.
[http://dx.doi.org/10.1038/299248a0] [PMID: 7110344]
[46]
Wise, L.Z.; Irvine, D.R. Auditory response properties of neurons in deep layers of cat superior colliculus. J. Neurophysiol., 1983, 49(3), 674-685.
[http://dx.doi.org/10.1152/jn.1983.49.3.674] [PMID: 6834093]
[47]
Tardif, E.; Clarke, S. Commissural connections of human superior colliculus. Neuroscience, 2002, 111(2), 363-372.
[http://dx.doi.org/10.1016/S0306-4522(01)00600-5] [PMID: 11983321]
[48]
Jiang, W.; Jiang, H.; Stein, B.E. Two corticotectal areas facilitate multisensory orientation behavior. J. Cogn. Neurosci., 2002, 14(8), 1240-1255.
[http://dx.doi.org/10.1162/089892902760807230] [PMID: 12495529]
[49]
Jiang, W.; Stein, B.E. Cortex controls multisensory depression in superior colliculus. J. Neurophysiol., 2003, 90(4), 2123-2135.
[http://dx.doi.org/10.1152/jn.00369.2003] [PMID: 14534263]
[50]
Jiang, W.; Wallace, M.T.; Jiang, H.; Vaughan, J.W.; Stein, B.E. Two cortical areas mediate multisensory integration in superior colliculus neurons. J. Neurophysiol., 2001, 85(2), 506-522.
[http://dx.doi.org/10.1152/jn.2001.85.2.506] [PMID: 11160489]
[51]
Brecht, M.; Singer, W.; Engel, A.K. Amplitude and direction of saccadic eye movements depend on the synchronicity of collicular population activity. J. Neurophysiol., 2004, 92(1), 424-432.
[http://dx.doi.org/10.1152/jn.00639.2003] [PMID: 14973313]
[52]
Stein, B.E.; Clamann, H.P. Control of pinna movements and sensorimotor register in cat superior colliculus. Brain Behav. Evol., 1981, 19(3-4), 180-192.
[http://dx.doi.org/10.1159/000121641] [PMID: 7326575]
[53]
Cohen, J.D.; Castro-Alamancos, M.A. Behavioral state dependency of neural activity and sensory (whisker) responses in superior colliculus. J. Neurophysiol., 2010, 104(3), 1661-1672.
[http://dx.doi.org/10.1152/jn.00340.2010] [PMID: 20610783]
[54]
Hemelt, M.E.; Keller, A. Superior colliculus control of vibrissa movements. J. Neurophysiol., 2008, 100(3), 1245-1254.
[http://dx.doi.org/10.1152/jn.90478.2008] [PMID: 18562549]
[55]
Cowie, R.J.; Robinson, D.L. Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus. J. Neurophysiol., 1994, 72(6), 2648-2664.
[http://dx.doi.org/10.1152/jn.1994.72.6.2648] [PMID: 7897481]
[56]
Ellard, C.G.; Goodale, M.A. The role of the predorsal bundle in head and body movements elicited by electrical stimulation of the superior colliculus in the Mongolian gerbil. Exp. Brain Res., 1986, 64(3), 421-433.
[http://dx.doi.org/10.1007/BF00340479] [PMID: 3803481]
[57]
Pisa, M. Motor functions of the striatum in the rat: Critical role of the lateral region in tongue and forelimb reaching. Neuroscience, 1988, 24(2), 453-463.
[http://dx.doi.org/10.1016/0306-4522(88)90341-7] [PMID: 3362348]
[58]
Corneil, B.D.; Olivier, E.; Munoz, D.P. Neck muscle responses to stimulation of monkey superior colliculus. II. Gaze shift initiation and volitional head movements. J. Neurophysiol., 2002, 88(4), 2000-2018.
[http://dx.doi.org/10.1152/jn.2002.88.4.2000] [PMID: 12364524]
[59]
Sahibzada, N.; Dean, P.; Redgrave, P. Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J. Neurosci., 1986, 6(3), 723-733.
[http://dx.doi.org/10.1523/JNEUROSCI.06-03-00723.1986] [PMID: 3958791]
[60]
Courjon, J.H.; Zénon, A.; Clément, G.; Urquizar, C.; Olivier, E.; Pélisson, D. Electrical stimulation of the superior colliculus induces non-topographically organized perturbation of reaching movements in cats. Front. Syst. Neurosci., 2015, 9, 109.
[http://dx.doi.org/10.3389/fnsys.2015.00109] [PMID: 26283933]
[61]
Tehovnik, E.J.; Yeomans, J.S. Two converging brainstem pathways mediating circling behavior. Brain Res., 1986, 385(2), 329-342.
[http://dx.doi.org/10.1016/0006-8993(86)91080-2] [PMID: 3779395]
[62]
Hu, F.; Dan, Y. An inferior-superior colliculus circuit controls auditory cue-directed visual spatial attention. Neuron, 2022, 110(1), 109-119. e103.
[http://dx.doi.org/10.1016/j.neuron.2021.10.004]
[63]
Zhaoping, L. From the optic tectum to the primary visual cortex: migration through evolution of the saliency map for exogenous attentional guidance. Curr. Opin. Neurobiol., 2016, 40, 94-102.
[http://dx.doi.org/10.1016/j.conb.2016.06.017] [PMID: 27420378]
[64]
Favaro, P.D.N.; Gouvêa, T.S.; de Oliveira, S.R.; Vautrelle, N.; Redgrave, P.; Comoli, E. The influence of vibrissal somatosensory processing in rat superior colliculus on prey capture. Neuroscience, 2011, 176, 318-327.
[http://dx.doi.org/10.1016/j.neuroscience.2010.12.009] [PMID: 21163336]
[65]
Furigo, I.C.; de Oliveira, W.F.; de Oliveira, A.R.; Comoli, E.; Baldo, M.V.C.; Mota-Ortiz, S.R.; Canteras, N.S. The role of the superior colliculus in predatory hunting. Neuroscience, 2010, 165(1), 1-15.
[http://dx.doi.org/10.1016/j.neuroscience.2009.10.004] [PMID: 19825395]
[66]
Comoli, E.; Ribeiro-Barbosa, E.R.; Canteras, N.S. Predatory hunting and exposure to a live predator induce opposite patterns of Fos immunoreactivity in the PAG. Behav. Brain Res., 2003, 138(1), 17-28.
[http://dx.doi.org/10.1016/S0166-4328(02)00197-3] [PMID: 12493627]
[67]
Comoli, E.; Ribeiro-Barbosa, É.R.; Negrão, N.; Goto, M.; Canteras, N.S. Functional mapping of the prosencephalic systems involved in organizing predatory behavior in rats. Neuroscience, 2005, 130(4), 1055-1067.
[http://dx.doi.org/10.1016/j.neuroscience.2004.10.020] [PMID: 15653000]
[68]
Rossi, M.A.; Li, H.E.; Lu, D.; Kim, I.H.; Bartholomew, R.A.; Gaidis, E.; Barter, J.W.; Kim, N.; Cai, M.T.; Soderling, S.H.; Yin, H.H. A GABAergic nigrotectal pathway for coordination of drinking behavior. Nat. Neurosci., 2016, 19(5), 742-748.
[http://dx.doi.org/10.1038/nn.4285] [PMID: 27043290]
[69]
Taha, E.B.; Dean, P.; Redgrave, P. Oral behaviour induced by intranigral muscimol is unaffected by haloperidol but abolished by large lesions of superior colliculus. Psychopharmacology, 1982, 77(3), 272-278.
[http://dx.doi.org/10.1007/BF00464579] [PMID: 6812150]
[70]
Mitchell, I.J.; Dean, P.; Redgrave, P. The projection from superior colliculus to cuneiform area in the rat - II. Defence-like responses to stimulation with glutamate in cuneiform nucleus and surrounding structures. Exp. Brain Res., 1988, 72(3), 626-639.
[http://dx.doi.org/10.1007/BF00250607] [PMID: 3234506]
[71]
Li, L.; Feng, X.; Zhou, Z.; Zhang, H.; Shi, Q.; Lei, Z.; Shen, P.; Yang, Q.; Zhao, B.; Chen, S.; Li, L.; Zhang, Y.; Wen, P.; Lu, Z.; Li, X.; Xu, F.; Wang, L. Stress accelerates defensive responses to looming in mice and involves a locus coeruleus-superior colliculus projection. Curr. Biol., 2018, 28(6), 859-871.e5.
[http://dx.doi.org/10.1016/j.cub.2018.02.005] [PMID: 29502952]
[72]
Dean, P.; Mitchell, I.J.; Redgrave, P. Responses resembling defensive behaviour produced by microinjection of glutamate into superior colliculus of rats. Neuroscience, 1988, 24(2), 501-510.
[http://dx.doi.org/10.1016/0306-4522(88)90345-4] [PMID: 2896313]
[73]
Vargas, L.C.; de Azevedo Marques, T.; Schenberg, L.C. Micturition and defensive behaviors are controlled by distinct neural networks within the dorsal periaqueductal gray and deep gray layer of the superior colliculus of the rat. Neurosci. Lett., 2000, 280(1), 45-48.
[http://dx.doi.org/10.1016/S0304-3940(99)00985-4] [PMID: 10696808]
[74]
Isa, K.; Sooksawate, T.; Kobayashi, K.; Kobayashi, K.; Redgrave, P.; Isa, T. Dissecting the tectal output channels for orienting and defense responses. eNeuro, 2020, 7(5), ENEURO.0271-20.2020.
[http://dx.doi.org/10.1523/ENEURO.0271-20.2020] [PMID: 32928881]
[75]
McHaffie, J.G.; Jiang, H.; May, P.J.; Coizet, V.; Overton, P.G.; Stein, B.E.; Redgrave, P. A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience, 2006, 138(1), 221-234.
[http://dx.doi.org/10.1016/j.neuroscience.2005.11.015] [PMID: 16361067]
[76]
McHaffie, J.; Stanford, T.; Stein, B.; Coizet, V.; Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci., 2005, 28(8), 401-407.
[http://dx.doi.org/10.1016/j.tins.2005.06.006] [PMID: 15982753]
[77]
Redgrave, P.; Marrow, L.; Dean, P. Topographical organization of the nigrotectal projection in rat: Evidence for segregated channels. Neuroscience, 1992, 50(3), 571-595.
[http://dx.doi.org/10.1016/0306-4522(92)90448-B] [PMID: 1279464]
[78]
Redgrave, P.; Coizet, V.; Comoli, E.; McHaffie, J.G.; Leriche, M.; Vautrelle, N.; Hayes, L.M.; Overton, P. Interactions between the midbrain superior colliculus and the basal ganglia. Front. Neuroanat., 2010, 4, 132.
[http://dx.doi.org/10.3389/fnana.2010.00132] [PMID: 20941324]
[79]
May, P.J.; Hall, W.C. Relationships between the nigrotectal pathway and the cells of origin of the predorsal bundle. J. Comp. Neurol., 1984, 226(3), 357-376.
[http://dx.doi.org/10.1002/cne.902260306] [PMID: 6747028]
[80]
Liu, X.; Huang, H.; Snutch, T.P.; Cao, P.; Wang, L.; Wang, F. The superior colliculus: Cell types, connectivity, and behavior. Neurosci. Bull., 2022, 38(12), 1519-1540.
[http://dx.doi.org/10.1007/s12264-022-00858-1] [PMID: 35484472]
[81]
May, P.J. The mammalian superior colliculus: Laminar structure and connections. Prog. Brain Res., 2006, 151, 321-378.
[http://dx.doi.org/10.1016/S0079-6123(05)51011-2] [PMID: 16221594]
[82]
Comoli, E.; Das Neves Favaro, P.; Vautrelle, N.; Leriche, M.; Overton, P.G.; Redgrave, P. Segregated anatomical input to sub-regions of the rodent superior colliculus associated with approach and defense. Front. Neuroanat., 2012, 6, 9.
[http://dx.doi.org/10.3389/fnana.2012.00009] [PMID: 22514521]
[83]
Boka, K.; Chomsung, R.; Li, J.; Bickford, M.E. Comparison of the ultrastructure of cortical and retinal terminals in the rat superior colliculus. Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 2006, 288A(8), 850-858.
[http://dx.doi.org/10.1002/ar.a.20359] [PMID: 16850432]
[84]
Ellis, E.M.; Gauvain, G.; Sivyer, B.; Murphy, G.J. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J. Neurophysiol., 2016, 116(2), 602-610.
[http://dx.doi.org/10.1152/jn.00227.2016] [PMID: 27169509]
[85]
Harting, J.K.; Huerta, M.F.; Hashikawa, T.; van Lieshout, D.P. Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: Organization of tectogeniculate pathways in nineteen species. J. Comp. Neurol., 1991, 304(2), 275-306.
[http://dx.doi.org/10.1002/cne.903040210] [PMID: 1707899]
[86]
Harting, J.K.; Updyke, B.V.; van Lieshout, D.P. Corticotectal projections in the cat: Anterograde transport studies of twenty-five cortical areas. J. Comp. Neurol., 1992, 324(3), 379-414.
[http://dx.doi.org/10.1002/cne.903240308] [PMID: 1401268]
[87]
Graham, J.; Lin, C.S.; Kaas, J.H. Subcortical projections of six visual cortical areas in the owl monkey, Aotus trivirgatus. J. Comp. Neurol., 1979, 187(3), 557-580.
[http://dx.doi.org/10.1002/cne.901870307] [PMID: 114555]
[88]
Albano, J.E.; Norton, T.T.; Hall, W.C. Laminar origin of projections from the superficial layers of the superior colliculus in the tree shrew, Tupaia glis. Brain Res., 1979, 173(1), 1-11.
[http://dx.doi.org/10.1016/0006-8993(79)91090-4] [PMID: 90538]
[89]
Shang, C.; Liu, Z.; Chen, Z.; Shi, Y.; Wang, Q.; Liu, S.; Li, D.; Cao, P. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science, 2015, 348(6242), 1472-1477.
[http://dx.doi.org/10.1126/science.aaa8694] [PMID: 26113723]
[90]
Gale, S.D.; Murphy, G.J. Active dendritic properties and local inhibitory input enable selectivity for object motion in mouse superior colliculus neurons. J. Neurosci., 2016, 36(35), 9111-9123.
[http://dx.doi.org/10.1523/JNEUROSCI.0645-16.2016] [PMID: 27581453]
[91]
Gale, S.D.; Murphy, G.J. Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus. J. Neurosci., 2014, 34(40), 13458-13471.
[http://dx.doi.org/10.1523/JNEUROSCI.2768-14.2014] [PMID: 25274823]
[92]
Hunter, P.R.; Lowe, A.S.; Thompson, I.D.; Meyer, M.P. Emergent properties of the optic tectum revealed by population analysis of direction and orientation selectivity. J. Neurosci., 2013, 33(35), 13940-13945.
[http://dx.doi.org/10.1523/JNEUROSCI.1493-13.2013] [PMID: 23986231]
[93]
Guitton, D.; Munoz, D.P.; Galiana, H.L. Gaze control in the cat: Studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks. J. Neurophysiol., 1990, 64(2), 509-531.
[http://dx.doi.org/10.1152/jn.1990.64.2.509] [PMID: 2213129]
[94]
Guitton, D. Control of eye—head coordination during orienting gaze shifts. Trends Neurosci., 1992, 15(5), 174-179.
[http://dx.doi.org/10.1016/0166-2236(92)90169-9] [PMID: 1377424]
[95]
Goodale, M.A.; Murison, R.C.C. The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat. Brain Res., 1975, 88(2), 243-261.
[http://dx.doi.org/10.1016/0006-8993(75)90388-1] [PMID: 1148825]
[96]
Hall, W.C.; Lee, P. Interlaminar connections of the superior colliculus in the tree shrew. I. The superficial gray layer. J. Comp. Neurol., 1993, 332(2), 213-223.
[http://dx.doi.org/10.1002/cne.903320206] [PMID: 8331213]
[97]
Lee, P.; Hall, W.C. Interlaminar connections of the superior colliculus in the tree shrew. II: Projections from the superficial gray to the optic layer. Vis. Neurosci., 1995, 12(3), 573-588.
[http://dx.doi.org/10.1017/S0952523800008464] [PMID: 7544610]
[98]
Saito, Y.; Isa, T. Organization of interlaminar interactions in the rat superior colliculus. J. Neurophysiol., 2005, 93(5), 2898-2907.
[http://dx.doi.org/10.1152/jn.01051.2004] [PMID: 15601732]
[99]
Basso, M.A.; May, P.J. Circuits for action and cognition: A view from the superior colliculus. Annu. Rev. Vis. Sci., 2017, 3(1), 197-226.
[http://dx.doi.org/10.1146/annurev-vision-102016-061234] [PMID: 28617660]
[100]
Behan, M.; Appell, P.P. Intrinsic circuitry in the cat superior colliculus: Projections from the superficial layers. J. Comp. Neurol., 1992, 315(2), 230-243.
[http://dx.doi.org/10.1002/cne.903150209] [PMID: 1372013]
[101]
Behan, M.; Kime, N.M. Spatial distribution of tectotectal connec tions in the cat. Prog. Brain Res., 1996, 112, 131-142.
[102]
Helms, M.C.; Özen, G.; Hall, W.C. Organization of the intermediate gray layer of the superior colliculus. I. Intrinsic vertical connections. J. Neurophysiol., 2004, 91(4), 1706-1715.
[http://dx.doi.org/10.1152/jn.00705.2003] [PMID: 15010497]
[103]
Rhoades, R.W.; Mooney, R.D.; Rohrer, W.H.; Nikoletseas, M.M.; Fish, S.E. Organization of the projection from the superficial to the deep layers of the hamster’s superior colliculus as demonstrated by the anterograde transport of Phaseolus vulgaris leucoagglutinin. J. Comp. Neurol., 1989, 283(1), 54-70.
[http://dx.doi.org/10.1002/cne.902830106] [PMID: 2732361]
[104]
Mooney, R.D.; Klein, B.G.; Jacquin, M.F.; Rhoades, R.W. Dendrites of deep layer, somatosensory superior collicular neurons extend into the superficial laminae. Brain Res., 1984, 324(2), 361-365.
[http://dx.doi.org/10.1016/0006-8993(84)90050-7] [PMID: 6529626]
[105]
Moschovakis, A.K.; Karabelas, A.B.; Highstein, S.M. Structure-function relationships in the primate superior colliculus. I. Morphological classification of efferent neurons. J. Neurophysiol., 1988, 60(1), 232-262.
[http://dx.doi.org/10.1152/jn.1988.60.1.232] [PMID: 3404219]
[106]
Hall, W.C.; Lee, P. Interlaminar connections of the superior colliculus in the tree shrew. III: The optic layer. Vis. Neurosci., 1997, 14(4), 647-661.
[http://dx.doi.org/10.1017/S095252380001261X] [PMID: 9278994]
[107]
Villalobos, C.A.; Wu, Q.; Lee, P.H.; May, P.J.; Basso, M.A. Parvalbumin and GABA microcircuits in the mouse superior colliculus. Front. Neu. Circ., 2018, 12, 1-35.
[http://dx.doi.org/10.3389/fncir.2018.00035]
[108]
Lee, P.H.; Sooksawate, T.; Yanagawa, Y.; Isa, K.; Isa, T.; Hall, W.C. Identity of a pathway for saccadic suppression. Proc. Natl. Acad. Sci. USA, 2007, 104(16), 6824-6827.
[http://dx.doi.org/10.1073/pnas.0701934104] [PMID: 17420449]
[109]
Lee, K.H.; Tran, A.; Turan, Z.; Meister, M. The sifting of visual information in the superior colliculus. elife, 2020, 9, e50678.
[110]
Scholes, C.; McGraw, P.V.; Roach, N.W. Learning to silence saccadic suppression. Proc. Natl. Acad. Sci. USA, 2021, 118(6), e2012937118.
[http://dx.doi.org/10.1073/pnas.2012937118] [PMID: 33526665]
[111]
Essig, J.; Hunt, J.B.; Felsen, G. Inhibitory neurons in the superior colliculus mediate selection of spatially-directed movements. Commun. Biol., 2021, 4(1), 719.
[http://dx.doi.org/10.1038/s42003-021-02248-1] [PMID: 34117346]
[112]
Phongphanphanee, P.; Mizuno, F.; Lee, P.H.; Yanagawa, Y.; Isa, T.; Hall, W.C. A circuit model for saccadic suppression in the superior colliculus. J. Neurosci., 2011, 31(6), 1949-1954.
[http://dx.doi.org/10.1523/JNEUROSCI.2305-10.2011] [PMID: 21307233]
[113]
Kardamakis, A.A.; Saitoh, K.; Grillner, S. Tectal microcircuit generating visual selection commands on gaze-controlling neurons. Proc. Natl. Acad. Sci. USA, 2015, 112(15), E1956-E1965.
[http://dx.doi.org/10.1073/pnas.1504866112] [PMID: 25825743]
[114]
Appell, P.P.; Behan, M. Sources of subcortical GABAergic projections to the superior colliculus in the cat. J. Comp. Neurol., 1990, 302(1), 143-158.
[http://dx.doi.org/10.1002/cne.903020111] [PMID: 2086611]
[115]
Olivier, E.; Corvisier, J.; Pauluis, Q.; Hardy, O. Evidence for glutamatergic tectotectal neurons in the cat superior colliculus: A comparison with GABAergic tectotectal neurons. Eur. J. Neurosci., 2000, 12(7), 2354-2366.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00132.x] [PMID: 10947814]
[116]
Zingg, B.; Hintiryan, H.; Gou, L.; Song, M.Y.; Bay, M.; Bienkowski, M.S.; Foster, N.N.; Yamashita, S.; Bowman, I.; Toga, A.W.; Dong, H.W. Neural networks of the mouse neocortex. Cell, 2014, 156(5), 1096-1111.
[http://dx.doi.org/10.1016/j.cell.2014.02.023] [PMID: 24581503]
[117]
Vertes, R.P. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 2004, 51(1), 32-58.
[http://dx.doi.org/10.1002/syn.10279] [PMID: 14579424]
[118]
de Lima, M.A.X.; Baldo, M.V.C.; Canteras, N.S. Revealing a cortical circuit responsive to predatory threats and mediating contextual fear memory. Cereb. Cortex, 2019, 29(7), 3074-3090.
[http://dx.doi.org/10.1093/cercor/bhy173] [PMID: 30085040]
[119]
de Lima, M.A.X.; Baldo, M.V.C.; Oliveira, F.A.; Canteras, N.S. The anterior cingulate cortex and its role in controlling contextual fear memory to predatory threats. elife, 2022, 11, e67007.
[120]
Redgrave, P.; Dean, P. Tonic desynchronisation of cortical electroencephalogram by electrical and chemical stimulation of superior colliculus and surrounding structures in urethane-anaesthetised rats. Neuroscience, 1985, 16(3), 659-671.
[http://dx.doi.org/10.1016/0306-4522(85)90199-X] [PMID: 2869444]
[121]
Dean, P.; Simkins, M.; Hetherington, L.; Mitchell, I.J.; Redgrave, P. Tectal induction of cortical arousal: Evidence implicating multiple output pathways. Brain Res. Bull., 1991, 26(1), 1-10.
[http://dx.doi.org/10.1016/0361-9230(91)90184-L] [PMID: 2015507]
[122]
Meredith, M.A.; Stein, B.E. Interactions among converging sensory inputs in the superior colliculus. Science, 1983, 221(4608), 389-391.
[http://dx.doi.org/10.1126/science.6867718] [PMID: 6867718]
[123]
Wallace, M.T.; Wilkinson, L.K.; Stein, B.E. Representation and integration of multiple sensory inputs in primate superior colliculus. J. Neurophysiol., 1996, 76(2), 1246-1266.
[http://dx.doi.org/10.1152/jn.1996.76.2.1246] [PMID: 8871234]
[124]
Herkenham, M.; Nauta, W.J.H. Efferent connections of the habenular nuclei in the rat. J. Comp. Neurol., 1979, 187(1), 19-47.
[http://dx.doi.org/10.1002/cne.901870103] [PMID: 226566]
[125]
Matsumoto, M.; Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 2007, 447(7148), 1111-1115.
[http://dx.doi.org/10.1038/nature05860] [PMID: 17522629]
[126]
Morissette, M.C.; Boye, S.M. Electrolytic lesions of the habenula attenuate brain stimulation reward. Behav. Brain Res., 2008, 187(1), 17-26.
[http://dx.doi.org/10.1016/j.bbr.2007.08.021] [PMID: 17889943]
[127]
Shabel, S.J.; Proulx, C.D.; Trias, A.; Murphy, R.T.; Malinow, R. Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron, 2012, 74(3), 475-481.
[http://dx.doi.org/10.1016/j.neuron.2012.02.037] [PMID: 22578499]
[128]
Stamatakis, A.M.; Van Swieten, M.; Basiri, M.L.; Blair, G.A.; Kantak, P.; Stuber, G.D. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. J. Neurosci., 2016, 36(2), 302-311.
[http://dx.doi.org/10.1523/JNEUROSCI.1202-15.2016] [PMID: 26758824]
[129]
Golden, S.A.; Heshmati, M.; Flanigan, M.; Christoffel, D.J.; Guise, K.; Pfau, M.L.; Aleyasin, H.; Menard, C.; Zhang, H.; Hodes, G.E.; Bregman, D.; Khibnik, L.; Tai, J.; Rebusi, N.; Krawitz, B.; Chaudhury, D.; Walsh, J.J.; Han, M.H.; Shapiro, M.L.; Russo, S.J. Basal forebrain projections to the lateral habenula modulate aggression reward. Nature, 2016, 534(7609), 688-692.
[http://dx.doi.org/10.1038/nature18601] [PMID: 27357796]
[130]
Hu, H.; Cui, Y.; Yang, Y. Circuits and functions of the lateral habenula in health and in disease. Nat. Rev. Neurosci., 2020, 21(5), 277-295.
[http://dx.doi.org/10.1038/s41583-020-0292-4] [PMID: 32269316]
[131]
Canteras, N.S.; Simerly, R.B.; Swanson, L.W. Organization of projections from the ventromedial nucleus of the hypothalamus: APhaseolus vulgaris-Leucoagglutinin study in the rat. J. Comp. Neurol., 1994, 348(1), 41-79.
[http://dx.doi.org/10.1002/cne.903480103] [PMID: 7814684]
[132]
Melleu, F.F.; de Oliveira, A.R.; Grego, K.F.; Blanchard, D.C.; Canteras, N.S. Dissecting the brain’s fear systems responding to snake threats. Eur. J. Neurosci., 2022, 56(6), 4788-4802.
[http://dx.doi.org/10.1111/ejn.15794] [PMID: 35971965]
[133]
Kunwar, P.S.; Zelikowsky, M.; Remedios, R.; Cai, H.; Yilmaz, M.; Meister, M.; Anderson, D.J. Ventromedial hypothalamic neurons control a defensive emotion state. elife, 2015, 4, e06633.
[134]
Gross, C.T.; Canteras, N.S. The many paths to fear. Nat. Rev. Neurosci., 2012, 13(9), 651-658.
[http://dx.doi.org/10.1038/nrn3301] [PMID: 22850830]
[135]
Canteras, N.S. Hypothalamic survival circuits related to social and predatory defenses and their interactions with metabolic control, reproductive behaviors and memory systems. Curr. Opin. Behav. Sci., 2018, 24, 7-13.
[http://dx.doi.org/10.1016/j.cobeha.2018.01.017]
[136]
Motta, S.C.; Goto, M.; Gouveia, F.V.; Baldo, M.V.C.; Canteras, N.S.; Swanson, L.W. Dissecting the brain’s fear system reveals the hypothalamus is critical for responding in subordinate conspecific intruders. Proc. Natl. Acad. Sci. USA, 2009, 106(12), 4870-4875.
[http://dx.doi.org/10.1073/pnas.0900939106] [PMID: 19273843]
[137]
Falkner, A.L.; Lin, D. Recent advances in understanding the role of the hypothalamic circuit during aggression. Front. Syst. Neurosci., 2014, 8, 168.
[http://dx.doi.org/10.3389/fnsys.2014.00168] [PMID: 25309351]
[138]
Wang, L.; Talwar, V.; Osakada, T.; Kuang, A.; Guo, Z.; Yamaguchi, T.; Lin, D. Hypothalamic control of conspecific self-defense. Cell Rep., 2019, 26(7), 1747-1758.
[http://dx.doi.org/10.1016/j.celrep.2019.01.078]
[139]
Yin, L.; Hashikawa, K.; Hashikawa, Y.; Osakada, T.; Lischinsky, J.E.; Diaz, V.; Lin, D. VMHvllCckar cells dynamically control female sexual behaviors over the reproductive cycle. Neuron, 2022, 110(18), 3000-3017.e8.
[http://dx.doi.org/10.1016/j.neuron.2022.06.026] [PMID: 35896109]
[140]
Hashikawa, K.; Hashikawa, Y.; Tremblay, R.; Zhang, J.; Feng, J.E.; Sabol, A.; Piper, W.T.; Lee, H.; Rudy, B.; Lin, D. Esr1+ cells in the ventromedial hypothalamus control female aggression. Nat. Neurosci., 2017, 20(11), 1580-1590.
[http://dx.doi.org/10.1038/nn.4644] [PMID: 28920934]
[141]
de Almeida, A.P.; Baldo, M.V.C.; Motta, S.C. Dynamics in brain activation and behaviour in acute and repeated social defensive behaviour. Proc. Biol. Sci., 2022, 289(1977), 20220799.
[http://dx.doi.org/10.1098/rspb.2022.0799] [PMID: 35703050]
[142]
Motta, S.C.; Guimarães, C.C.; Furigo, I.C.; Sukikara, M.H.; Baldo, M.V.C.; Lonstein, J.S.; Canteras, N.S. Ventral premammillary nucleus as a critical sensory relay to the maternal aggression network. Proc. Natl. Acad. Sci. USA, 2013, 110(35), 14438-14443.
[http://dx.doi.org/10.1073/pnas.1305581110] [PMID: 23918394]
[143]
Canteras, N.S.; Swanson, L.W. The dorsal premammillary nucleus: An unusual component of the mammillary body. Proc. Natl. Acad. Sci. USA, 1992, 89(21), 10089-10093.
[http://dx.doi.org/10.1073/pnas.89.21.10089] [PMID: 1279669]
[144]
Grobstein, P. Between the retinotectal projection and directed movement: Topography of a sensorimotor interface. Brain Behav. Evol., 1988, 31(1), 34-48.
[http://dx.doi.org/10.1159/000116574] [PMID: 3334904]
[145]
Dean, P.; Redgrave, P.; Westby, G.W.M. Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci., 1989, 12(4), 137-147.
[http://dx.doi.org/10.1016/0166-2236(89)90052-0] [PMID: 2470171]
[146]
Boehnke, S.E.; Munoz, D.P. On the importance of the transient visual response in the superior colliculus. Curr. Opin. Neurobiol., 2008, 18(6), 544-551.
[http://dx.doi.org/10.1016/j.conb.2008.11.004] [PMID: 19059772]
[147]
Felsen, G.; Mainen, Z.F. Neural substrates of sensory-guided locomotor decisions in the rat superior colliculus. Neuron, 2008, 60(1), 137-148.
[http://dx.doi.org/10.1016/j.neuron.2008.09.019] [PMID: 18940594]
[148]
Stubblefield, E.A.; Costabile, J.D.; Felsen, G. Optogenetic investigation of the role of the superior colliculus in orienting movements. Behav. Brain Res., 2013, 255, 55-63.
[http://dx.doi.org/10.1016/j.bbr.2013.04.040] [PMID: 23643689]
[149]
Wurtz, R.H.; Goldberg, M.E. Superior colliculus cell responses related to eye movements in awake monkeys. Science, 1971, 171(3966), 82-84.
[http://dx.doi.org/10.1126/science.171.3966.82] [PMID: 4992313]
[150]
Harris, L.R. The superior colliculus and movements of the head and eyes in cats. J. Physiol., 1980, 300(1), 367-391.
[http://dx.doi.org/10.1113/jphysiol.1980.sp013167] [PMID: 6770082]
[151]
Masullo, L.; Mariotti, L.; Alexandre, N.; Freire-Pritchett, P.; Boulanger, J.; Tripodi, M. Genetically defined functional modules for spatial orienting in the mouse superior colliculus. Curr. Biol., 2019, 29(17), 2892-2904.e8.
[http://dx.doi.org/10.1016/j.cub.2019.07.083] [PMID: 31474533]
[152]
Wang, S.; Redgrave, P. Microinjections of muscimol into lateral superior colliculus disrupt orienting and oral movements in the formalin model of pain. Neuroscience, 1997, 81(4), 967-988.
[http://dx.doi.org/10.1016/S0306-4522(97)00191-7] [PMID: 9330360]
[153]
Dean, P.; Mitchell, I.J.; Redgrave, P. Contralateral head movements produced by microinjection of glutamate into superior colliculus of rats: Evidence for mediation by multiple output pathways. Neuroscience, 1988, 24(2), 491-500.
[http://dx.doi.org/10.1016/0306-4522(88)90344-2] [PMID: 2896312]
[154]
Kilpatrick, I.C.; Collingridge, G.L.; Starr, M.S. Evidence for the participation of nigrotectal γ-aminobutyrate-containing neurones in striatal and nigral-derived circling in the rat. Neuroscience, 1982, 7(1), 207-222.
[http://dx.doi.org/10.1016/0306-4522(82)90161-0] [PMID: 7078726]
[155]
Huerta, M.F.; Harting, J.K. Connectional organization of the superior colliculus. Trends Neurosci., 1984, 7(8), 286-289.
[http://dx.doi.org/10.1016/S0166-2236(84)80197-6]
[156]
Redgrave, P.; Odekunle, A.; Dean, P. Tectal cells of origin of predorsal bundle in rat: location and segregation from ipsilateral descending pathway. Exp. Brain Res., 1986, 63(2), 279-293.
[http://dx.doi.org/10.1007/BF00236845] [PMID: 3093259]
[157]
Coizet, V.; Graham, J.H.; Moss, J.; Bolam, J.P.; Savasta, M.; McHaffie, J.G.; Redgrave, P.; Overton, P.G. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci., 2009, 29(17), 5701-5709.
[http://dx.doi.org/10.1523/JNEUROSCI.0247-09.2009] [PMID: 19403836]
[158]
Comoli, E.; Coizet, V.; Boyes, J.; Bolam, J.P.; Canteras, N.S.; Quirk, R.H.; Overton, P.G.; Redgrave, P. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci., 2003, 6(9), 974-980.
[http://dx.doi.org/10.1038/nn1113] [PMID: 12925855]
[159]
May, P.J.; McHaffie, J.G.; Stanford, T.R.; Jiang, H.; Costello, M.G.; Coizet, V.; Hayes, L.M.; Haber, S.N.; Redgrave, P. Tectonigral projections in the primate: a pathway for pre-attentive sensory input to midbrain dopaminergic neurons. Eur. J. Neurosci., 2009, 29(3), 575-587.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06596.x] [PMID: 19175405]
[160]
Salay, L.D.; Ishiko, N.; Huberman, A.D. A midline thalamic circuit determines reactions to visual threat. Nature, 2018, 557(7704), 183-189.
[http://dx.doi.org/10.1038/s41586-018-0078-2] [PMID: 29720647]
[161]
Sommer, M.A.; Wurtz, R.H. What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. J. Neurophysiol., 2004, 91(3), 1403-1423.
[http://dx.doi.org/10.1152/jn.00740.2003] [PMID: 14573557]
[162]
Schäfer, C.B.; Hoebeek, F.E. Convergence of primary sensory cortex and cerebellar nuclei pathways in the whisker system. Neuroscience, 2018, 368, 229-239.
[http://dx.doi.org/10.1016/j.neuroscience.2017.07.036] [PMID: 28743454]
[163]
Tokuno, H.; Takada, M.; Ikai, Y.; Mizuno, N. Direct projections from the deep layers of the superior colliculus to the subthalamic nucleus in the rat. Brain Res., 1994, 639(1), 156-160.
[http://dx.doi.org/10.1016/0006-8993(94)91776-0] [PMID: 8180831]
[164]
Beckstead, R.M.; Domesick, V.B.; Nauta, W.J.H. Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res., 1979, 175(2), 191-217.
[http://dx.doi.org/10.1016/0006-8993(79)91001-1] [PMID: 314832]
[165]
Swanson, L.W. The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull., 1982, 9(1-6), 321-353.
[http://dx.doi.org/10.1016/0361-9230(82)90145-9] [PMID: 6816390]
[166]
Zhou, N.; Maire, P.S.; Masterson, S.P.; Bickford, M. The mouse pulvinar nucleus: Organization of the tectorecipient zones. Vis. Neurosci., 2017, 34, E011.
[http://dx.doi.org/10.1017/S0952523817000050] [PMID: 28965504]
[167]
Major, D.E.; Luksch, H.; Karten, H.J. Bottlebrush dendritic endings and large dendritic fields: Motion-detecting neurons in the mammalian tectum. J. Comp. Neurol., 2000, 423(2), 243-260.
[http://dx.doi.org/10.1002/1096-9861(20000724)423:2<243:AID-CNE5>3.0.CO;2-5] [PMID: 10867657]
[168]
Hoy, J.L.; Bishop, H.I.; Niell, C.M. Defined cell types in superior colliculus make distinct contributions to prey capture behavior in the mouse. Curr. Biol., 2019, 29(23), 4130-4138.
[http://dx.doi.org/10.1016/j.cub.2019.10.017]
[169]
Harting, J.K.; Updyke, B.V.; Van Lieshout, D.P. Striatal projections from the cat visual thalamus. Eur. J. Neurosci., 2001, 14(5), 893-896.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01712.x] [PMID: 11576195]
[170]
Takada, M.; Itoh, K.; Yasui, Y.; Sugimoto, T.; Mizuno, N. Topographical projections from the posterior thalamic regions to the striatum in the cat, with reference to possible tecto-thalamo-striatal connections. Exp. Brain Res., 1985, 60(2), 385-396.
[http://dx.doi.org/10.1007/BF00235934] [PMID: 4054280]
[171]
Hikosaka, O.; Wurtz, R.H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J. Neurophysiol., 1983, 49(5), 1230-1253.
[http://dx.doi.org/10.1152/jn.1983.49.5.1230] [PMID: 6864248]
[172]
Hikosaka, O.; Sakamoto, M.; Usui, S. Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J. Neurophysiol., 1989, 61(4), 780-798.
[http://dx.doi.org/10.1152/jn.1989.61.4.780] [PMID: 2723720]
[173]
Hikosaka, O.; Sakamoto, M.; Miyashita, N. Effects of caudate nucleus stimulation on substantia nigra cell activity in monkey. Exp. Brain Res., 1993, 95(3), 457-472.
[http://dx.doi.org/10.1007/BF00227139] [PMID: 8224072]
[174]
Chevalier, G.; Vacher, S.; Deniau, J.M.; Desban, M. Disinhibition as a basic process in the expression of striatal functions. I. The striato-nigral influence on tecto-spinal/tecto-diencephalic neurons. Brain Res., 1985, 334(2), 215-226.
[http://dx.doi.org/10.1016/0006-8993(85)90213-6] [PMID: 2859912]
[175]
Hikosaka, O. Basal ganglia mechanisms of reward-oriented eye movement. Ann. N. Y. Acad. Sci., 2007, 1104(1), 229-249.
[http://dx.doi.org/10.1196/annals.1390.012] [PMID: 17360800]
[176]
Wei, P.; Liu, N.; Zhang, Z.; Liu, X.; Tang, Y.; He, X.; Wu, B.; Zhou, Z.; Liu, Y.; Li, J.; Zhang, Y.; Zhou, X.; Xu, L.; Chen, L.; Bi, G.; Hu, X.; Xu, F.; Wang, L. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun., 2015, 6(1), 6756.
[http://dx.doi.org/10.1038/ncomms7756]
[177]
Day-Brown, J.D.; Wei, H.; Chomsung, R.D.; Petry, H.M.; Bickford, M.E. Pulvinar projections to the striatum and amygdala in the tree shrew. Front. Neuroanat., 2010, 4, 143.
[http://dx.doi.org/10.3389/fnana.2010.00143] [PMID: 21120139]
[178]
Zhou, N.; Masterson, S.P.; Damron, J.K.; Guido, W.; Bickford, M.E. The mouse pulvinar nucleus links the lateral extrastriate cortex, striatum, and amygdala. J. Neurosci., 2018, 38(2), 347-362.
[http://dx.doi.org/10.1523/JNEUROSCI.1279-17.2017] [PMID: 29175956]
[179]
Zingg, B.; Chou, X.; Zhang, Z.; Mesik, L.; Liang, F.; Tao, H.W.; Zhang, L.I. AAV-mediated anterograde transsynaptic tagging: Mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron, 2017, 93(1), 33-47.
[http://dx.doi.org/10.1016/j.neuron.2016.11.045] [PMID: 27989459]
[180]
Doron, N.N.; Ledoux, J.E. Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. J. Comp. Neurol., 1999, 412(3), 383-409.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19990927)412:3<383:AID-CNE2>3.0.CO;2-5] [PMID: 10441229]
[181]
Shang, C.; Chen, Z.; Liu, A.; Li, Y.; Zhang, J.; Qu, B.; Yan, F.; Zhang, Y.; Liu, W.; Liu, Z.; Guo, X.; Li, D.; Wang, Y.; Cao, P. Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat. Commun., 2018, 9(1), 1232.
[http://dx.doi.org/10.1038/s41467-018-03580-7] [PMID: 29581428]
[182]
Lee, J.; Wang, W.; Sabatini, B.L. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nat. Neurosci., 2020, 23(11), 1388-1398.
[http://dx.doi.org/10.1038/s41593-020-00712-5] [PMID: 32989293]
[183]
Mandelbaum, G.; Taranda, J.; Haynes, T.M.; Hochbaum, D.R.; Huang, K.W.; Hyun, M.; Venkataraju, K.U.; Straub, C.; Wang, W.; Robertson, K. Distinct cortical-thalamic-striatal circuits through the parafascicular nucleus. Neuron, 2019, 102(3), 636-652.
[http://dx.doi.org/10.1016/j.neuron.2019.02.035]
[184]
Watson, G.D.R.; Smith, J.B.; Alloway, K.D. The zona incerta regulates communication between the superior colliculus and the posteromedial thalamus: Implications for thalamic interactions with the dorsolateral striatum. J. Neurosci., 2015, 35(25), 9463-9476.
[http://dx.doi.org/10.1523/JNEUROSCI.1606-15.2015] [PMID: 26109669]
[185]
Watson, G.D.R.; Alloway, K.D. Opposing collicular influences on the parafascicular (Pf) and posteromedial (POm) thalamic nuclei: relationship to POm-induced inhibition in the substantia nigra pars reticulata (SNR). Brain Struct. Funct., 2018, 223(1), 535-543.
[http://dx.doi.org/10.1007/s00429-017-1534-8] [PMID: 28988338]
[186]
Alloway, K.D.; Smith, J.B.; Watson, G.D.R. Thalamostriatal projections from the medial posterior and parafascicular nuclei have distinct topographic and physiologic properties. J. Neurophysiol., 2014, 111(1), 36-50.
[http://dx.doi.org/10.1152/jn.00399.2013] [PMID: 24108793]
[187]
Smith, J.B.; Mowery, T.M.; Alloway, K.D. Thalamic POm projections to the dorsolateral striatum of rats: Potential pathway for mediating stimulus-response associations for sensorimotor habits. J. Neurophysiol., 2012, 108(1), 160-174.
[http://dx.doi.org/10.1152/jn.00142.2012] [PMID: 22496533]
[188]
Kamishina, H.; Yurcisin, G.H.; Corwin, J.V.; Reep, R.L. Striatal projections from the rat lateral posterior thalamic nucleus. Brain Res., 2008, 1204, 24-39.
[http://dx.doi.org/10.1016/j.brainres.2008.01.094] [PMID: 18342841]
[189]
Coizet, V.; Overton, P.G.; Redgrave, P. Collateralization of the tectonigral projection with other major output pathways of superior colliculus in the rat. J. Comp. Neurol., 2007, 500(6), 1034-1049.
[http://dx.doi.org/10.1002/cne.21202] [PMID: 17183537]
[190]
Masri, R.; Bezdudnaya, T.; Trageser, J.C.; Keller, A. Encoding of stimulus frequency and sensor motion in the posterior medial thalamic nucleus. J. Neurophysiol., 2008, 100(2), 681-689.
[http://dx.doi.org/10.1152/jn.01322.2007] [PMID: 18234976]
[191]
Alloway, K.D.; Smith, J.B.; Mowery, T.M.; Watson, G.D.R. Sensory processing in the dorsolateral striatum: The contribution of thalamostriatal pathways. Front. Syst. Neurosci., 2017, 11, 53.
[http://dx.doi.org/10.3389/fnsys.2017.00053] [PMID: 28790899]
[192]
Mowery, T.M.; Harrold, J.B.; Alloway, K.D. Repeated whisker stimulation evokes invariant neuronal responses in the dorsolateral striatum of anesthetized rats: a potential correlate of sensorimotor habits. J. Neurophysiol., 2011, 105(5), 2225-2238.
[http://dx.doi.org/10.1152/jn.01018.2010] [PMID: 21389309]
[193]
Reig, R.; Silberberg, G. Multisensory integration in the mouse striatum. Neuron, 2014, 83(5), 1200-1212.
[http://dx.doi.org/10.1016/j.neuron.2014.07.033] [PMID: 25155959]
[194]
Yin, H.H.; Knowlton, B.J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci., 2006, 7(6), 464-476.
[http://dx.doi.org/10.1038/nrn1919] [PMID: 16715055]
[195]
Cromwell, H.C.; Berridge, K.C. Implementation of action sequences by a neostriatal site: A lesion mapping study of grooming syntax. J. Neurosci., 1996, 16(10), 3444-3458.
[http://dx.doi.org/10.1523/JNEUROSCI.16-10-03444.1996] [PMID: 8627378]
[196]
Berridge, K.; Whishaw, I. Cortex, striatum and cerebellum: control of serial order in a grooming sequence. Exp. Brain Res., 1992, 90(2), 275-290.
[http://dx.doi.org/10.1007/BF00227239] [PMID: 1397142]
[197]
Hoover, J.E.; Hoffer, Z.S.; Alloway, K.D. Projections from primary somatosensory cortex to the neostriatum: the role of somatotopic continuity in corticostriatal convergence. J. Neurophysiol., 2003, 89(3), 1576-1587.
[http://dx.doi.org/10.1152/jn.01009.2002] [PMID: 12611938]
[198]
Gharaei, S.; Honnuraiah, S.; Arabzadeh, E.; Stuart, G.J. Superior colliculus modulates cortical coding of somatosensory information. Nat. Commun., 2020, 11(1), 1693.
[http://dx.doi.org/10.1038/s41467-020-15443-1] [PMID: 32245963]
[199]
Krout, K.E.; Loewy, A.D.; Westby, G.W.M.; Redgrave, P. Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol., 2001, 431(2), 198-216.
[http://dx.doi.org/10.1002/1096-9861(20010305)431:2<198:AID-CNE1065>3.0.CO;2-8] [PMID: 11170000]
[200]
Yamasaki, D.S.G.; Krauthamer, G.M.; Rhoades, R.W. Superior collicular projection to intralaminar thalamus in rat. Brain Res., 1986, 378(2), 223-233.
[http://dx.doi.org/10.1016/0006-8993(86)90925-X] [PMID: 3730874]
[201]
Fisher, S.D.; Reynolds, J.N.J. The intralaminar thalamus—an expressway linking visual stimuli to circuits determining agency and action selection. Front. Behav. Neurosci., 2014, 8, 115.
[http://dx.doi.org/10.3389/fnbeh.2014.00115] [PMID: 24765070]
[202]
Van der Werf, Y.D.; Witter, M.P.; Groenewegen, H.J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Brain Res. Rev., 2002, 39(2-3), 107-140.
[http://dx.doi.org/10.1016/S0165-0173(02)00181-9] [PMID: 12423763]
[203]
Vertes, R.P.; Linley, S.B.; Rojas, A.K.P. Structural and functional organization of the midline and intralaminar nuclei of the thalamus. Front. Behav. Neurosci., 2022, 16, 964644.
[http://dx.doi.org/10.3389/fnbeh.2022.964644] [PMID: 36082310]
[204]
Berendse, H.W.; Groenewegen, H.J. Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J. Comp. Neurol., 1990, 299(2), 187-228.
[http://dx.doi.org/10.1002/cne.902990206] [PMID: 2172326]
[205]
McKenna, J.T.; Vertes, R.P. Afferent projections to nucleus reuniens of the thalamus. J. Comp. Neurol., 2004, 480(2), 115-142.
[http://dx.doi.org/10.1002/cne.20342] [PMID: 15514932]
[206]
Dolleman-van Der Weel, M.J.; Witter, M.P. Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. J. Comp. Neurol., 1996, 364(4), 637-650.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19960122)364:4<637:AID-CNE3>3.0.CO;2-4] [PMID: 8821451]
[207]
Herkenham, M. The connections of the nucleus reuniens thalami: Evidence for a direct thalamo-hippocampal pathway in the rat. J. Comp. Neurol., 1978, 177(4), 589-609.
[http://dx.doi.org/10.1002/cne.901770405] [PMID: 624792]
[208]
Jankowski, M.M.; Islam, M.N.; Wright, N.F.; Vann, S.D.; Erichsen, J.T.; Aggleton, J.P.; O'Mara, S.M. Nucleus reuniens of the thalamus contains head direction cells. elife, 2014, 3, e03075.
[209]
Deniau, J.M.; Chevalier, G. Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Res., 1985, 334(2), 227-233.
[http://dx.doi.org/10.1016/0006-8993(85)90214-8] [PMID: 3995318]
[210]
Kita, T.; Shigematsu, N.; Kita, H. Intralaminar and tectal projections to the subthalamus in the rat. Eur. J. Neurosci., 2016, 44(11), 2899-2908.
[http://dx.doi.org/10.1111/ejn.13413] [PMID: 27717088]
[211]
Hanini-Daoud, M.; Jaouen, F.; Salin, P.; Kerkerian-Le Goff, L.; Maurice, N. Processing of information from the parafascicular nucleus of the thalamus through the basal ganglia. J. Neurosci. Res., 2022, 100(6), 1370-1385.
[http://dx.doi.org/10.1002/jnr.25046] [PMID: 35355316]
[212]
Watson, G.D.R.; Hughes, R.N.; Petter, E.A.; Fallon, I.P.; Kim, N.; Severino, F.P.U.; Yin, H.H. Thalamic projections to the subthalamic nucleus contribute to movement initiation and rescue of parkinsonian symptoms. Sci. Adv., 2021, 7(6), eabe9192.
[http://dx.doi.org/10.1126/sciadv.abe9192] [PMID: 33547085]
[213]
Buot, A.; Welter, M.L.; Karachi, C.; Pochon, J.B.; Bardinet, E.; Yelnik, J.; Mallet, L. Processing of emotional information in the human subthalamic nucleus. J. Neurol. Neurosurg. Psychiatry, 2013, 84(12), 1331-1339.
[http://dx.doi.org/10.1136/jnnp-2011-302158] [PMID: 23100448]
[214]
Baunez, C.; Amalric, M.; Robbins, T.W. Enhanced food-related motivation after bilateral lesions of the subthalamic nucleus. J. Neurosci., 2002, 22(2), 562-568.
[http://dx.doi.org/10.1523/JNEUROSCI.22-02-00562.2002] [PMID: 11784803]
[215]
Lardeux, S.; Paleressompoulle, D.; Pernaud, R.; Cador, M.; Baunez, C. Different populations of subthalamic neurons encode cocaine vs. sucrose reward and predict future error. J. Neurophysiol., 2013, 110(7), 1497-1510.
[http://dx.doi.org/10.1152/jn.00160.2013] [PMID: 23864369]
[216]
Isoda, M.; Hikosaka, O. Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J. Neurosci., 2008, 28(28), 7209-7218.
[http://dx.doi.org/10.1523/JNEUROSCI.0487-08.2008] [PMID: 18614691]
[217]
Narayanan, N.S.; Wessel, J.R.; Greenlee, J.D.W. The fastest way to stop: inhibitory control and IFG-STN hyperdirect connectivity. Neuron, 2020, 106(4), 549-551.
[http://dx.doi.org/10.1016/j.neuron.2020.04.017] [PMID: 32437650]
[218]
Jahanshahi, M.; Obeso, I.; Rothwell, J.C.; Obeso, J.A. A fronto-striato-subthalamic-pallidal network for goal-directed and habitual inhibition. Nat. Rev. Neurosci., 2015, 16(12), 719-732.
[http://dx.doi.org/10.1038/nrn4038] [PMID: 26530468]
[219]
Mirzaei, A.; Kumar, A.; Leventhal, D.; Mallet, N.; Aertsen, A.; Berke, J.; Schmidt, R. Sensorimotor processing in the basal ganglia leads to transient beta oscillations during behavior. J. Neurosci., 2017, 37(46), 11220-11232.
[http://dx.doi.org/10.1523/JNEUROSCI.1289-17.2017] [PMID: 29038241]
[220]
Pautrat, A.; Rolland, M.; Barthelemy, M.; Baunez, C.; Sinniger, V.; Piallat, B.; Savasta, M.; Overton, P.G.; David, O.; Coizet, V. Revealing a novel nociceptive network that links the subthalamic nucleus to pain processing. elife, 2018, 7, e36607.
[221]
Hammond, C.; Deniau, J.M.; Rizk, A.; Feger, J. Electrophysiological demonstration of an excitatory subthalamonigral pathway in the rat. Brain Res., 1978, 151(2), 235-244.
[http://dx.doi.org/10.1016/0006-8993(78)90881-8] [PMID: 209862]
[222]
Nambu, A.; Tokuno, H.; Takada, M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci. Res., 2002, 43(2), 111-117.
[http://dx.doi.org/10.1016/S0168-0102(02)00027-5] [PMID: 12067746]
[223]
Al Tannir, R.; Pautrat, A.; Baufreton, J.; Overton, P.; Coizet, V. The subthalamic nucleus: A hub for sensory control via short three-lateral loop connections with the brainstem? Curr. Neuropharmacol., 2022, 21(1), 22-30.
[PMID: 35850655]
[224]
Rolland, M.; Carcenac, C.; Overton, P.G.; Savasta, M.; Coizet, V. Enhanced visual responses in the superior colliculus and subthalamic nucleus in an animal model of Parkinson’s disease. Neuroscience, 2013, 252, 277-288.
[http://dx.doi.org/10.1016/j.neuroscience.2013.07.047] [PMID: 23916713]
[225]
McElvain, L.E.; Chen, Y.; Moore, J.D.; Brigidi, G.S.; Bloodgood, B.L.; Lim, B.K.; Costa, R.M.; Kleinfeld, D. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron, 2021, 109(10), 1721-1738.
[http://dx.doi.org/10.1016/j.neuron.2021.03.017]
[226]
Matsumura, M.; Kojima, J.; Gardiner, T.W.; Hikosaka, O. Visual and oculomotor functions of monkey subthalamic nucleus. J. Neurophysiol., 1992, 67(6), 1615-1632.
[http://dx.doi.org/10.1152/jn.1992.67.6.1615] [PMID: 1629767]
[227]
Afsharpour, S. Topographical projections of the cerebral cortex to the subthalamic nucleus. J. Comp. Neurol., 1985, 236(1), 14-28.
[http://dx.doi.org/10.1002/cne.902360103] [PMID: 2414329]
[228]
Canteras, N.S.; Shammah-Lagnado, S.J.; Silva, B.A.; Ricardo, J.A. Afferent connections of the subthalamic nucleus: A combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res., 1990, 513(1), 43-59.
[http://dx.doi.org/10.1016/0006-8993(90)91087-W] [PMID: 2350684]
[229]
Wiener, M.; Magaro, C.M.; Matell, M.S. Accurate timing but increased impulsivity following excitotoxic lesions of the subthalamic nucleus. Neurosci. Lett., 2008, 440(2), 176-180.
[http://dx.doi.org/10.1016/j.neulet.2008.05.071] [PMID: 18562098]
[230]
Hikosaka, O.; Takikawa, Y.; Kawagoe, R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev., 2000, 80(3), 953-978.
[http://dx.doi.org/10.1152/physrev.2000.80.3.953] [PMID: 10893428]
[231]
Féger, J.; Bevan, M.; Crossman, A.R. The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: A comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study. Neuroscience, 1994, 60(1), 125-132.
[http://dx.doi.org/10.1016/0306-4522(94)90208-9] [PMID: 8052406]
[232]
Wang, M.; Qu, Q.; He, T.; Li, M.; Song, Z.; Chen, F.; Zhang, X.; Xie, J.; Geng, X.; Yang, M.; Wang, X.; Lei, C.; Hou, Y. Distinct temporal spike and local field potential activities in the thalamic parafascicular nucleus of parkinsonian rats during rest and limb movement. Neuroscience, 2016, 330, 57-71.
[http://dx.doi.org/10.1016/j.neuroscience.2016.05.031] [PMID: 27238892]
[233]
Beatty, J.A.; Sylwestrak, E.L.; Cox, C.L. Two distinct populations of projection neurons in the rat lateral parafascicular thalamic nucleus and their cholinergic responsiveness. Neuroscience, 2009, 162(1), 155-173.
[http://dx.doi.org/10.1016/j.neuroscience.2009.04.043] [PMID: 19393292]
[234]
Coizet, V.; Comoli, E.; Westby, G.W.M.; Redgrave, P. Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: An electrophysiological investigation in the rat. Eur. J. Neurosci., 2003, 17(1), 28-40.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02415.x] [PMID: 12534966]
[235]
Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol., 1998, 80(1), 1-27.
[http://dx.doi.org/10.1152/jn.1998.80.1.1] [PMID: 9658025]
[236]
Schultz, W.; Dayan, P.; Montague, P.R. A neural substrate of prediction and reward. Science, 1997, 275(5306), 1593-1599.
[http://dx.doi.org/10.1126/science.275.5306.1593] [PMID: 9054347]
[237]
Freeze, B.S.; Kravitz, A.V.; Hammack, N.; Berke, J.D.; Kreitzer, A.C. Control of basal ganglia output by direct and indirect pathway projection neurons. J. Neurosci., 2013, 33(47), 18531-18539.
[http://dx.doi.org/10.1523/JNEUROSCI.1278-13.2013] [PMID: 24259575]
[238]
Grillner, S.; Robertson, B. The basal ganglia over 500 million years. Curr. Biol., 2016, 26(20), R1088-R1100.
[http://dx.doi.org/10.1016/j.cub.2016.06.041] [PMID: 27780050]
[239]
Graybiel, A.M. The basal ganglia. Curr. Biol., 2000, 10(14), R509-R511.
[http://dx.doi.org/10.1016/S0960-9822(00)00593-5] [PMID: 10899013]
[240]
Redgrave, P.; Gurney, K. The short-latency dopamine signal: A role in discovering novel actions? Nat. Rev. Neurosci., 2006, 7(12), 967-975.
[http://dx.doi.org/10.1038/nrn2022] [PMID: 17115078]
[241]
Freeman, A.S.; Meltzer, L.T.; Bunney, B.S. Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci., 1985, 36(20), 1983-1994.
[http://dx.doi.org/10.1016/0024-3205(85)90448-5] [PMID: 3990520]
[242]
Guarraci, F.A.; Kapp, B.S. An electrophysiological characterization of ventral tegmental area dopaminergic neurons during differential pavlovian fear conditioning in the awake rabbit. Behav. Brain Res., 1999, 99(2), 169-179.
[http://dx.doi.org/10.1016/S0166-4328(98)00102-8] [PMID: 10512583]
[243]
Overton, P.G.; Clark, D. Burst firing in midbrain dopaminergic neurons. Brain Res. Brain Res. Rev., 1997, 25(3), 312-334.
[http://dx.doi.org/10.1016/S0165-0173(97)00039-8] [PMID: 9495561]
[244]
Horvitz, J.C.; Stewart, T.; Jacobs, B.L. Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Res., 1997, 759(2), 251-258.
[http://dx.doi.org/10.1016/S0006-8993(97)00265-5] [PMID: 9221945]
[245]
Ljungberg, T.; Apicella, P.; Schultz, W. Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol., 1992, 67(1), 145-163.
[http://dx.doi.org/10.1152/jn.1992.67.1.145] [PMID: 1552316]
[246]
Dommett, E.; Coizet, V.; Blaha, C.D.; Martindale, J.; Lefebvre, V.; Walton, N.; Mayhew, J.E.W.; Overton, P.G.; Redgrave, P. How visual stimuli activate dopaminergic neurons at short latency. Science, 2005, 307(5714), 1476-1479.
[http://dx.doi.org/10.1126/science.1107026] [PMID: 15746431]
[247]
Horvitz, J.C. Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience, 2000, 96(4), 651-656.
[http://dx.doi.org/10.1016/S0306-4522(00)00019-1] [PMID: 10727783]
[248]
Redgrave, P.; Prescott, T.J.; Gurney, K. Is the short-latency dopamine response too short to signal reward error? Trends Neurosci., 1999, 22(4), 146-151.
[http://dx.doi.org/10.1016/S0166-2236(98)01373-3] [PMID: 10203849]
[249]
Beier, K.T.; Steinberg, E.E.; DeLoach, K.E.; Xie, S.; Miyamichi, K.; Schwarz, L.; Gao, X.J.; Kremer, E.J.; Malenka, R.C.; Luo, L. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell, 2015, 162(3), 622-634.
[http://dx.doi.org/10.1016/j.cell.2015.07.015] [PMID: 26232228]
[250]
Bertram, C.; Dahan, L.; Boorman, L.W.; Harris, S.; Vautrelle, N.; Leriche, M.; Redgrave, P.; Overton, P.G. Cortical regulation of dopaminergic neurons: Role of the midbrain superior colliculus. J. Neurophysiol., 2014, 111(4), 755-767.
[http://dx.doi.org/10.1152/jn.00329.2013] [PMID: 24225541]
[251]
Cox, J.; Witten, I.B. Striatal circuits for reward learning and decision-making. Nat. Rev. Neurosci., 2019, 20(8), 482-494.
[http://dx.doi.org/10.1038/s41583-019-0189-2] [PMID: 31171839]
[252]
Redgrave, P.; Gurney, K.; Reynolds, J. What is reinforced by phasic dopamine signals? Brain Res. Brain Res. Rev., 2008, 58(2), 322-339.
[http://dx.doi.org/10.1016/j.brainresrev.2007.10.007] [PMID: 18055018]
[253]
Obeso, J.A.; Rodriguez-Oroz, M.C.; Stamelou, M.; Bhatia, K.P.; Burn, D.J.J.T.L. The expanding universe of disorders of the basal ganglia. Lancet, 2014, 384(9942), 523-531.
[http://dx.doi.org/10.1016/S0140-6736(13)62418-6]
[254]
Moro, E.; Bellot, E.; Meoni, S.; Pelissier, P.; Hera, R.; Dojat, M.; Coizet, V.; Group, S.C.S. Visual dysfunction of the superior colliculus in de novo parkinsonian patients. Ann. Neurol., 2020, 87(4), 533-546.
[http://dx.doi.org/10.1002/ana.25696] [PMID: 32030799]
[255]
Terao, Y.; Fukuda, H.; Ugawa, Y.; Hikosaka, O.J.C.n. New perspectives on the pathophysiology of Parkinson’s disease as assessed by saccade performance: A clinical review. Clin. Neurophysiol., 2013, 124(8), 1491-1506.
[http://dx.doi.org/10.1016/j.clinph.2013.01.021]
[256]
Meoni, S.; Cury, R.G.; Moro, E.J.P.r. New players in basal ganglia dysfunction in Parkinson’s disease. Prog. Brain Res., 2020, 252, 307-327.
[http://dx.doi.org/10.1016/bs.pbr.2020.01.001]
[257]
Bohnen, N.I.; Yarnall, A.J.; Weil, R.S.; Moro, E.; Moehle, M.S.; Borghammer, P.; Bedard, M-A.; Albin, R.L.J.T.L.N. Cholinergic system changes in Parkinson’s disease: Emerging therapeutic approaches. Lancet Neurol., 2022, 21(4), 381-392.
[http://dx.doi.org/10.1016/S1474-4422(21)00377-X]
[258]
Shires, J.; Joshi, S.; Basso, M.A.J.C.n. Shedding new light on the role of the basal ganglia-superior colliculus pathway in eye movements. Curr. Opin. Neurobiol., 2010, 20(6), 717-725.
[http://dx.doi.org/10.1016/j.conb.2010.08.008]
[259]
Anderson, T.J.; MacAskill, M.R.J.N.R.N. Eye movements in patients with neurodegenerative disorders. Nat. Rev. Neurol., 2013, 9(2), 74-85.
[http://dx.doi.org/10.1038/nrneurol.2012.273]
[260]
Basso, M.A.; Powers, A.S.; Evinger, C.J.J.N. An explanation for reflex blink hyperexcitability in Parkinson’s disease. I. Superior colliculus. J. Neurosci., 1996, 16(22), 7308-7317.
[261]
Nakamura, T.; Bronstein, A.M.; Lueck, C.; Marsden, C.; Rudge, P.J.B. Vestibular, cervical and visual remembered saccades in Parkinson’s disease. Brain, 1994, 117(Pt 6), 1423-1432.
[http://dx.doi.org/10.1093/brain/117.6.1423]
[262]
Munoz, M.J.; Reilly, J.L.; Pal, G.D.; Metman, L.V.; Rivera, Y.M.; Drane, Q.H.; Corcos, D.M.; David, F.J.; Goelz, L.C.J.C.N. Medication adversely impacts visually-guided eye movements in Parkinson’s disease. Clin. Neurophysiol., 2022, 143, 145-153.
[http://dx.doi.org/10.1016/j.clinph.2022.07.505]
[263]
Hood, A.J.; Amador, S.C.; Cain, A.E.; Briand, K.A.; Al-Refai, A.H.; Schiess, M.C.; Sereno, A.B. Levodopa slows prosaccades and improves antisaccades: An eye movement study in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 2007, 78(6), 565-570.
[264]
Basso, M.A.; Liu, P.J.J.n. Context-dependent effects of substantia nigra stimulation on eye movements. J. Neurophysiol., 2007, 97(6), 4129-4142.
[http://dx.doi.org/10.1152/jn.00094.2007]
[265]
Chambers, J.M.; Prescott, T.J.J.N. Response times for visually guided saccades in persons with Parkinson’s disease: A meta-analytic review. Neuropsychologia, 2010, 48(4), 887-899.
[http://dx.doi.org/10.1016/j.neuropsychologia.2009.11.006]
[266]
Bakhtiari, S.; Altinkaya, A.; Pack, C.C.; Sadikot, A.F.J.S.R. The role of the subthalamic nucleus in inhibitory control of oculomotor behavior in Parkinson’s disease. Sci. Rep., 2020, 10(1), 5429.
[http://dx.doi.org/10.1038/s41598-020-61572-4]
[267]
Pflug, C.; Nienstedt, J.C.; Gulberti, A.; Müller, F.; Vettorazzi, E.; Koseki, J.C.; Niessen, A.; Flügel, T.; Hidding, U.; Buhmann, C.J.A.C.; Neurology, T. Impact of simultaneous subthalamic and nigral stimulation on dysphagia in Parkinson’s disease. Ann. Clin. Transl. Neurol., 2020, 7(5), 628-638.
[http://dx.doi.org/10.1002/acn3.51027]
[268]
Su, Z.H.; Patel, S.; Gavine, B.; Buchanan, T.; Bogdanovic, M.; Sarangmat, N.; Green, A.L.; Bloem, B.R.; FitzGerald, J.J.; Antoniades, C.A. Deep brain stimulation and levodopa affect gait variability in Parkinson disease differently. Neuromodulation, 2023, 26(2), 382-393.
[269]
Ossowska, K.J. Zona incerta as a therapeutic target in Parkinson’s disease. J. Neurol., 2020, 267(3), 591-606.
[http://dx.doi.org/10.1007/s00415-019-09486-8]
[270]
Hussein, A.; Guevara, C.A.; Del Valle, P.; Gupta, S.; Benson, D.L.; Huntley, G.W.J.T.N. Non-motor symptoms of Parkinson’s disease: The neurobiology of early psychiatric and cognitive dysfunction. Neuroscientist., 2023, 29(1), 97.(116).
[http://dx.doi.org/10.1177/10738584211011979]
[271]
Pretegiani, E.; Vanegas‐Arroyave, N.; FitzGibbon, E.J.; Hallett, M.; Optican, L.M.J.M.D. Evidence from Parkinson’s disease that the superior colliculus couples action and perception. Mov. Disord., 2019, 34(11), 1680-1689.
[http://dx.doi.org/10.1002/mds.27861]
[272]
Overton, P.G.; Coizet, V.J.M.H. The neuropathological basis of anxiety in Parkinson’s disease. Med. Hypotheses, 2020, 144, 110048.
[http://dx.doi.org/10.1016/j.mehy.2020.110048]
[273]
Palmeri, R.; Corallo, F.; Bonanno, L.; Currò, S.; Merlino, P.; Di Lorenzo, G.; Bramanti, P.; Marino, S.; Buono, V.L.J.M. Apathy and impulsiveness in Parkinson disease: Two faces of the same coin? Medicine, 2022, 101(26), e29766.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy