Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Design, Synthesis and Anticonvulsant Activity of Cinnamoyl Derivatives of 3,4,6,7,8,9-hexahydrodibenzo[b,d]furan-1-(2H)-one Oxime

Author(s): Grigory V. Mokrov*, Valentina E. Biryukova, Tatiana Y. Vorobieva, Andry S. Pantileev, Oksana S. Grigorkevich, Ludmila A. Zhmurenko, Alexey G. Rebeko, Felix S. Bayburtskiy, Svetlana A. Litvinova, Tatiana A. Voronina, Tatiana A. Gudasheva and Sergei B. Seredenin

Volume 20, Issue 1, 2024

Published on: 12 September, 2023

Page: [92 - 107] Pages: 16

DOI: 10.2174/1573406419666230908121759

Price: $65

Abstract

Background: Epilepsy continues to be a significant global health problem and the search for new drugs for its treatment remains an urgent task. 5-HT2 and GABAA-receptors are among promising biotargets for the search for new anticonvulsants.

Methods: New potential 5-HT2 and GABAA ligands in the series of substituted cinnamoyl derivatives of 3,4,6,7,8,9-hexahydrodibenzo[b,d]furan-1-(2H)-one oxime were designed using pharmacophore model and molecular docking analysis. The synthesis of new compounds was carried out from 3,4,6,7,8,9-hexahydrodibenzo[b,d]furan-1(2H)-one oxime and substituted cinnamoyl chlorides. The anticonvulsant activity of new substances has been established using the maximal electroshock seizure test.

Results: Several synthesized substituted cinnamoyl derivatives of 3,4,6,7,8,9-hexahydrodibenzo [b,d]furan-1-(2H)-one oxime significantly reduced the severity of convulsive manifestations and completely prevented the death of animals after MES. The structure-activity relationship was investigated. The most effective compound was found to be GIZH-348 (1g) (3,4,6,7,8,9-hexahydrodibenzo[ b,d]furan-1(2Н)-one О-(4-chlorophenyl)acryloyl)oxime) at the doses of 10-20 mg/kg.

Conclusion: Molecular and pharmacophore modelling methods allowed us to create a new group of substituted cinnamoyl derivatives of 3,4,6,7,8,9-hexahydrodibenzo[b,d]furan-1-(2H)-one oxime with anticonvulsant activity.

Graphical Abstract

[2]
Begley, C.E.; Durgin, T.L. The direct cost of epilepsy in the United States: A systematic review of estimates. Epilepsia, 2015, 56(9), 1376-1387.
[http://dx.doi.org/10.1111/epi.13084] [PMID: 26216617]
[3]
Begley, C.; Wagner, R.G.; Abraham, A.; Beghi, E.; Newton, C.; Kwon, C.S.; Labiner, D.; Winkler, A.S. The global cost of epilepsy: A systematic review and extrapolation. Epilepsia, 2022, 63(4), 892-903.
[http://dx.doi.org/10.1111/epi.17165] [PMID: 35195894]
[4]
Brandt, C.; Lahr, D.; May, T.W. Cognitive adverse events of topiramate in patients with epilepsy and intellectual disability. Epilepsy Behav., 2015, 45, 261-264.
[http://dx.doi.org/10.1016/j.yebeh.2014.12.043] [PMID: 25843340]
[5]
Fritz, N.; Glogau, S.; Hoffmann, J.; Rademacher, M.; Elger, C.E.; Helmstaedter, C. Efficacy and cognitive side effects of tiagabine and topiramate in patients with epilepsy. Epilepsy Behav., 2005, 6(3), 373-381.
[http://dx.doi.org/10.1016/j.yebeh.2005.01.002] [PMID: 15820346]
[6]
White, J.R.; Walczak, T.S.; Marino, S.E.; Beniak, T.E.; Leppik, I.E.; Birnbaum, A.K. Zonisamide discontinuation due to psychiatric and cognitive adverse events: A case-control study. Neurology, 2010, 75(6), 513-518.
[http://dx.doi.org/10.1212/WNL.0b013e3181eccfb5] [PMID: 20697103]
[7]
Mutanana, N.; Tsvere, M.; Chiweshe, M.K. General side effects and challenges associated with anti-epilepsy medication: A review of related literature. Afr. J. Prim. Health Care Fam. Med., 2020, 12(1), e1-e5.
[http://dx.doi.org/10.4102/phcfm.v12i1.2162] [PMID: 32634006]
[8]
Zhmurenko, L.A.; Voronina, T.A.; Litvinova, S.A.; Nerobkova, L.N.; Gaidukov, I.O.; Mokrov, G.V.; Gudasheva, T.A. Synthesis and anticonvulsive activity of 3- and 4-benzoylpyridine oxime derivatives. Pharm. Chem. J., 2018, 52(1), 42-51.
[http://dx.doi.org/10.1007/s11094-018-1763-z]
[9]
Mokrov, G.V.; Savel’ev, V.L.; Voronina, T.A.; Litvinova, S.A.; Kovalev, I.G.; Nerobkova, L.N.; Dmitrienko, A.O.; Gudasheva, T.A.; Seredenin, S.B. Synthesis and anticonvulsant activity of n-substituted 4-amino-3-nitrocoumarins. Pharm. Chem. J., 2019, 53(2), 118-124.
[http://dx.doi.org/10.1007/s11094-019-01964-7]
[10]
Mokrov, G.V.; Litvinova, S.A.; Voronina, T.A.; Nerobkova, L.N.; Kutepova, I.S.; Kovalev, I.G.; Gudasheva, T.A.; Durnev, A.D. Design, synthesis, and anticonvulsant evaluation of 4-GABA-3-nitrocoumarines, 1-thiocoumarines, quinolone-2-ones, and their derivatives. Med. Chem. Res., 2019, 28(11), 1901-1911.
[http://dx.doi.org/10.1007/s00044-019-02422-5]
[11]
Mokrov, G.V.; Voronina, T.A.; Litvinova, S.A.; Kovalev, I.G.; Nerobkova, L.N.; Durnev, A.D.; Gudasheva, T.A.; Seredenin, S.B. Synthesis and anticonvulsant activity of 4-amino-3-nitro-1-thiocoumarins and 4-amino-3-nitroquinolin-2-ones. Pharm. Chem. J., 2019, 53(3), 194-200.
[http://dx.doi.org/10.1007/s11094-019-01978-1]
[12]
Zhmurenko, L.A.; Litvinova, S.A.; Mokrov, G.V.; Kovalev, I.G.; Voronina, T.A.; Nerobkova, L.N.; Gudasheva, T.A. Synthesis of 4-phenylpyrrolidone derivatives with anticonvulsant and nootropic activity. Pharm. Chem. J., 2019, 53(5), 429-435.
[http://dx.doi.org/10.1007/s11094-019-02015-x]
[13]
Zhmurenko, L.A.; Litvinova, S.A.; Kutepova, I.S.; Nerobkova, L.N.; Mokrov, G.V.; Rebeko, A.G.; Voronina, T.A.; Gudasheva, T.A. Synthesis of dibenzofuranone-oxime derivatives with anticonvulsant, antihypoxic, and anti-ischemic activity. Pharm. Chem. J., 2020, 53(11), 997-1004.
[http://dx.doi.org/10.1007/s11094-020-02112-2]
[14]
Zhmurenko, L.A.; Litvinova, S.A.; Mokrov, G.V.; Ivasheva, D.M.; Rebeko, A.G.; Voronina, T.A.; Gudasheva, T.A. Synthesis of aminoalkyl dibenzofuranone oxime derivatives possessing anticonvulsant activity. Pharm. Chem. J., 2021, 54(10), 997-1002.
[http://dx.doi.org/10.1007/s11094-021-02309-z]
[15]
Bagdy, G.; Kecskemeti, V.; Riba, P.; Jakus, R. Serotonin and epilepsy. J. Neurochem., 2007, 100(4), 857-873.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04277.x] [PMID: 17212700]
[16]
Venzi, M.; David, F.; Bellet, J.; Cavaccini, A.; Bombardi, C.; Crunelli, V.; Di Giovanni, G. Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures. Neuropharmacology, 2016, 108, 292-304.
[http://dx.doi.org/10.1016/j.neuropharm.2016.04.016] [PMID: 27085605]
[17]
Bryson, A.; Reid, C.; Petrou, S. Fundamental neurochemistry review: GABA A receptor neurotransmission and epilepsy: Principles, disease mechanisms and pharmacotherapy. J. Neurochem., 2023, 165(1), 6-28.
[http://dx.doi.org/10.1111/jnc.15769] [PMID: 36681890]
[18]
Palma, E.; Ruffolo, G.; Cifelli, P.; Roseti, C.; Vliet, E.A.; Aronica, E. Modulation of GABAA Receptors in the treatment of epilepsy. Curr. Pharm. Des., 2018, 23(37), 5563-5568.
[http://dx.doi.org/10.2174/1381612823666170809100230] [PMID: 28799512]
[19]
Karakurt, A.; Alagöz, M.A.; Sayoğlu, B.; Çalış, Ü.; Dalkara, S. Synthesis of some novel 1-(2-naphthyl)-2-(imidazol-1-yl)ethanone oxime ester derivatives and evaluation of their anticonvulsant activity. Eur. J. Med. Chem., 2012, 57, 275-282.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.037] [PMID: 23085104]
[20]
Sari, S.; Kaynak, F.B.; Dalkara, S. Synthesis and anticonvulsant screening of 1,2,4-triazole derivatives. Pharmacol. Rep., 2018, 70(6), 1116-1123.
[http://dx.doi.org/10.1016/j.pharep.2018.06.007] [PMID: 30316046]
[21]
Yacovan, A.; Grynszpan, F.; Aizikovich, A.; Brody, M. S.; Bar-Joseph, A.; Meilin, S. Benzofuran derivatives with therapeutic activities. Patent WO 2006129318A2, 2006.
[22]
Hu, X.; Wang, M.; Yan, G.R.; Yu, M.H.; Wang, H.Y.; Hou, A.J. 2-Arylbenzofuran and tyrosinase inhibitory constituents of Morus notabilis. J. Asian Nat. Prod. Res., 2012, 14(12), 1103-1108.
[http://dx.doi.org/10.1080/10286020.2012.724400] [PMID: 23088613]
[23]
Chen, C.Y.; Wei, X.D.; Chen, C.R. 3,4,5-Trimethoxycinnamic acid, one of the constituents of Polygalae Radix exerts anti-seizure effects by modulating GABAAergic systems in mice. J. Pharmacol. Sci., 2016, 131(1), 1-5.
[http://dx.doi.org/10.1016/j.jphs.2015.07.021] [PMID: 26260747]
[24]
Cuan, Y.; He, X.; Zhao, Y.; Yang, J.; Bai, Y.; Sun, Y.; Zhang, Q.; Zhao, Z.; Wei, X.; Zheng, X. Anticonvulsant activity of halogen-substituted cinnamic acid derivatives and their effects on glycosylation of PTZ-induced chronic epilepsy in mice. Molecules, 2017, 23(1), 76.
[http://dx.doi.org/10.3390/molecules23010076] [PMID: 29286347]
[25]
Gunia-Krzyżak, A.; Pańczyk, K.; Waszkielewicz, A.M.; Marona, H. Cinnamamide derivatives for central and peripheral nervous system disorders: A review of structure-activity relationships. ChemMedChem, 2015, 10(8), 1302-1325.
[http://dx.doi.org/10.1002/cmdc.201500153] [PMID: 26083325]
[26]
Perucca, E.; French, J.; Bialer, M. Development of new antiepileptic drugs: Challenges, incentives, and recent advances. Lancet Neurol., 2007, 6(9), 793-804.
[http://dx.doi.org/10.1016/S1474-4422(07)70215-6] [PMID: 17706563]
[27]
Acar, M.F.; Sari, S.; Dalkara, S. Synthesis, in vivo anticonvulsant testing, and molecular modeling studies of new nafimidone derivatives. Drug Dev. Res., 2019, 80(5), ddr.21538.
[http://dx.doi.org/10.1002/ddr.21538] [PMID: 30973979]
[28]
Guiard, B.P.; Giovanni, G.D. Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: The missing link? Front. Pharmacol., 2015, 6, 46.
[http://dx.doi.org/10.3389/fphar.2015.00046] [PMID: 25852551]
[29]
Sourbron, J.; Lagae, L. Serotonin receptors in epilepsy: Novel treatment targets? Epilepsia Open, 2022, 7(2), 231-246.
[http://dx.doi.org/10.1002/epi4.12580] [PMID: 35075810]
[30]
Braat, S.; Kooy, R.F. The GABAA receptor as a therapeutic target for neurodevelopmental disorders. Neuron, 2015, 86(5), 1119-1130.
[http://dx.doi.org/10.1016/j.neuron.2015.03.042] [PMID: 26050032]
[31]
Peng, Y.; Luo, J.; Feng, Q.; Tang, Q. Understanding the scope of feist-bénary furan synthesis: Chemoselectivity and diastereoselectivity of the reaction between α-halo ketones and β-dicarbonyl compounds. Eur. J. Org. Chem., 2016, 2016(30), 5169-5179.
[http://dx.doi.org/10.1002/ejoc.201600975]
[32]
Kolb, K.E.; Field, K.W.; Schatz, P.F. A one-step synthesis of cinnamic acids using malonic acid: The verley-doebner modification of the knoevenagel condensation. J. Chem. Educ., 1990, 67(12), A304.
[http://dx.doi.org/10.1021/ed067pA304]
[33]
Voronina, T.A.; Nerobkova, L.N. In: Methodical instructions for the study of anticonvulsant activity of pharmacological substances. A guide to preclinical drug research. Metodicheskie ukazaniya po izucheniyu protivosudorozhnoi aktivnosti farmakologicheskikh veshchestv; , 2012, pp. 235-250.
[34]
Leitis, Z.; Lūsis, V. Conjugate addition of aryl nucleophiles to α,β-unsaturated cinnamic acid derivatives containing evans type chiral auxiliaries. Tetrahedron Asymmetry, 2016, 27(17-18), 843-851.
[http://dx.doi.org/10.1016/j.tetasy.2016.07.003]
[35]
Chen, Y.; Luo, X.; Wang, Y.; Xing, Z.; Chen, J. Design and synthesis novel amide derivatives containing an 1,3,4‐oxadiazole moiety as potential antibacterial agents. J. Heterocycl. Chem., 2022, 59(7), 1160-1168.
[http://dx.doi.org/10.1002/jhet.4455]
[36]
Raffa, D.; Maggio, B.; Raimondi, M.V.; Cusimano, M.G.; Amico, G.; Carollo, A.; Conaldi, P.G.; Bai, R.; Hamel, E.; Daidone, G. 2-Cinnamamido, 2-(3-phenylpropiolamido), and 2-(3-phenyl propanamido)benzamides: Synthesis, antiproliferative activity, and mechanism of action. Eur. J. Med. Chem., 2013, 65, 427-435.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.068] [PMID: 23747810]
[37]
Mikroyannidis, J.A.; Spiliopoulos, I.K.; Kasimis, T.S.; Kulkarni, A.P.; Jenekhe, S.A. Synthesis, photophysics, and electroluminescence of conjugated poly(p -phenylenevinylene) derivatives with 1,3,4-oxadiazoles in the backbone. Macromolecules, 2003, 36(25), 9295-9302.
[http://dx.doi.org/10.1021/ma034793w]
[38]
Novácek, L.; Nováková, O.; Polásek, L.; Danĕk, J. Preparation of derivatives of 3-(3,4-dimethoxyphenyl)propanic acid and a study of its biological activity. Cesk. Farm., 1990, 39(3), 109-112.
[PMID: 2401012]
[39]
Kim, T.H.; Huh, C.; Lee, B.S.; Lee, I. Nucleophilic substitution reactions of cinnamoyl chlorides with anilines in acetonitrile and acetonitrile–methanol mixtures. J. Chem. Soc., Perkin Trans. 2, 1995, (12), 2257-2261.
[http://dx.doi.org/10.1039/P29950002257]
[40]
Norman, M.H.; Heathcock, C.H. Novel transformations leading to 3-benzylindolizidin-2-ones. J. Org. Chem., 1987, 52(2), 226-235.
[http://dx.doi.org/10.1021/jo00378a012]
[41]
Nardi, A.; Grunnet, M.; Demnitz, J.; Jensen, T.D.; Christophersen, P.; Jones, D.S.; Nielsen, E.O.; Strøbæk, D.; Madsen, L.S. Novel cinnamic amide derivatives useful as ion channel modulators. WO 2008074755A22007,
[42]
Gakhar, H.K.; Kaur, R.; Gupta, S.B. [1,3]Dioxolo[5,6][1] benzothieno[2,3-c]-quinolin-6(5H)-ones. Monatsh. Chem., 1995, 126(11), 1253-1256.
[http://dx.doi.org/10.1007/BF00824304]
[43]
Rasschaert, A.; Janssens, W.; Slootmaekers, P.J. A re-examination of the selectivity in the Friedel-crafts chalcone synthesis. Bull. Soc. Chim. Belg., 1966, 75, 449-455.
[http://dx.doi.org/10.1002/bscb.19660750703]
[44]
Robinson, E.R.T.; Frost, A.B.; Elías-Rodríguez, P.; Smith, A.D. Enantioselective isothiourea-catalysed michael–michael–lactonisation cascade reaction for the synthesis of δ-lactones and 1,2,3,4-substituted cyclopentanes. Synthesis, 2017, 49, 409-423.
[45]
Sharma, M.L.; Kaur, S. Synthesis of quaternary salts of ammonia from cinnamic acids and their plant growth retardant activity. J. Indian Chem. Soc., 2007, 84, 612-614.
[46]
Wu, Z.; Minhas, G.S.; Wen, D.; Jiang, H.; Chen, K.; Zimniak, P.; Zheng, J. Design, synthesis, and structure-activity relationships of haloenol lactones: Site-directed and isozyme-selective glutathione S-transferase inhibitors. J. Med. Chem., 2004, 47(12), 3282-3294.
[http://dx.doi.org/10.1021/jm0499615] [PMID: 15163208]
[47]
Coutrot, P.; Snoussi, M.; Savignac, P. An improvement in the wittig-horner synthesis of 2-alkenoic acids. Synthesis, 1978, 1978(2), 133-134.
[http://dx.doi.org/10.1055/s-1978-24686]
[48]
Jiménez, V.; Alderete, J.B. The role of charge transfer interactions in the inclusion complexation of anionic guests with α-cyclodextrin. Tetrahedron, 2005, 61(23), 5449-5456.
[http://dx.doi.org/10.1016/j.tet.2005.04.001]
[49]
Zhang, Y.M.; Zhou, Z.M.; Jiang, F. Synthesis of new phenols 1. derivatives of 8 hydroxy indolizine. J. Chem. Res. Synopses, 1981, 366-367.
[50]
Takaya, J.; Tadami, S.; Ukai, K.; Iwasawa, N. Copper(I)-catalyzed carboxylation of aryl- and alkenylboronic esters. Org. Lett., 2008, 10(13), 2697-2700.
[http://dx.doi.org/10.1021/ol800829q] [PMID: 18507391]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy