Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

A Structure-based Data Set of Protein-peptide Affinities and its Nonredundant Benchmark: Potential Applications in Computational Peptidology

Author(s): Shaozhou Wang, Haiyang Ye, Shuyong Shang, Zilong Li, Yue Peng and Peng Zhou*

Volume 31, Issue 26, 2024

Published on: 06 November, 2023

Page: [4127 - 4137] Pages: 11

DOI: 10.2174/0929867331666230908102925

Price: $65

Abstract

Background: Peptides play crucial roles in diverse cellular functions and participate in many biological processes by interacting with a variety of proteins, which have also been exploited as a promising class of therapeutic agents to target druggable proteins over the past decades. Understanding the intrinsic association between the structure and affinity of protein-peptide interactions (PpIs) should be considerably valuable for the computational peptidology area, such as guiding protein-peptide docking calculations, developing protein-peptide affinity scoring functions, and designing peptide ligands for specific protein receptors.

Objective: We attempted to create a data source for relating PpI structure to affinity.

Methods: By exhaustively surveying the whole protein data bank (PDB) database as well as the ontologically enriched literature information, we manually curated a structure- based data set of protein-peptide affinities, PpI[S/A]DS, which assembled over 350 PpI complex samples with both the experimentally measured structure and affinity data. The data set was further reduced to a nonredundant benchmark consisting of 102 culled samples, PpI[S/A]BM, which only selected those of structurally reliable, functionally diverse and evolutionarily nonhomologous.

Results: The collected structures were resolved at a high-resolution level with either Xray crystallography or solution NMR, while the deposited affinities were characterized by dissociation constant, i.e. Kd value, which is a direct biophysical measure of the intermolecular interaction strength between protein and peptide, ranging from subnanomolar to millimolar levels. The PpI samples in the set/benchmark were arbitrarily classified into α-helix, partial α-helix, β-sheet formed through binding, β-strand formed through selffolding, mixed, and other irregular ones, totally resulting in six classes according to the secondary structure of their peptide ligands. In addition, we also categorized these PpIs in terms of their biological function and binding behavior.

Conclusion: The PpI[S/A]DS set and PpI[S/A]BM benchmark can be considered a valuable data source in the computational peptidology community, aiming to relate the affinity to structure for PpIs.

[1]
Lucchese, G.; Stufano, A.; Trost, B.; Kusalik, A.; Kanduc, D. Peptidology: Short amino acid modules in cell biology and immunology. Amino Acids, 2007, 33(4), 703-707.
[http://dx.doi.org/10.1007/s00726-006-0458-z] [PMID: 17077961]
[2]
Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of Action. Int. J. Mol. Sci., 2022, 23(3), 1445.
[http://dx.doi.org/10.3390/ijms23031445] [PMID: 35163367]
[3]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[4]
Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther., 2022, 7(1), 48.
[http://dx.doi.org/10.1038/s41392-022-00904-4] [PMID: 35165272]
[5]
Neduva, V.; Russell, R.B. Linear motifs: Evolutionary interaction switches. FEBS Lett., 2005, 579(15), 3342-3345.
[http://dx.doi.org/10.1016/j.febslet.2005.04.005] [PMID: 15943979]
[6]
London, N.; Raveh, B.; Schueler-Furman, O. Druggable protein–protein interactions-from hot spots to hot segments. Curr. Opin. Chem. Biol., 2013, 17(6), 952-959.
[http://dx.doi.org/10.1016/j.cbpa.2013.10.011] [PMID: 24183815]
[7]
Neduva, V.; Russell, R.B. Peptides mediating interaction networks: New leads at last. Curr. Opin. Biotechnol., 2006, 17(5), 465-471.
[http://dx.doi.org/10.1016/j.copbio.2006.08.002] [PMID: 16962311]
[8]
Petsalaki, E.; Russell, R.B. Peptide-mediated interactions in biological systems: New discoveries and applications. Curr. Opin. Biotechnol., 2008, 19(4), 344-350.
[http://dx.doi.org/10.1016/j.copbio.2008.06.004] [PMID: 18602004]
[9]
Lin, J.; Wang, S.; Wen, L.; Ye, H.; Shang, S.; Li, J.; Shu, J.; Zhou, P. Targeting peptide-mediated interactions in omics. Proteomics, 2023, 23(6), 2200175.
[http://dx.doi.org/10.1002/pmic.202200175] [PMID: 36461811]
[10]
London, N.; Raveh, B.; Movshovitz-Attias, D.; Schueler-Furman, O. Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins, 2010, 78(15), 3140-3149.
[http://dx.doi.org/10.1002/prot.22785] [PMID: 20607702]
[11]
Yang, C.; Zhang, S.; He, P.; Wang, C.; Huang, J.; Zhou, P. Self-binding peptides: Folding or binding? J. Chem. Inf. Model., 2015, 55(2), 329-342.
[http://dx.doi.org/10.1021/ci500522v] [PMID: 25643174]
[12]
Zhou, P.; Wang, C.; Ren, Y.; Yang, C.; Tian, F. Computational peptidology: A new and promising approach to therapeutic peptide design. Curr. Med. Chem., 2013, 20(15), 1985-1996.
[http://dx.doi.org/10.2174/0929867311320150005] [PMID: 23317161]
[13]
London, N.; Raveh, B.; Schueler-Furman, O. Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. Curr. Opin. Struct. Biol., 2013, 23(6), 894-902.
[http://dx.doi.org/10.1016/j.sbi.2013.07.006] [PMID: 24138780]
[14]
Ciemny, M.; Kurcinski, M.; Kamel, K.; Kolinski, A.; Alam, N.; Schueler-Furman, O.; Kmiecik, S. Protein–peptide docking: Opportunities and challenges. Drug Discov. Today, 2018, 23(8), 1530-1537.
[http://dx.doi.org/10.1016/j.drudis.2018.05.006] [PMID: 29733895]
[15]
Romero-Molina, S.; Ruiz-Blanco, Y.B.; Mieres-Perez, J.; Harms, M.; Münch, J.; Ehrmann, M.; Sanchez-Garcia, E. PPI-Affinity: A web tool for the prediction and optimization of protein–peptide and protein–protein binding affinity. J. Proteome Res., 2022, 21(8), 1829-1841.
[http://dx.doi.org/10.1021/acs.jproteome.2c00020] [PMID: 35654412]
[16]
Zhou, P.; Wen, L.; Lin, J.; Mei, L.; Liu, Q.; Shang, S.; Li, J.; Shu, J. Integrated unsupervised–supervised modeling and prediction of protein–peptide affinities at structural level. Brief. Bioinform., 2022, 23(3), bbac097.
[http://dx.doi.org/10.1093/bib/bbac097] [PMID: 35352094]
[17]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[18]
Vanhee, P.; Reumers, J.; Stricher, F.; Baeten, L.; Serrano, L.; Schymkowitz, J.; Rousseau, F. PepX: A structural database of non-redundant protein–peptide complexes. Nucleic Acids Res., 2010, 38(S1), D545-D551.
[http://dx.doi.org/10.1093/nar/gkp893] [PMID: 19880386]
[19]
London, N.; Movshovitz-Attias, D.; Schueler-Furman, O. The structural basis of peptide-protein binding strategies. Structure, 2010, 18(2), 188-199.
[http://dx.doi.org/10.1016/j.str.2009.11.012] [PMID: 20159464]
[20]
Frappier, V.; Duran, M.; Keating, A.E.; Pixel, D.B. PixelDB: Protein-peptide complexes annotated with structural conservation of the peptide binding mode. Protein Sci., 2018, 27(1), 276-285.
[http://dx.doi.org/10.1002/pro.3320] [PMID: 29024246]
[21]
Wen, Z; He, J; Tao, H; Huang, SY PepBDB: A comprehensive structural database of biological peptide-protein interactions. Bioinformatics., 2019, 35(1), 175-177.
[22]
Wang, R.; Fang, X.; Lu, Y.; Yang, C.Y.; Wang, S. The PDBbind database: Methodologies and updates. J. Med. Chem., 2005, 48(12), 4111-4119.
[http://dx.doi.org/10.1021/jm048957q] [PMID: 15943484]
[23]
Benson, M.L.; Smith, R.D.; Khazanov, N.A.; Dimcheff, B.; Beaver, J.; Dresslar, P.; Nerothin, J.; Carlson, H.A. Binding MOAD, a high-quality protein-ligand database. Nucleic Acids Res., 2008, 36(Database issue), D674-D678.
[PMID: 18055497]
[24]
Han, K.; Wu, G.; Lv, F. Development of QSAR-improved statistical potential for the structure-based analysis of protein–peptide binding affinities. Mol. Inform., 2013, 32(9-10), 783-792.
[http://dx.doi.org/10.1002/minf.201300064] [PMID: 27480231]
[25]
Zhou, Y.; Ni, Z.; Chen, K.; Liu, H.; Chen, L.; Lian, C.; Yan, L. Modeling protein-peptide recognition based on classical quantitative structure-affinity relationship approach: Implication for proteome-wide inference of peptide-mediated interactions. Protein J., 2013, 32(7), 568-578.
[http://dx.doi.org/10.1007/s10930-013-9519-9] [PMID: 24150505]
[26]
Block, P.; Sotriffer, C.A.; Dramburg, I.; Klebe, G. AffinDB: A freely accessible database of affinities for protein-ligand complexes from the PDB. Nucleic Acids Res., 2006, 34(90001), D522-D526.
[http://dx.doi.org/10.1093/nar/gkj039] [PMID: 16381925]
[27]
Kastritis, P.L.; Moal, I.H.; Hwang, H.; Weng, Z.; Bates, P.A.; Bonvin, A.M.J.J.; Janin, J. A structure-based benchmark for protein-protein binding affinity. Protein Sci., 2011, 20(3), 482-491.
[http://dx.doi.org/10.1002/pro.580] [PMID: 21213247]
[28]
Zhou, P.; Miao, Q.; Yan, F.; Li, Z.; Jiang, Q.; Wen, L.; Meng, Y. Is protein context responsible for peptide-mediated interactions? Mol. Omics, 2019, 15(4), 280-295.
[http://dx.doi.org/10.1039/C9MO00041K] [PMID: 31112188]
[29]
Kastritis, P.L.; Bonvin, A.M.J.J. Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark. J. Proteome Res., 2010, 9(5), 2216-2225.
[http://dx.doi.org/10.1021/pr9009854] [PMID: 20329755]
[30]
Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J.D.; Higgins, D.G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol., 2011, 7(1), 539.
[http://dx.doi.org/10.1038/msb.2011.75] [PMID: 21988835]
[31]
Xu, X.; Zou, X. PepPro: A nonredundant structure data set for benchmarking peptide–protein computational docking. J. Comput. Chem., 2020, 41(4), 362-369.
[http://dx.doi.org/10.1002/jcc.26114] [PMID: 31793016]
[32]
Jenssen, TK; Laegreid, A; Komorowski, J; Hovig, E A literature network of human genes for high-throughput analysis of gene expression. Nat Genet, 2001, 28, 21-28.
[33]
Blaszczyk, M.; Ciemny, M.P.; Kolinski, A.; Kurcinski, M.; Kmiecik, S. Protein–peptide docking using CABS-dock and contact information. Brief. Bioinform., 2019, 20(6), 2299-2305.
[http://dx.doi.org/10.1093/bib/bby080] [PMID: 30247502]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy