Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Review Article

Scaffold Proteins in Autoimmune Disorders

Author(s): Josna Joseph*, John Mathew and Jessy Alexander

Volume 20, Issue 1, 2024

Published on: 11 September, 2023

Page: [14 - 26] Pages: 13

DOI: 10.2174/1573397119666230904151024

Price: $65

Abstract

Cells transmit information to the external environment and within themselves through signaling molecules that modulate cellular activities. Aberrant cell signaling disturbs cellular homeostasis causing a number of different diseases, including autoimmunity. Scaffold proteins, as the name suggests, serve as the anchor for binding and stabilizing signaling proteins at a particular locale, allowing both intra and intercellular signal amplification and effective signal transmission. Scaffold proteins play a critical role in the functioning of tight junctions present at the intersection of two cells. In addition, they also participate in cleavage formation during cytokinesis, and in the organization of neural synapses, and modulate receptor management outcomes. In autoimmune settings such as lupus, scaffold proteins can lower the cell activation threshold resulting in uncontrolled signaling and hyperactivity. Scaffold proteins, through their binding domains, mediate protein- protein interaction and play numerous roles in cellular communication and homeostasis. This review presents an overview of scaffold proteins, their influence on the different signaling pathways, and their role in the pathogenesis of autoimmune and auto inflammatory diseases. Since these proteins participate in many roles and interact with several other signaling pathways, it is necessary to gain a thorough understanding of these proteins and their nuances to facilitate effective target identification and therapeutic design for the treatment of autoimmune disorders.

Graphical Abstract

[1]
Milo R, Jorgensen P, Moran U, Weber G, Springer M. BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 2010; 38(Database issue) (Suppl. 1): D750-3.
[http://dx.doi.org/10.1093/nar/gkp889] [PMID: 19854939]
[2]
Oh K, Yi GS. Prediction of scaffold proteins based on protein interaction and domain architectures. BMC Bioinformatics 2016; 17(S6) (Suppl. 6): 220.
[http://dx.doi.org/10.1186/s12859-016-1079-5] [PMID: 27490120]
[3]
Shaw AS, Filbert EL. Scaffold proteins and immune-cell signalling. Nat Rev Immunol 2009; 9(1): 47-56.
[http://dx.doi.org/10.1038/nri2473] [PMID: 19104498]
[4]
Xiao Q, McAtee CK, Su X. Phase separation in immune signalling. Nat Rev Immunol 2022; 22(3): 188-99.
[http://dx.doi.org/10.1038/s41577-021-00572-5] [PMID: 34230650]
[5]
Good MC, Zalatan JG, Lim WA. Scaffold proteins: Hubs for controlling the flow of cellular information. Science 2011; 332(6030): 680-6.
[http://dx.doi.org/10.1126/science.1198701] [PMID: 21551057]
[6]
Hata Y, Iida J. Scaffold Protein. Encyclopedia of Neuroscience. Springer: Berlin, Heidelberg 2009; pp. 3613-6.
[http://dx.doi.org/10.1007/978-3-540-29678-2_5231]
[7]
Cooper JA, Bowen-Pope DF, Raines E, Ross R, Hunter T. Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cell 1982; 31(1): 263-73.
[http://dx.doi.org/10.1016/0092-8674(82)90426-3] [PMID: 6186382]
[8]
Kane LP, Lin J, Weiss A. Signal transduction by the TCR for antigen. Curr Opin Immunol 2000; 12(3): 242-9.
[http://dx.doi.org/10.1016/S0952-7915(00)00083-2] [PMID: 10781399]
[9]
Takeda K, Kaisho T, Akira S. Toll-Like Receptors. Annu Rev Immunol 2003; 21(1): 335-76.
[http://dx.doi.org/10.1146/annurev.immunol.21.120601.141126] [PMID: 12524386]
[10]
Aggarwal BB. Signalling pathways of the TNF superfamily: A double-edged sword. Nat Rev Immunol 2003; 3(9): 745-56.
[http://dx.doi.org/10.1038/nri1184] [PMID: 12949498]
[11]
Hanada T, Lin L, Chandy KG, Oh SS, Chishti AH. Human homologue of the Drosophila discs large tumor suppressor binds to p56lck tyrosine kinase and Shaker type Kv1.3 potassium channel in T lymphocytes. J Biol Chem 1997; 272(43): 26899-904.
[http://dx.doi.org/10.1074/jbc.272.43.26899] [PMID: 9341123]
[12]
Round JL, Humphries LA, Tomassian T, Mittelstadt P, Zhang M, Miceli MC. Scaffold protein Dlgh1 coordinates alternative p38 kinase activation, directing T cell receptor signals toward NFAT but not NF-κB transcription factors. Nat Immunol 2007; 8(2): 154-61.
[http://dx.doi.org/10.1038/ni1422] [PMID: 17187070]
[13]
Chol K-Y, Satterberg B, Lyons DM, Elion EA. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 1994; 78(3): 499-512.
[http://dx.doi.org/10.1016/0092-8674(94)90427-8] [PMID: 8062390]
[14]
Tsunoda S, Sierralta J, Sun Y, et al. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 1997; 388(6639): 243-9.
[http://dx.doi.org/10.1038/40805] [PMID: 9230432]
[15]
Yokoyama K, Su Ih IH, Tezuka T, et al. BANK regulates BCR-induced calcium mobilization by promoting tyrosine phosphorylation of IP3 receptor. EMBO J 2002; 21(1): 83-92.
[http://dx.doi.org/10.1093/emboj/21.1.83] [PMID: 11782428]
[16]
Kozyrev SV, Abelson AK, Wojcik J, et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 2008; 40(2): 211-6.
[http://dx.doi.org/10.1038/ng.79] [PMID: 18204447]
[17]
Dam EM, Habib T, Chen J, et al. The BANK1 SLE-risk variants are associated with alterations in peripheral B cell signaling and development in humans. Clin Immunol 2016; 173: 171-80.
[http://dx.doi.org/10.1016/j.clim.2016.10.018] [PMID: 27816669]
[18]
Rueda B, Gourh P, Broen J, et al. BANK1 functional variants are associated with susceptibility to diffuse systemic sclerosis in Caucasians. Ann Rheum Dis 2010; 69(4): 700-5.
[http://dx.doi.org/10.1136/ard.2009.118174] [PMID: 19815934]
[19]
Orozco G, Abelson AK, González-Gay MA, et al. Study of functional variants of the BANK1 gene in rheumatoid arthritis. Arthritis Rheum 2009; 60(2): 372-9.
[http://dx.doi.org/10.1002/art.24244] [PMID: 19180476]
[20]
Kolodziej LE, Lodolce JP, Chang JE, Schneider JR, Grimm WA, Bartulis SJ, et al. TNFAIP3 Maintains Intestinal Barrier Function and Supports Epithelial Cell Tight Junctions. PLoS One 2011; 6(10): e26352.
[http://dx.doi.org/10.1371/journal.pone.0026352]
[21]
Bowes J, Orozco G, Flynn E, et al. Confirmation of TNIP1 and IL23A as susceptibility loci for psoriatic arthritis. Ann Rheum Dis 2011; 70(9): 1641-4.
[http://dx.doi.org/10.1136/ard.2011.150102] [PMID: 21623003]
[22]
Bossini-Castillo L, Martin JE, Broen J, et al. Confirmation of TNIP1 but not RHOB and PSORS1C1 as systemic sclerosis risk factors in a large independent replication study. Ann Rheum Dis 2013; 72(4): 602-7.
[http://dx.doi.org/10.1136/annrheumdis-2012-201888] [PMID: 22896740]
[23]
Allanore Y, Saad M, Dieudé P, Avouac J, Distler JHW, Amouyel P. Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet 2011; 7(7): e1002091.
[24]
Han JW, Zheng HF, Cui Y, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 2009; 41(11): 1234-7.
[http://dx.doi.org/10.1038/ng.472] [PMID: 19838193]
[25]
He C-F, Liu Y-S, Cheng Y-L, et al. TNIP1, SLC15A4, ETS1, RasGRP3 and IKZF1 are associated with clinical features of systemic lupus erythematosus in a Chinese Han population. Lupus 2010; 19(10): 1181-6.
[http://dx.doi.org/10.1177/0961203310367918] [PMID: 20516000]
[26]
Kawasaki A, Ito S, Furukawa H, et al. Association of TNFAIP3 interacting protein 1, TNIP1 with systemic lupus erythematosus in a Japanese population: A case-control association study. Arthritis Res Ther 2010; 12(5): R174.
[http://dx.doi.org/10.1186/ar3134] [PMID: 20849588]
[27]
Stahl EA, Raychaudhuri S, Remmers EF, et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 2010; 42(6): 508-14.
[http://dx.doi.org/10.1038/ng.582] [PMID: 20453842]
[28]
Sun LD, Cheng H, Wang ZX, et al. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet 2010; 42(11): 1005-9.
[http://dx.doi.org/10.1038/ng.690] [PMID: 20953187]
[29]
Shamilov R, Aneskievich BJ. TNIP1 in autoimmune diseases: regulation of toll-like receptor signaling. J Immunol Res 2018; 2018: 1-13.
[http://dx.doi.org/10.1155/2018/3491269] [PMID: 30402506]
[30]
Liu WJ, Ye L, Huang WF, et al. p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 2016; 21(1): 29.
[http://dx.doi.org/10.1186/s11658-016-0031-z] [PMID: 28536631]
[31]
Kuusisto E, Salminen A, Alafuzoff I. Early accumulation of p62 in neurofibrillary tangles in Alzheimer’s disease: Possible role in tangle formation. Neuropathol Appl Neurobiol 2002; 28(3): 228-37.
[http://dx.doi.org/10.1046/j.1365-2990.2002.00394.x] [PMID: 12060347]
[32]
Pankiv S, Lamark T, Bruun JA, Øvervatn A, Bjørkøy G, Johansen T. Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem 2010; 285(8): 5941-53.
[http://dx.doi.org/10.1074/jbc.M109.039925] [PMID: 20018885]
[33]
Kato M, Ospelt C, Gay RE, Gay S, Klein K. Dual role of autophagy in stress-induced cell death in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol 2014; 66(1): 40-8.
[http://dx.doi.org/10.1002/art.38190] [PMID: 24449574]
[34]
Li Y, Kang J, Horwitz MS. Interaction of an adenovirus E3 14.7-kilodalton protein with a novel tumor necrosis factor alpha-inducible cellular protein containing leucine zipper domains. Mol Cell Biol 1998; 18(3): 1601-10.
[http://dx.doi.org/10.1128/MCB.18.3.1601] [PMID: 9488477]
[35]
Mancias JD, Kimmelman AC. Mechanisms of Selective Autophagy in Normal Physiology and Cancer. J Mol Biol 2016; 428(9): 1659-80.
[http://dx.doi.org/10.1016/j.jmb.2016.02.027] [PMID: 26953261]
[36]
Slowicka K, Vereecke L, van Loo G. Cellular Functions of Optineurin in Health and Disease. Trends Immunol 2016; 37(9): 621-33.
[http://dx.doi.org/10.1016/j.it.2016.07.002] [PMID: 27480243]
[37]
Tschurtschenthaler M, Adolph TE. The Selective Autophagy Receptor Optineurin in Crohn’s Disease. Front Immunol 2018; 9: 766.
[http://dx.doi.org/10.3389/fimmu.2018.00766] [PMID: 29692785]
[38]
Osawa T, Mizuno Y, Fujita Y, Takatama M, Nakazato Y, Okamoto K. Optineurin in neurodegenerative diseases. Neuropathology 2011; 31(6): 569-74.
[http://dx.doi.org/10.1111/j.1440-1789.2011.01199.x] [PMID: 21284751]
[39]
Lee WS, Kato M, Sugawara E, et al. Protective role of optineurin against joint destruction in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol 2020; 72(9): 1493-504.
[http://dx.doi.org/10.1002/art.41290] [PMID: 32307918]
[40]
Li XA, Everson WV, Smart EJ. Caveolae, lipid rafts, and vascular disease. Trends Cardiovasc Med 2005; 15(3): 92-6.
[http://dx.doi.org/10.1016/j.tcm.2005.04.001] [PMID: 16039968]
[41]
Byrne DP, Dart C, Rigden DJ. Evaluating caveolin interactions: Do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif? PLoS One 2012; 7(9): e44879.
[42]
Ohnuma K, Uchiyama M, Yamochi T, et al. Caveolin-1 triggers T-cell activation via CD26 in association with CARMA1. J Biol Chem 2007; 282(13): 10117-31.
[http://dx.doi.org/10.1074/jbc.M609157200] [PMID: 17287217]
[43]
Hwangbo C, Tae N, Lee S, et al. Syntenin regulates TGF-β1-induced Smad activation and the epithelial-to-mesenchymal transition by inhibiting caveolin-mediated TGF-β type I receptor internalization. Oncogene 2016; 35(3): 389-401.
[http://dx.doi.org/10.1038/onc.2015.100] [PMID: 25893292]
[44]
Nwosu ZC, Ebert MP, Dooley S, Meyer C. Caveolin-1 in the regulation of cell metabolism: A cancer perspective. Mol Cancer 2016; 15(1): 71.
[http://dx.doi.org/10.1186/s12943-016-0558-7] [PMID: 27852311]
[45]
Galdo FD, Sotgia F, de Almeida CJ, et al. Decreased expression of caveolin 1 in patients with systemic sclerosis: Crucial role in the pathogenesis of tissue fibrosis. Arthritis Rheum 2008; 58(9): 2854-65.
[http://dx.doi.org/10.1002/art.23791] [PMID: 18759267]
[46]
Tourkina E, Richard M, Oates J, et al. Caveolin-1 regulates leucocyte behaviour in fibrotic lung disease. Ann Rheum Dis 2010; 69(6): 1220-6.
[http://dx.doi.org/10.1136/ard.2009.117580] [PMID: 20410070]
[47]
André F, Arnedos M, Baras AS, et al. AACR project GENIE: Powering precision medicine through an international consortium. Cancer Discov 2017; 7(8): 818-31.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0151] [PMID: 28572459]
[48]
Mallick A, Taylor SKB, Ranawade A, Gupta BP. Axin family of scaffolding proteins in development: Lessons from C. elegans. J Dev Biol 2019; 7(4): 20.
[http://dx.doi.org/10.3390/jdb7040020] [PMID: 31618970]
[49]
Gudjonsson JE, Johnston A, Stoll SW, et al. Evidence for altered Wnt signaling in psoriatic skin. J Invest Dermatol 2010; 130(7): 1849-59.
[http://dx.doi.org/10.1038/jid.2010.67] [PMID: 20376066]
[50]
Schaeffer HJ, Catling AD, Eblen ST, Collier LS, Krauss A, Weber MJ. MP1: A MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 1998; 281(5383): 1668-71.
[http://dx.doi.org/10.1126/science.281.5383.1668] [PMID: 9733512]
[51]
Wunderlich W, Fialka I, Teis D, et al. A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment. J Cell Biol 2001; 152(4): 765-76.
[http://dx.doi.org/10.1083/jcb.152.4.765] [PMID: 11266467]
[52]
Paunovic V, Harnett MM. Mitogen-activated protein kinases as therapeutic targets for rheumatoid arthritis. Drugs 2013; 73(2): 101-15.
[http://dx.doi.org/10.1007/s40265-013-0014-6] [PMID: 23371304]
[53]
Chuang HC, Tan TH. MAP4K family kinases and DUSP family phosphatases in T-cell signaling and systemic lupus erythematosus. Cells 2019; 8(11): 1433.
[http://dx.doi.org/10.3390/cells8111433] [PMID: 31766293]
[54]
Guo H, Lei H, Zhang BG, Xu ZC, Dong C, Hao YQ. c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 is a critical regulator for arthritis progression by meditating inflammation in mice model. Int Immunopharmacol 2020; 81: 106272.
[http://dx.doi.org/10.1016/j.intimp.2020.106272] [PMID: 32062074]
[55]
Boulton TG, Nye SH, Robbins DJ, et al. ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 1991; 65(4): 663-75.
[http://dx.doi.org/10.1016/0092-8674(91)90098-J] [PMID: 2032290]
[56]
Casar B, Crespo P. ERK signals: Scaffolding scaffolds? Front Cell Dev Biol 2016; 4: 49.
[http://dx.doi.org/10.3389/fcell.2016.00049] [PMID: 27303664]
[57]
Sweeney SE, Firestein GS. Mitogen activated protein kinase inhibitors: Where are we now and where are we going? Ann Rheum Dis 2006; 65(Suppl 3): iii83-8.
[http://dx.doi.org/10.1136/ard.2006.058388] [PMID: 17038480]
[58]
Grewal S, Molina DM, Bardwell L. Mitogen-activated protein kinase (MAPK)-docking sites in MAPK kinases function as tethers that are crucial for MAPK regulation in vivo. Cell Signal 2006; 18(1): 123-34.
[http://dx.doi.org/10.1016/j.cellsig.2005.04.001] [PMID: 15979847]
[59]
Gorelik G, Richardson B. Key role of ERK pathway signaling in lupus. Autoimmunity 2010; 43(1): 17-22.
[http://dx.doi.org/10.3109/08916930903374832] [PMID: 19961364]
[60]
Bloch O, Amit-Vazina M, Yona E, Molad Y, Rapoport MJ. Increased ERK and JNK activation and decreased ERK/JNK ratio are associated with long-term organ damage in patients with systemic lupus erythematosus. Rheumatology (Oxford) 2014; 53(6): 1034-42.
[http://dx.doi.org/10.1093/rheumatology/ket482] [PMID: 24501249]
[61]
de Launay D, van de Sande MGH, van de Sande GPM, Wijbrandts CA, Tak PP, Reedquist KA. Selective involvement of ERK and JNK MAP kinases in the synovial tissue of patients with early arthritis. Ann Rheum Dis 2010; 69 (Suppl. 2): A16-6.
[http://dx.doi.org/10.1136/ard.2010.129593c]
[62]
Chen Y, Leask A, Abraham DJ, et al. Heparan sulfate–dependent ERK activation contributes to the overexpression of fibrotic proteins and enhanced contraction by scleroderma fibroblasts. Arthritis Rheum 2008; 58(2): 577-85.
[http://dx.doi.org/10.1002/art.23146] [PMID: 18240216]
[63]
Burger KL, Davis AL, Isom S, Mishra N, Seals DF. The podosome marker protein Tks5 regulates macrophage invasive behavior. Cytoskeleton (Hoboken) 2011; 68(12): 694-711.
[http://dx.doi.org/10.1002/cm.20545] [PMID: 22021214]
[64]
Lock P, Abram CL, Gibson T, Courtneidge SA. A new method for isolating tyrosine kinase substrates used to identify Fish, an SH3 and PX domain-containing protein, and Src substrate. EMBO J 1998; 17(15): 4346-57.
[http://dx.doi.org/10.1093/emboj/17.15.4346] [PMID: 9687503]
[65]
Shen Y, Wen Z, Li Y, et al. Metabolic control of the scaffold protein TKS5 in tissue-invasive, proinflammatory T cells. Nat Immunol 2017; 18(9): 1025-34.
[http://dx.doi.org/10.1038/ni.3808] [PMID: 28737753]
[66]
Stylli SS, i STT, Verhagen AM, et al. Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation. J Cell Sci 2009; 122(15): 2727-40.
[http://dx.doi.org/10.1242/jcs.046680] [PMID: 19596797]
[67]
Abram CL, Seals DF, Pass I, et al. The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes of Src-transformed cells. J Biol Chem 2003; 278(19): 16844-51.
[http://dx.doi.org/10.1074/jbc.M300267200] [PMID: 12615925]
[68]
Thompson O, Kleino I, Crimaldi L, Gimona M, Saksela K, Winder SJ. Dystroglycan, Tks5 and Src mediated assembly of podosomes in myoblasts. PLoS One 2008; 3(11): e3638.
[http://dx.doi.org/10.1371/journal.pone.0003638] [PMID: 18982058]
[69]
Oikawa T, Itoh T, Takenawa T. Sequential signals toward podosome formation in NIH-src cells. J Cell Biol 2008; 182(1): 157-69.
[http://dx.doi.org/10.1083/jcb.200801042] [PMID: 18606851]
[70]
Costanzo A, Guiet C, Vito P. c-E10 is a caspase-recruiting domain-containing protein that interacts with components of death receptors signaling pathway and activates nuclear factor-kappa B. J Biol Chem 1999; 274(29): 20127-32.
[http://dx.doi.org/10.1074/jbc.274.29.20127] [PMID: 10400625]
[71]
Torres JM, Martinez-Barricarte R, García-Gómez S, et al. Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity. J Clin Invest 2014; 124(12): 5239-48.
[http://dx.doi.org/10.1172/JCI77493] [PMID: 25365219]
[72]
Gehring T, Seeholzer T, Krappmann D. BCL10 – Bridging CARDs to Immune Activation. Front Immunol 2018; 9: 1539.
[http://dx.doi.org/10.3389/fimmu.2018.01539] [PMID: 30022982]
[73]
Yang D, Zhao X, Lin X. Bcl10 is required for the development and suppressive function of Foxp3+ regulatory T cells. Cell Mol Immunol 2021; 18(1): 206-18.
[http://dx.doi.org/10.1038/s41423-019-0297-y] [PMID: 31595055]
[74]
Gaide O, Martinon F, Micheau O, Bonnet D, Thome M, Tschopp J. Carma1, a CARD-containing binding partner of Bcl10, induces Bcl10 phosphorylation and NF-κB activation. FEBS Lett 2001; 496(2-3): 121-7.
[http://dx.doi.org/10.1016/S0014-5793(01)02414-0] [PMID: 11356195]
[75]
Blonska M, Lin X. CARMA1-mediated NF-κB and JNK activation in lymphocytes. Immunol Rev 2009; 228(1): 199-211.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00749.x] [PMID: 19290929]
[76]
Egawa T, Albrecht B, Favier B, et al. Requirement for CARMA1 in antigen receptor-induced NF-κB activation and lymphocyte proliferation. Curr Biol 2003; 13(14): 1252-8.
[http://dx.doi.org/10.1016/S0960-9822(03)00491-3] [PMID: 12867038]
[77]
Wang H, Zhao J, Zhang H, et al. CARD11 blockade suppresses murine collagen-induced arthritis via inhibiting CARD11/Bcl10 assembly and T helper type 17 response. Clin Exp Immunol 2014; 176(2): 238-45.
[http://dx.doi.org/10.1111/cei.12275] [PMID: 24443940]
[78]
De S, Karim F, Kiessu E, et al. Mechanism of dysfunction of human variants of the IRAK4 kinase and a role for its kinase activity in interleukin-1 receptor signaling. J Biol Chem 2018; 293(39): 15208-20.
[http://dx.doi.org/10.1074/jbc.RA118.003831] [PMID: 30115681]
[79]
Cao Z, Henzel WJ, Gao X. IRAK: A kinase associated with the interleukin-1 receptor. Science 1996; 271(5252): 1128-31.
[http://dx.doi.org/10.1126/science.271.5252.1128] [PMID: 8599092]
[80]
Chaudhary D, Robinson S, Romero DL. Recent advances in the discovery of small molecule inhibitors of interleukin-1 receptor-associated kinase 4 (IRAK4) as a therapeutic target for inflammation and oncology disorders. J Med Chem 2015; 58(1): 96-110.
[http://dx.doi.org/10.1021/jm5016044] [PMID: 25479567]
[81]
Wiese MD, Manning-Bennett AT, Abuhelwa AY. Investigational IRAK-4 inhibitors for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 2020; 29(5): 475-82.
[http://dx.doi.org/10.1080/13543784.2020.1752660] [PMID: 32255710]
[82]
Ikenouchi J, Umeda M. FRMD4A regulates epithelial polarity by connecting Arf6 activation with the PAR complex. Proc Natl Acad Sci USA 2010; 107(2): 748-53.
[http://dx.doi.org/10.1073/pnas.0908423107] [PMID: 20080746]
[83]
Márquez A, Kerick M, Zhernakova A, et al. Meta-analysis of Immunochip data of four autoimmune diseases reveals novel single-disease and cross-phenotype associations. Genome Med 2018; 10(1): 97.
[http://dx.doi.org/10.1186/s13073-018-0604-8] [PMID: 30572963]
[84]
Ritossa F. Experimental activation of specific loci in polytene chromosomes of Drosophila. Exp Cell Res 1964; 35(3): 601-7.
[http://dx.doi.org/10.1016/0014-4827(64)90147-8] [PMID: 14208747]
[85]
Grammatikakis N, Vultur A, Ramana CV, et al. The role of Hsp90N, a new member of the Hsp90 family, in signal transduction and neoplastic transformation. J Biol Chem 2002; 277(10): 8312-20.
[http://dx.doi.org/10.1074/jbc.M109200200] [PMID: 11751906]
[86]
Tamura Y, Yoneda A, Takei N, Sawada K. Spatiotemporal Regulation of Hsp90–Ligand Complex Leads to Immune Activation. Front Immunol 2016; 7: 201.
[http://dx.doi.org/10.3389/fimmu.2016.00201] [PMID: 27252703]
[87]
Cervera R, Khamashta MA, Font J, et al. Morbidity and mortality in systemic lupus erythematosus during a 10-year period: A comparison of early and late manifestations in a cohort of 1,000 patients. Medicine (Baltimore) 2003; 82(5): 299-308.
[http://dx.doi.org/10.1097/01.md.0000091181.93122.55] [PMID: 14530779]
[88]
Ripley BJM, Isenberg DA, Latchman DS. Elevated levels of the 90 kDa heat shock protein (hsp90) in SLE correlate with levels of IL-6 and autoantibodies to hsp90. J Autoimmun 2001; 17(4): 341-6.
[http://dx.doi.org/10.1006/jaut.2001.0549] [PMID: 11771959]
[89]
Han JM, Kwon NH, Lee JY, Jeong SJ, Jung HJ, Kim HR, et al. Identification of gp96 as a novel target for treatment of autoimmune disease in mice. PLoS One 2010; 5(5): e9792.
[http://dx.doi.org/10.1371/journal.pone.0009792]
[90]
Dutta R, Inouye M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 2000; 25(1): 24-8.
[http://dx.doi.org/10.1016/S0968-0004(99)01503-0] [PMID: 10637609]
[91]
Shukla HD, Pitha PM. Role of hsp90 in systemic lupus erythematosus and its clinical relevance. Autoimmune Dis 2012; 2012: 1-6.
[http://dx.doi.org/10.1155/2012/728605] [PMID: 23091704]
[92]
Mansilla MJ, Montalban X, Espejo C. Heat shock protein 70: Roles in multiple sclerosis. Mol Med 2012; 18(6): 1018-28.
[http://dx.doi.org/10.2119/molmed.2012.00119] [PMID: 22669475]
[93]
Liu A, Ferretti C, Shi FD, Cohen IR, Quintana FJ, La Cava A. DNA Vaccination With Hsp70 Protects Against Systemic Lupus Erythematosus in ( NZB × NZW )F1 Mice. Arthritis Rheumatol 2020; 72(6): 997-1002.
[http://dx.doi.org/10.1002/art.41202] [PMID: 31943822]
[94]
Birk OS, Douek DC, Elias D, et al. A role of Hsp60 in autoimmune diabetes: Analysis in a transgenic model. Proc Natl Acad Sci USA 1996; 93(3): 1032-7.
[http://dx.doi.org/10.1073/pnas.93.3.1032] [PMID: 8577709]
[95]
Wax MB, Tezel G, Yang J, et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci 2008; 28(46): 12085-96.
[http://dx.doi.org/10.1523/JNEUROSCI.3200-08.2008] [PMID: 19005073]
[96]
Marziali F, Dizanzo MP, Cavatorta AL, Gardiol D. Differential expression of DLG1 as a common trait in different human diseases: An encouraging issue in molecular pathology. Biol Chem 2019; 400(6): 699-710.
[http://dx.doi.org/10.1515/hsz-2018-0350] [PMID: 30517074]
[97]
Azim AC, Knoll JHM, Marfatia SM, Peel DJ, Bryant PJ, Chishti AH. DLG1: Chromosome location of the closest human homologue of the Drosophila discs large tumor suppressor gene. Genomics 1995; 30(3): 613-6.
[http://dx.doi.org/10.1006/geno.1995.1286] [PMID: 8825652]
[98]
Zanin-Zhorov A, Lin J, Scher J, et al. Scaffold protein Disc large homolog 1 is required for T-cell receptor-induced activation of regulatory T-cell function. Proc Natl Acad Sci USA 2012; 109(5): 1625-30.
[http://dx.doi.org/10.1073/pnas.1110120109] [PMID: 22307621]
[99]
Nussinov R, Ma B, Tsai CJ. A broad view of scaffolding suggests that scaffolding proteins can actively control regulation and signaling of multienzyme complexes through allostery. Biochim Biophys Acta Proteins Proteomics 2013; 1834(5): 820-9.
[http://dx.doi.org/10.1016/j.bbapap.2012.12.014] [PMID: 23291467]
[100]
Edilova MI, Abdul-Sater AA, Watts TH. TRAF1 Signaling in Human Health and Disease. Front Immunol 2018; 9: 2969.
[http://dx.doi.org/10.3389/fimmu.2018.02969] [PMID: 30619326]
[101]
Häcker H, Tseng PH, Karin M. Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol 2011; 11(7): 457-68.
[http://dx.doi.org/10.1038/nri2998] [PMID: 21660053]
[102]
Tsitsikov EN, Laouini D, Dunn IF, et al. TRAF1 is a negative regulator of TNF signaling. enhanced TNF signaling in TRAF1-deficient mice. Immunity 2001; 15(4): 647-57.
[http://dx.doi.org/10.1016/S1074-7613(01)00207-2] [PMID: 11672546]
[103]
Drexler SK, Kong PL, Wales J, Foxwell BM. Cell signalling in macrophages, the principal innate immune effector cells of rheumatoid arthritis. Arthritis Res Ther 2008; 10(5): 216.
[http://dx.doi.org/10.1186/ar2481] [PMID: 18947379]
[104]
Xie P, Kraus ZJ, Stunz LL, Liu Y, Bishop GA. TNF receptor-associated factor 3 is required for T cell-mediated immunity and TCR/CD28 signaling. J Immunol 2011; 186(1): 143-55.
[http://dx.doi.org/10.4049/jimmunol.1000290] [PMID: 21084666]
[105]
Hostager BS, Catlett IM, Bishop GA. Recruitment of CD40 and tumor necrosis factor receptor-associated factors 2 and 3 to membrane microdomains during CD40 signaling. J Biol Chem 2000; 275(20): 15392-8.
[http://dx.doi.org/10.1074/jbc.M909520199] [PMID: 10748139]
[106]
Plenge RM, Seielstad M, Padyukov L, et al. TRAF1-C5 as a risk locus for rheumatoid arthritis--a genomewide study. N Engl J Med 2007; 357(12): 1199-209.
[http://dx.doi.org/10.1056/NEJMoa073491] [PMID: 17804836]
[107]
Han TU, Bang SY, Kang C, Bae SC. TRAF1 polymorphisms associated with rheumatoid arthritis susceptibility in Asians and in Caucasians. Arthritis Rheum 2009; 60(9): 2577-84.
[http://dx.doi.org/10.1002/art.24759] [PMID: 19714643]
[108]
Vakkalanka RK, Woo C, Kirou KA, Koshy M, Berger D, Crow MK. Elevated levels and functional capacity of soluble CD40 ligand in systemic lupus erythematosus sera. Arthritis Rheum 1999; 42(5): 871-81.
[http://dx.doi.org/10.1002/1529-0131(199905)42:5<871::AID-ANR5>3.0.CO;2-J] [PMID: 10323442]
[109]
Goules A, Tzioufas AG, Manousakis MN, Kirou KA, Crow MK, Routsias JG. Elevated levels of soluble CD40 ligand (sCD40L) in serum of patients with systemic autoimmune diseases. J Autoimmun 2006; 26(3): 165-71.
[http://dx.doi.org/10.1016/j.jaut.2006.02.002] [PMID: 16621447]
[110]
Kato K, Santana-Sahagún E, Rassenti LZ, et al. The soluble CD40 ligand sCD154 in systemic lupus erythematosus. J Clin Invest 1999; 104(7): 947-55.
[http://dx.doi.org/10.1172/JCI7014] [PMID: 10510335]
[111]
Pauls SD, Marshall AJ. Regulation of immune cell signaling by SHIP1: A phosphatase, scaffold protein, and potential therapeutic target. Eur J Immunol 2017; 47(6): 932-45.
[http://dx.doi.org/10.1002/eji.201646795] [PMID: 28480512]
[112]
Lioubin MN, Myles GM, Carlberg K, Bowtell D, Rohrschneider LR. Shc, Grb2, Sos1, and a 150-kilodalton tyrosine-phosphorylated protein form complexes with Fms in hematopoietic cells. Mol Cell Biol 1994; 14(9): 5682-91.
[http://dx.doi.org/10.1128/MCB.14.9.5682] [PMID: 7520523]
[113]
Helgason CD, Damen JE, Rosten P, et al. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev 1998; 12(11): 1610-20.
[http://dx.doi.org/10.1101/gad.12.11.1610] [PMID: 9620849]
[114]
Luo J-M, Yoshida H, Komura S, et al. Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 2003; 17(1): 1-8.
[http://dx.doi.org/10.1038/sj.leu.2402725] [PMID: 12529653]
[115]
Rey-Ladino JA, Huber M, Liu L, Damen JE, Krystal G, Takei F. The SH2-containing inositol-5′-phosphatase enhances LFA-1-mediated cell adhesion and defines two signaling pathways for LFA-1 activation. J Immunol 1999; 162(10): 5792-9.
[http://dx.doi.org/10.4049/jimmunol.162.10.5792] [PMID: 10229812]
[116]
Sattler M, Verma S, Byrne CH, et al. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol Cell Biol 1999; 19(11): 7473-80.
[http://dx.doi.org/10.1128/MCB.19.11.7473] [PMID: 10523635]
[117]
Mancini A, Koch A, Wilms R, Tamura T. The SH2-containing inositol 5-phosphatase (SHIP)-1 is implicated in the control of cell-cell junction and induces dissociation and dispersion of MDCK cells. Oncogene 2002; 21(10): 1477-84.
[http://dx.doi.org/10.1038/sj.onc.1205224] [PMID: 11896575]
[118]
Wang JW, Howson JM, Ghansah T, et al. Influence of SHIP on the NK repertoire and allogeneic bone marrow transplantation. Science 2002; 295(5562): 2094-7.
[http://dx.doi.org/10.1126/science.1068438] [PMID: 11896280]
[119]
Liu Q, Oliveira-Dos-Santos AJ, Mariathasan S, et al. The inositol polyphosphate 5-phosphatase ship is a crucial negative regulator of B cell antigen receptor signaling. J Exp Med 1998; 188(7): 1333-42.
[http://dx.doi.org/10.1084/jem.188.7.1333] [PMID: 9763612]
[120]
Liu Q, Sasaki T, Kozieradzki I, et al. SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev 1999; 13(7): 786-91.
[http://dx.doi.org/10.1101/gad.13.7.786] [PMID: 10197978]
[121]
Huber M, Helgason CD, Scheid MP, Duronio V, Humphries RK, Krystal G. Targeted disruption of SHIP leads to Steel factor-induced degranulation of mast cells. EMBO J 1998; 17(24): 7311-9.
[http://dx.doi.org/10.1093/emboj/17.24.7311] [PMID: 9857188]
[122]
Takeshita S, Namba N, Zhao JJ, et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med 2002; 8(9): 943-9.
[http://dx.doi.org/10.1038/nm752] [PMID: 12161749]
[123]
Taher TE, Parikh K, Flores-Borja F, et al. Protein phosphorylation and kinome profiling reveal altered regulation of multiple signaling pathways in B lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum 2010; 62(8): 2412-23.
[http://dx.doi.org/10.1002/art.27505] [PMID: 20506108]
[124]
Samuelson EM, Laird RM, Papillion AM, Tatum AH, Princiotta MF, Hayes SM. Reduced B lymphoid kinase (Blk) expression enhances proinflammatory cytokine production and induces nephrosis in C57BL/6-lpr/lpr mice. PLoS One 2014; 9(3): e92054.
[125]
Texido G, Su I, Mecklenbräuker I, et al. The B-cell-specific Src-family kinase Blk is dispensable for B-cell development and activation. Mol Cell Biol 2000; 20(4): 1227-33.
[http://dx.doi.org/10.1128/MCB.20.4.1227-1233.2000] [PMID: 10648608]
[126]
Bernal-Quirós M, Wu YY, Alarcón-Riquelme ME, Castillejo-López C. BANK1 and BLK act through phospholipase C gamma 2 in B-cell signaling. PLoS One 2013; 8(3): e59842.
[127]
Jiang SH, Athanasopoulos V, Ellyard JI, et al. Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nat Commun 2019; 10(1): 2201.
[http://dx.doi.org/10.1038/s41467-019-10242-9] [PMID: 31101814]
[128]
Simpfendorfer KR, Armstead BE, Shih A, et al. Autoimmune disease-associated haplotypes of BLK exhibit lowered thresholds for B cell activation and expansion of Ig class-switched B cells. Arthritis Rheumatol 2015; 67(11): 2866-76.
[http://dx.doi.org/10.1002/art.39301] [PMID: 26246128]
[129]
Wu YY, Georg I, Díaz-Barreiro A, Varela N, Lauwerys B, Kumar R. Concordance of increased B1 cell subset and lupus phenotypes in mice and humans is dependent on BLK expression levels. J Immunol 2015; 194(12): 5692-702.
[130]
Reeves WH, Narain S, Satoh M. Henry Kunkel, Stephanie Smith, clinical immunology, and split genes. Lupus 2003; 12(3): 213-7.
[http://dx.doi.org/10.1191/0961203303lu360xx] [PMID: 12708785]
[131]
Scofield DG, Lynch M. Evolutionary diversification of the Sm family of RNA-associated proteins. Mol Biol Evol 2008; 25(11): 2255-67.
[http://dx.doi.org/10.1093/molbev/msn175] [PMID: 18687770]
[132]
He W, Parker R. Functions of Lsm proteins in mRNA degradation and splicing. Curr Opin Cell Biol 2000; 12(3): 346-50.
[http://dx.doi.org/10.1016/S0955-0674(00)00098-3] [PMID: 10801455]
[133]
Petri M, Orbai AM, Alarcón GS, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 2012; 64(8): 2677-86.
[http://dx.doi.org/10.1002/art.34473] [PMID: 22553077]
[134]
Talken BL, Schäfermeyer KR, Bailey CW, Lee DR, Hoffman RW. T cell epitope mapping of the Smith antigen reveals that highly conserved Smith antigen motifs are the dominant target of T cell immunity in systemic lupus erythematosus. J Immunol 2001; 167(1): 562-8.
[http://dx.doi.org/10.4049/jimmunol.167.1.562] [PMID: 11418695]
[135]
Huoh YS, Ferguson KM. The pellino e3 ubiquitin ligases recognize specific phosphothreonine motifs and have distinct substrate specificities. Biochemistry 2014; 53(30): 4946-55.
[http://dx.doi.org/10.1021/bi5005156] [PMID: 25027698]
[136]
Großhans J, Schnorrer F, Nüsslein-Volhard C. Oligomerisation of Tube and Pelle leads to nuclear localisation of Dorsal. Mech Dev 1999; 81(1-2): 127-38.
[http://dx.doi.org/10.1016/S0925-4773(98)00236-6] [PMID: 10330490]
[137]
Schauvliege R, Janssens S, Beyaert R. Pellino proteins are more than scaffold proteins in TLR/IL-1R signalling: A role as novel RING E3-ubiquitin-ligases. FEBS Lett 2006; 580(19): 4697-702.
[http://dx.doi.org/10.1016/j.febslet.2006.07.046] [PMID: 16884718]
[138]
Jiang Z, Johnson HJ, Nie H, Qin J, Bird TA, Li X. Pellino 1 is required for interleukin-1 (IL-1)-mediated signaling through its interaction with the IL-1 receptor-associated kinase 4 (IRAK4)-IRAK-tumor necrosis factor receptor-associated factor 6 (TRAF6) complex. J Biol Chem 2003; 278(13): 10952-6.
[http://dx.doi.org/10.1074/jbc.M212112200] [PMID: 12496252]
[139]
Yang S, Wang B, Humphries F, et al. Pellino3 ubiquitinates RIP2 and mediates Nod2-induced signaling and protective effects in colitis. Nat Immunol 2013; 14(9): 927-36.
[http://dx.doi.org/10.1038/ni.2669] [PMID: 23892723]
[140]
Moynagh PN. The roles of Pellino E3 ubiquitin ligases in immunity. Nat Rev Immunol 2014; 14(2): 122-31.
[http://dx.doi.org/10.1038/nri3599] [PMID: 24445667]
[141]
Dettmer U, Kuhn PH, Abou-Ajram C, et al. Transmembrane protein 147 (TMEM147) is a novel component of the Nicalin-NOMO protein complex. J Biol Chem 2010; 285(34): 26174-81.
[http://dx.doi.org/10.1074/jbc.M110.132548] [PMID: 20538592]
[142]
McGilvray PT, Anghel SA, Sundaram A, et al. An ER translocon for multi-pass membrane protein biogenesis. eLife 2020; 9: e56889.
[http://dx.doi.org/10.7554/eLife.56889] [PMID: 32820719]
[143]
Ota M, Tanaka Y, Nakagawa I, et al. Role of chondrocytes in the development of rheumatoid arthritis via transmembrane protein 147–mediated NF-κB activation. Arthritis Rheumatol 2020; 72(6): 931-42.
[http://dx.doi.org/10.1002/art.41182] [PMID: 31785076]
[144]
Meng J, Jiang JJ, Atsumi T, Bando H, Okuyama Y, Sabharwal L. Breakpoint cluster region–mediated inflammation is dependent on casein kinase II. J Immunol 2017; 198(2): 971.
[145]
Xiao B, Tu JC, Petralia RS, et al. Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 1998; 21(4): 707-16.
[http://dx.doi.org/10.1016/S0896-6273(00)80588-7] [PMID: 9808458]
[146]
Shiraishi-Yamaguchi Y, Furuichi T. The Homer family proteins. Genome Biol 2007; 8(2): 206.
[http://dx.doi.org/10.1186/gb-2007-8-2-206] [PMID: 17316461]
[147]
Brakeman PR, Lanahan AA, O’Brien R, et al. Homer: A protein that selectively binds metabotropic glutamate receptors. Nature 1997; 386(6622): 284-8.
[http://dx.doi.org/10.1038/386284a0] [PMID: 9069287]
[148]
Höftberger R, Sabater L, Ortega A, Dalmau J, Graus F. Patient with homer-3 antibodies and cerebellitis. JAMA Neurol 2013; 70(4): 506-9.
[http://dx.doi.org/10.1001/jamaneurol.2013.1955] [PMID: 23400636]
[149]
Foa L, Gasperini R. Developmental roles for Homer: More than just a pretty scaffold. J Neurochem 2009; 108(1): 1-10.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05726.x] [PMID: 19046353]
[150]
Ho AW, Garg AV, Monin L, Simpson-Abelson MR, Kinner L, Gaffen SL. The anaphase-promoting complex protein 5 (AnapC5) associates with A20 and inhibits IL-17-mediated signal transduction. PLoS One 2013; 8(7): e70168.
[151]
Zeng T, Tan L. 14-3-3η protein: A promising biomarker for rheumatoid arthritis. Biomarkers Med 2018; 12(8): 917-25.
[http://dx.doi.org/10.2217/bmm-2017-0385] [PMID: 30022679]
[152]
Hammam N, Salah S, Kholef EF, Moussa EM, Marotta A. 14-3-3η Protein in serum and synovial fluid correlates with radiographic damage and progression in a longitudinal evaluation of patients with established rheumatoid arthritis. Mod Rheumatol 2020; 30(4): 664-70.
[http://dx.doi.org/10.1080/14397595.2019.1637575] [PMID: 31242798]
[153]
Kadiri M, Charbonneau M, Lalanne C, et al. 14-3-3η Promotes Invadosome Formation via the FOXO3–Snail Axis in Rheumatoid Arthritis Fibroblast-like Synoviocytes. Int J Mol Sci 2021; 23(1): 123.
[http://dx.doi.org/10.3390/ijms23010123] [PMID: 35008549]
[154]
Trimova G, Yamagata K, Iwata S, et al. Tumour necrosis factor alpha promotes secretion of 14-3-3η by inducing necroptosis in macrophages. Arthritis Res Ther 2020; 22(1): 24.
[http://dx.doi.org/10.1186/s13075-020-2110-9] [PMID: 32051018]
[155]
McGowan J, Peter C, Kim J, et al. 14-3-3ζ–TRAF5 axis governs interleukin-17A signaling. Proc Natl Acad Sci USA 2020; 117(40): 25008-17.
[http://dx.doi.org/10.1073/pnas.2008214117] [PMID: 32968020]
[156]
McGowan J, Peter C, Chattopadhyay S, Chakravarti R. 14-3-3ζ-A novel immunogen promotes inflammatory cytokine production. Front Immunol 2019; 10: 1553.
[http://dx.doi.org/10.3389/fimmu.2019.01553] [PMID: 31396202]
[157]
Chakravarti R, Gupta K, Swain M, et al. 14-3-3 in thoracic aortic aneurysms: identification of a novel autoantigen in large vessel vasculitis. Arthritis Rheumatol 2015; 67(7): 1913-21.
[http://dx.doi.org/10.1002/art.39130] [PMID: 25917817]
[158]
Gebauer M, Skerra A. Engineered protein scaffolds as next-generation therapeutics. Annu Rev Pharmacol Toxicol 2020; 60(1): 391-415.
[http://dx.doi.org/10.1146/annurev-pharmtox-010818-021118] [PMID: 31914898]
[159]
Vazquez-Lombardi R, Phan TG, Zimmermann C, Lowe D, Jermutus L, Christ D. Challenges and opportunities for non-antibody scaffold drugs. Drug Discov Today 2015; 20(10): 1271-83.
[http://dx.doi.org/10.1016/j.drudis.2015.09.004] [PMID: 26360055]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy