Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

Terpenoids in Diabetic Nephropathy: Advances and Therapeutic Opportunities

Author(s): Manish Kaushik, Aditi Kaushik, Jasmine Chaudhary and Akash Jain*

Volume 24, Issue 1, 2024

Published on: 05 October, 2023

Page: [13 - 30] Pages: 18

DOI: 10.2174/1871530323666230901164219

Price: $65

Abstract

Diabetic nephropathy (DN) is the foremost ailment resulting in end-stage renal damage. Chronic hyperglycaemia and hyperlipidaemia are the foremost reason for disease progression. The disease is characterized by the severity of albuminuria and cardiovascular disorders. Approximately 20 to 40% of the global prevalence of DN is mostly reported to occur in individuals with diabetes, and nearly 28% of DN occurs in individuals with other renal disorders. The pathological mechanism is very complex, involving innumerable targets and leading to multiple pharmacological effects. Thus, the scientific community is forced to work in search of safe and potent therapeutics that can tackle the complex pathology of DN effectively. The secondary plant metabolites categorized as terpenoids gained attention as potential therapeutics contrary to others for the management of diabetic nephropathy and other associated syndromes by their strong antioxidant activity and inhibition of advanced glycation and its associated products. This review focused on herbal therapeutics for the management of diabetic nephropathy. Moreover, different types of terpenoids, their biological sources, and proposed mechanisms of action are explored for the development of a novel pharmacophore for diabetic nephropathy.

Graphical Abstract

[1]
Iyrne, C.; Caskey, F.; Castledine, C. UK renal registry: 20th annual report of the renal association. Nephron, 2018, 139(Suppl. 1), 24-35.
[2]
Koye, D.N.; Shaw, J.E.; Reid, C.M.; Atkins, R.C.; Reutens, A.T.; Magliano, D.J. Incidence of chronic kidney disease among people with diabetes: A systematic review of observational studies. Diabet. Med., 2017, 34(7), 887-901.
[http://dx.doi.org/10.1111/dme.13324] [PMID: 28164387]
[3]
Andrésdóttir, G.; Jensen, M.L.; Carstensen, B.; Parving, H.H.; Hovind, P.; Hansen, T.W.; Rossing, P. Improved prognosis of diabetic nephropathy in type 1 diabetes. Kidney Int., 2015, 87(2), 417-426.
[http://dx.doi.org/10.1038/ki.2014.206] [PMID: 24918158]
[4]
Sofie Astrup, A.; Tarnow, L.; Rossing, P.; Pietraszek, L.; Riis Hansen, P.; Parving, H.H. Improved prognosis in type 1 diabetic patients with nephropathy: A prospective follow-up study. Kidney Int., 2005, 68(3), 1250-1257.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00521.x] [PMID: 16105058]
[5]
Perkins, B.A.; Ficociello, L.H.; Silva, K.H.; Finkelstein, D.M.; Warram, J.H.; Krolewski, A.S. Regression of microalbuminuria in type 1 diabetes. N. Engl. J. Med., 2003, 348(23), 2285-2293.
[http://dx.doi.org/10.1056/NEJMoa021835] [PMID: 12788992]
[6]
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl., 2013, 3, 1-150.
[7]
Parving, H.H.; Hommel, E.; Mathiesen, E.; Skøtt, P.; Edsberg, B.; Bahnsen, M.; Lauritzen, M.; Hougaard, P.; Lauritzen, E. Prevalence of microalbuminuria, arterial hypertension, retinopathy, and neuropathy in patients with insulin dependent diabetes. BMJ, 1988, 296(6616), 156-160.
[http://dx.doi.org/10.1136/bmj.296.6616.156] [PMID: 3122980]
[8]
Rossing, P.; Hougaard, P.; Parving, H.H. Progression of microalbuminuria in type 1 diabetes: Ten-year prospective observational study. Kidney Int., 2005, 68(4), 1446-1450.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00556.x] [PMID: 16164620]
[9]
Saeedi, P.; Petersohn, I.; Salpea, P. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res. Clin. Pract., 2019. 157, 107843
[10]
Valencia, W.M.; Florez, H. How to prevent the microvascular complications of type 2 diabetes beyond glucose control. BMJ, 2017, 356, i6505.
[http://dx.doi.org/10.1136/bmj.i6505] [PMID: 28096078]
[11]
Burrows, N.R.; Hora, I.; Geiss, L.S.; Gregg, E.W.; Albright, A. Incidence of end-stage renal disease attributed to diabetes among persons with diagnosed diabetes-the United States and Puerto Rico, 2000-2014. MMWR Morb. Mortal. Wkly. Rep., 2017, 66(43), 1165-1170.
[http://dx.doi.org/10.15585/mmwr.mm6643a2] [PMID: 29095800]
[12]
Zhang, L.; Long, J.; Jiang, W.; Shi, Y.; He, X.; Zhou, Z.; Li, Y.; Yeung, R.O.; Wang, J.; Matsushita, K.; Coresh, J.; Zhao, M.H.; Wang, H. Trends in chronic kidney disease in China. N. Engl. J. Med., 2016, 375(9), 905-906.
[http://dx.doi.org/10.1056/NEJMc1602469] [PMID: 27579659]
[13]
Xue, R.; Gui, D.; Zheng, L.; Zhai, R.; Wang, F.; Wang, N. Mechanistic insight and management of diabetic nephropathy: Recent progress and future perspective. J. Diabetes Res., 2017, 2017, 1-7.
[http://dx.doi.org/10.1155/2017/1839809] [PMID: 28386567]
[14]
Gheith, O.; Farouk, N.; Nampoory, N.; Halim, M.A.; Al-Otaibi, T. Diabetic kidney disease: World wide difference of prevalence and risk factors. J. Nephropharmacol., 2015, 5(1), 49-56.
[PMID: 28197499]
[15]
Stenvinkel, P. Chronic kidney disease: A public health priority and harbinger of premature cardiovascular disease. J. Intern. Med., 2010, 268(5), 456-467.
[http://dx.doi.org/10.1111/j.1365-2796.2010.02269.x] [PMID: 20809922]
[16]
Susztak, K.; Böttinger, E.P. Diabetic nephropathy. J. Am. Soc. Nephrol., 2006, 17(2), 361-367.
[http://dx.doi.org/10.1681/ASN.2005101109] [PMID: 16407421]
[17]
Fioretto, P.; Steffes, M.W.; Mauer, M. Glomerular structure in nonproteinuric IDDM patients with various levels of albuminuria. Diabetes, 1994, 43(11), 1358-1364.
[http://dx.doi.org/10.2337/diab.43.11.1358] [PMID: 7926312]
[18]
Caramori, M.L.; Kim, Y.; Huang, C.; Fish, A.J.; Rich, S.S.; Miller, M.E.; Russell, G.; Mauer, M. Cellular basis of diabetic nephropathy: 1. Study design and renal structural-functional relationships in patients with long-standing type 1 diabetes. Diabetes, 2002, 51(2), 506-513.
[http://dx.doi.org/10.2337/diabetes.51.2.506] [PMID: 11812762]
[19]
Parving, H.H.; Lewis, J.B.; Ravid, M.; Remuzzi, G.; Hunsicker, L.G.; Demand, I. Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: A global perspective. Kidney Int., 2006, 69(11), 2057-2063.
[http://dx.doi.org/10.1038/sj.ki.5000377] [PMID: 16612330]
[20]
Family Investigation of Nephropathy and Diabetes Research Group. Genetic determinants of diabetic nephropathy: The Family Investigation of Nephropathy and Diabetes (FIND). J. Am. Soc. Nephrol., 2003, 14(7(S2)), S202-S204.
[PMID: 12819329]
[21]
Ali, M.K.; Bullard, K.M.; Saydah, S.; Imperatore, G.; Gregg, E.W. Cardiovascular and renal burdens of prediabetes in the USA: Analysis of data from serial cross-sectional surveys, 1988–2014. Lancet Diabetes Endocrinol., 2018, 6(5), 392-403.
[http://dx.doi.org/10.1016/S2213-8587(18)30027-5] [PMID: 29500121]
[22]
He, F.; Xia, X.; Wu, X.F.; Yu, X.Q.; Huang, F.X. Diabetic retinopathy in predicting diabetic nephropathy in patients with type 2 diabetes and renal disease: A meta-analysis. Diabetologia, 2013, 56(3), 457-466.
[http://dx.doi.org/10.1007/s00125-012-2796-6] [PMID: 23232641]
[23]
Parving, H.H.; Gall, M.A.; Skøtt, P.; Jørgensen, H.E.; Løkkegaard, H.; Jørgensen, F.; Nielsen, B.; Larsen, S. Prevalence and causes of albuminuria in non-insulin-dependent diabetic patients. Kidney Int., 1992, 41(4), 758-762.
[http://dx.doi.org/10.1038/ki.1992.118] [PMID: 1513098]
[24]
Mazzucco, G.; Bertani, T.; Fortunato, M.; Bernardi, M.; Leutner, M.; Boldorini, R.; Monga, G. Different patterns of renal damage in type 2 diabetes mellitus: A multicentric study on 393 biopsies. Am. J. Kidney Dis., 2002, 39(4), 713-720.
[http://dx.doi.org/10.1053/ajkd.2002.31988] [PMID: 11920336]
[25]
Zhou, J.; Chen, X.; Xie, Y.; Li, J.; Yamanaka, N.; Tong, X. A differential diagnostic model of diabetic nephropathy and non-diabetic renal diseases. Nephrol. Dial. Transplant., 2008, 23(6), 1940-1945.
[http://dx.doi.org/10.1093/ndt/gfm897] [PMID: 18156459]
[26]
Gambara, V.; Mecca, G.; Remuzzi, G.; Bertani, T. Heterogeneous nature of renal lesions in type II diabetes. J. Am. Soc. Nephrol., 1993, 3(8), 1458-1466.
[http://dx.doi.org/10.1681/ASN.V381458] [PMID: 8490117]
[27]
Fioretto, P.; Mauer, M.; Brocco, E.; Velussi, M.; Frigato, F.; Muollo, B.; Sambataro, M.; Abaterusso, C.; Baggio, B.; Crepaldi, G.; Nosadini, R. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia, 1996, 39(12), 1569-1576.
[http://dx.doi.org/10.1007/s001250050616] [PMID: 8960844]
[28]
Delrue, C.; Speeckaert, R.; Delanghe, J.R.; Speeckaert, M.M. The role of vitamin D in diabetic nephropathy: A translational approach. Int. J. Mol. Sci., 2022, 23(2), 807.
[http://dx.doi.org/10.3390/ijms23020807] [PMID: 35054991]
[29]
Lee, Y.J.; Cho, S.; Kim, S.R. Effect of alcohol consumption on kidney function: Population-based cohort study. Sci. Rep., 2021, 11(1), 2381.
[http://dx.doi.org/10.1038/s41598-021-81777-5] [PMID: 33504820]
[30]
Tervaert, T.W.C.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; Joh, K.; Noël, L.H.; Radhakrishnan, J.; Seshan, S.V.; Bajema, I.M.; Bruijn, J.A. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol., 2010, 21(4), 556-563.
[http://dx.doi.org/10.1681/ASN.2010010010] [PMID: 20167701]
[31]
Fox, C.S.; Matsushita, K.; Woodward, M.; Bilo, H.J.G.; Chalmers, J.; Heerspink, H.J.L.; Lee, B.J.; Perkins, R.M.; Rossing, P.; Sairenchi, T.; Tonelli, M.; Vassalotti, J.A.; Yamagishi, K.; Coresh, J.; de Jong, P.E.; Wen, C.P.; Nelson, R.G. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: A meta-analysis. Lancet, 2012, 380(9854), 1662-1673.
[http://dx.doi.org/10.1016/S0140-6736(12)61350-6] [PMID: 23013602]
[32]
Groop, P.H.; Thomas, M.C.; Moran, J.L.; Wadèn, J.; Thorn, L.M.; Mäkinen, V.P.; Rosengård-Bärlund, M.; Saraheimo, M.; Hietala, K.; Heikkilä, O.; Forsblom, C. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes, 2009, 58(7), 1651-1658.
[http://dx.doi.org/10.2337/db08-1543] [PMID: 19401416]
[33]
Mogensen, C.E.; Christensen, C.K. Predicting diabetic nephropathy in insulin-dependent patients. N. Engl. J. Med., 1984, 311(2), 89-93.
[http://dx.doi.org/10.1056/NEJM198407123110204] [PMID: 6738599]
[34]
Parving, H.H.; Oxenbøll, B.; Svendsen, P.A.; Christiansen, J.S.; Andersen, A.R. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Eur. J. Endocrinol., 1982, 100(4), 550-555.
[http://dx.doi.org/10.1530/acta.0.1000550] [PMID: 6812342]
[35]
Viberti, G.C.; Jarrett, R.J.; Mahmud, U.; Hill, R.D.; Argyropoulos, A.; Keen, H. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet, 1982, 319(8287), 1430-1432.
[http://dx.doi.org/10.1016/S0140-6736(82)92450-3] [PMID: 6123720]
[36]
Hovind, P.; Tarnow, L.; Rossing, P.; Graae, M.; Torp, I.; Binder, C.; Parving, H-H.; Parving, H.H. Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: Inception cohort study. BMJ, 2004, 328(7448), 1105.
[http://dx.doi.org/10.1136/bmj.38070.450891.FE] [PMID: 15096438]
[37]
Harrower, A.D.B. Comparison of efficacy, secondary failure rate, and complications of sulfonylureas. J. Diabetes Complications, 1994, 8(4), 201-203.
[http://dx.doi.org/10.1016/1056-8727(94)90044-2] [PMID: 7833494]
[38]
Taylor, R.; Agius, L. The biochemistry of diabetes. Biochem. J., 1988, 250(3), 625-640.
[http://dx.doi.org/10.1042/bj2500625] [PMID: 3291853]
[39]
Lindholm, L.H.; Ibsen, H.; Dahlöf, B.; Devereux, R.B.; Beevers, G.; de Faire, U.; Fyhrquist, F.; Julius, S.; Kjeldsen, S.E.; Kristiansson, K.; Lederballe-Pedersen, O.; Nieminen, M.S.; Omvik, P.; Oparil, S.; Wedel, H.; Aurup, P.; Edelman, J.; Snapinn, S. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet, 2002, 359(9311), 1004-1010.
[http://dx.doi.org/10.1016/S0140-6736(02)08090-X] [PMID: 11937179]
[40]
Kvetny, J.; Gregersen, G.; Pedersen, R.S. Randomized placebo-controlled trial of perindopril in normotensive, normoalbuminuric patients with type 1 diabetes mellitus. QJM, 2001, 94(2), 89-94.
[http://dx.doi.org/10.1093/qjmed/94.2.89] [PMID: 11181984]
[41]
Abo-Salem, O.M.; El-Edel, R.H.; Harisa, G.E.; El-Halawany, N.; Ghonaim, M.M. Experimental diabetic nephropathy can be prevented by propolis: Effect on metabolic disturbances and renal oxidative parameters. Pak. J. Pharm. Sci., 2009, 22(2), 205-210.
[PMID: 19339234]
[42]
Anderson, J.W.; Blake, J.E.; Turner, J.; Smith, B.M. Effects of soy protein on renal function and proteinuria in patients with type 2 diabetes. Am. J. Clin. Nutr., 1998, 68(6), 1347S-1353S.
[http://dx.doi.org/10.1093/ajcn/68.6.1347S] [PMID: 9848497]
[43]
Palheta, I.C.; Ferreira, L.R. Hypoglycemic potential of Anacardium occidentale L. J. Anal. Pharm. Res., 2018, 7(2), 152-153.
[44]
Archana, T.M.; Soumya, K.; James, J.; Sudhakaran, S. Root extracts of Anacardium ocidentale reduce hyperglycemia and oxidative stress in vitro. Clin. Phytosci., 2021, 37(57), 1-9.
[45]
Cruz Reina, L.J.; Durán-Aranguren, D.D.; Forero-Rojas, L.F.; Tarapuez-Viveros, L.F.; Durán-Sequeda, D.; Carazzone, C.; Sierra, R. Chemical composition and bioactive compounds of cashew (Anacardium occidentale) apple juice and bagasse from Colombian varieties. Heliyon, 2022, 8(5), e09528.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09528] [PMID: 35663750]
[46]
Sandeep, K.; Dimple, A.; Tomer, V. Ficus religiosa: A wholesome medicinal tree. J. Pharmacogn. Phytochem., 2018, 7(4), 32-37.
[47]
Singh, T.G.; Sharma, R.; Kaur, A.; Dhiman, S.; Singh, R. Evaluation of renoprotective potential of Ficus religiosa in attenuation of diabetic nephropathy in rats. Obes. Med., 2020, 19, 100268.
[http://dx.doi.org/10.1016/j.obmed.2020.100268]
[48]
Carmen, S.M.; Glenn, T.; Oyong, G. Chemical constituents of Andrographis paniculata (Burm.f.) nees. Int. J. Pharmacog. Phytochem. Res., 2016, 8(8), 1398-1402.
[49]
Hidayat, R.; Wulandari, P. Effects of Andrographis paniculata (Burm. F.) extract on diabetic nephropathy in rats. Rep. Biochem. Mol. Biol., 2021, 10(3), 445-454.
[http://dx.doi.org/10.52547/rbmb.10.3.445] [PMID: 34981022]
[50]
Kim, J.; Moon, E.; Kwon, S. Effect of Astragalus membranaceus extract on diabetic nephropathy. Endocrinol. Diabetes Metab. Case Rep., 2014, 2014, 140063.
[http://dx.doi.org/10.1530/EDM-14-0063] [PMID: 25298884]
[51]
Li, Y-X.; Li, Z-P.; Yan, S-L. Chemical constituents in roots of Astragalus membranaceus. Chin. Tradit. Herbal Drugs, 2017, 48(13), 2601-2607.
[52]
Mishra, A.; Bhatti, R.; Singh, A.; Singh Ishar, M. Ameliorative effect of the cinnamon oil from Cinnamomum zeylanicum upon early stage diabetic nephropathy. Planta Med., 2010, 76(5), 412-417.
[http://dx.doi.org/10.1055/s-0029-1186237] [PMID: 19876811]
[53]
Muthenna, P.; Raghu, G.; Kumar, P.A.; Surekha, M.V.; Reddy, G.B. Effect of cinnamon and its procyanidin-B2 enriched fraction on diabetic nephropathy in rats. Chem. Biol. Interact., 2014, 222(222), 68-76.
[http://dx.doi.org/10.1016/j.cbi.2014.08.013] [PMID: 25199697]
[54]
Goyal, P.; Kabra, A. A review on phytochemical and pharmacological profile on curculigo orchioides. Plant Cell Biotechnol. Mol. Biol., 2020, 21(71-72), 243-252.
[55]
Singla, K.; Singh, R. Nephroprotective effect of Curculigo orchiodies in streptozotocin-nicotinamide induced diabetic nephropathy in wistar rats. J. Ayurveda Integr. Med., 2020, 11(4), 399-404.
[http://dx.doi.org/10.1016/j.jaim.2020.05.006] [PMID: 32782114]
[56]
Wang, Z.; Chen, Z.; Li, B.; Zhang, B.; Du, Y.; Liu, Y.; He, Y.; Chen, X. Curcumin attenuates renal interstitial fibrosis of obstructive nephropathy by suppressing epithelial-mesenchymal transition through inhibition of the TLR4/NF-кB and PI3K/AKT signalling pathways. Pharm. Biol., 2020, 58(1), 828-837.
[http://dx.doi.org/10.1080/13880209.2020.1809462] [PMID: 32866059]
[57]
Prabhakar, S.S. Effects of Curcumin in experimental diabetic nephropathy. J. Investig. Med., 2017, 65(1), 1-6.
[http://dx.doi.org/10.1136/jim-2016-000272] [PMID: 27683729]
[58]
Vanaie, A.; Shahidi, S.; Iraj, B.; Siadat, Z.D.; Kabirzade, M.; Shakiba, F.; Mohammadi, M.; Parvizian, H. Curcumin as a major active component of turmeric attenuates proteinuria in patients with overt diabetic nephropathy. J. Res. Med. Sci., 2019, 24(24), 77.
[PMID: 31523263]
[59]
Lu, M.; Yin, N.; Liu, W.; Cui, X.; Chen, S.; Wang, E. Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling. BioMed Res. Int., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/1516985] [PMID: 28194406]
[60]
Ji, T.; Wang, J.; Xu, Z.; Cai, H.D.; Su, S.; Peng, X.; Ruan, H.S. Combination of mulberry leaf active components possessed synergetic effect on SD rats with diabetic nephropathy by mediating metabolism, Wnt/β-catenin and TGF-β/Smads signaling pathway. J. Ethnopharmacol., 2022, 292(292), 115026.
[http://dx.doi.org/10.1016/j.jep.2022.115026] [PMID: 35074452]
[61]
Kishore, L.; Singh, R. Ameliorative effect of Cephalandra indica homeopathic preparation in STZ induced diabetic nephropathy rats. J. Ayurveda Integr. Med., 2019, 10(4), 255-261.
[http://dx.doi.org/10.1016/j.jaim.2017.07.010] [PMID: 30455071]
[62]
Liu, Y.; Xu, T.H.; Zhang, M.Q.; Li, X.; Xu, Y.J.; Jiang, H.Y.; Liu, T.H.; Xu, D.M. Chemical constituents from the stems of Gymnema sylvestre. Chin. J. Nat. Med., 2014, 12(4), 300-304.
[http://dx.doi.org/10.1016/S1875-5364(14)60059-5] [PMID: 24863357]
[63]
Ananthan, R.; Baskar, C.; NarmathaBai, V.; Pari, L.; Latha, M.; Ramkumar, K.M. Antidiabetic effect of Gymnema montanum leaves: Effect on lipid peroxidation induced oxidative stress in experimental diabetes. Pharmacol. Res., 2003, 48(6), 551-556.
[http://dx.doi.org/10.1016/S1043-6618(03)00219-6] [PMID: 14527818]
[64]
Ramkumar, K.M.; Vijayakumar, R.S.; Ponmanickam, P.; Velayuthaprabhu, S.; Archunan, G.; Rajaguru, P. Antihyperlipidaemic effect of Gymnema montanum: A study on lipid profile and fatty acid composition in experimental diabetes. Basic Clin. Pharmacol. Toxicol., 2008, 103(6), 538-545.
[http://dx.doi.org/10.1111/j.1742-7843.2008.00320.x] [PMID: 19067681]
[65]
Shaygannia, E.; Bahmani, M.; Zamanzad, B.; Rafieian-Kopaei, M. A Review Study on Punica granatum L. J. Evid. Based Complemen. Altern. Med., 2016, 21(3), 221-227.
[http://dx.doi.org/10.1177/2156587215598039] [PMID: 26232244]
[66]
Mestry, S.N.; Dhodi, J.B.; Kumbhar, S.B.; Juvekar, A.R. Attenuation of diabetic nephropathy in streptozotocin-induced diabetic rats by Punica granatum Linn. leaves extract. J. Tradit. Complement. Med., 2017, 7(3), 273-280.
[http://dx.doi.org/10.1016/j.jtcme.2016.06.008] [PMID: 28725620]
[67]
Ansari, R.; Zarshenas, M.M.; Dadbakhsh, A.H. A review on pharmacological and clinical aspects of Linum usitatissimum L. Curr. Drug Discov. Technol., 2019, 16(2), 148-158.
[http://dx.doi.org/10.2174/1570163815666180521101136] [PMID: 29779483]
[68]
Kaur, N.; Kishore, L.; Singh, R. Therapeutic effect of Linum usitatissimum L. in STZ-nicotinamide induced diabetic nephropathy via inhibition of AGE’s and oxidative stress. J. Food Sci. Technol., 2017, 54(2), 408-421.
[http://dx.doi.org/10.1007/s13197-016-2477-4] [PMID: 28242940]
[69]
Draganescu, D.; Andritoiu, C.; Hritcu, D.; Dodi, G. Flaxseed lignans and polyphenols enhanced activity in streptozotocin-induced diabetic rats. Biology, 2021, 10(1), 43.
[70]
Chakrabarti, S.; Chen, S.; Feng, B.; Wu, Y. Preventive effects of Panax quinquefolius (American ginseng) on diabetic nephropathy. Recent development in chinese herbal medicine., 2010.
[71]
Amin, K.A.; Awad, E.M.; Nagy, M.A. Effects of Panax quinquefolium on streptozotocin-induced diabetic rats: Role of C-peptide, nitric oxide and oxidative stress. Int. J. Clin. Exp. Med., 2011, 4(2), 136-147.
[PMID: 21686137]
[72]
Shu, X.S.; Lv, J.H.; Tao, J.; Li, G.M.; Li, H.D.; Ma, N. Antihyperglycemic effects of total flavonoids from Polygonatum odoratum in STZ and alloxan-induced diabetic rats. J. Ethnopharmacol., 2009, 124(3), 539-543.
[73]
Dong, W.; Shi, H.B.; Ma, H.; Miao, Y.B.; Liu, T.J.; Wang, W. Homoisoflavanones from Polygonatum odoratum rhizomes inhibit advanced glycation end product formation. Arch. Pharm. Res., 2010, 33(5), 669-674.
[http://dx.doi.org/10.1007/s12272-010-0504-y] [PMID: 20512463]
[74]
El-Desouky, M.A.; Ibrahim, K.A.; Hanafy, A.A.; Salah El-Din, D.S. Amelioration of diabetic nephropathy with extracts of Pterocarpus santalinus heart wood and Brassica nigra seeds via regulation of insulin resistance and modulation of genes in streptozotocin induced diabetic rats. Med. Plants - Int. J. Phytomed. Relat. Ind., 2021, 13(1), 99-109.
[75]
Han, J.S.; Hong, H.R.; Kim, J.G.; Le, T.P.L.; Cho, Y.B.; Lee, M.K.; Hwang, B.Y. Chemical constituents from Pterocarpus santalinus and their inhibitory effects on nitric oxide production. Fitoterapia, 2022, 159, 105202.
[http://dx.doi.org/10.1016/j.fitote.2022.105202] [PMID: 35489581]
[76]
Jun-Wei, Y. Effect of rheum officinale on the renal hypertrophy and hyperfiltration in the streptozotocin-induced diabetic rats. Exp. Work Res., 1995, 1, 125-130.
[77]
Gu, L.; Wan, Y.; Wan, M. Advances in the study on molecular mechanism of diabetic nephropathy treated with Rheum officinale. Zhongguo Zhongyao Zazhi, 2003, 28(8), 703-705.
[PMID: 15224660]
[78]
Orhan, N.; Aslan, M.; Orhan, D.D.; Ergun, F. Yeşilada, E. In-vivo assessment of antidiabetic and antioxidant activities of grapevine leaves (Vitis vinifera) in diabetic rats. J. Ethnopharmacol., 2006, 108(2), 280-286.
[http://dx.doi.org/10.1016/j.jep.2006.05.010] [PMID: 16824713]
[79]
Ma, Z.; Zhang, H. Phytochemical constituents, health benefits, and industrial applications of grape seeds: A mini-review. Antioxidants, 2017, 6(3), 71.
[http://dx.doi.org/10.3390/antiox6030071] [PMID: 28914789]
[80]
Xiang, X.; Cai, H.D.; Su, S.; Dai, X.; Zhu, Y.; Guo, J.; Yan, H.; Guo, S.; Gu, W.; Qian, D.; Tang, Z.; Duan, J. Salvia miltiorrhiza protects against diabetic nephropathy through metabolome regulation and wnt/β-catenin and TGF-β signaling inhibition. Pharmacol. Res., 2019, 139, 26-40.
[http://dx.doi.org/10.1016/j.phrs.2018.10.030] [PMID: 30395946]
[81]
Lu, S. Salvia miltiorrhiza: An economically and academically important medicinal plant.In: Compendium of Plant Genomes; Springer: Cham, 2019.
[82]
El-Said, Y.A.M.; Sallam, N.A.A.; Ain-Shoka, A.A.M.; Abdel-Latif, H.A.T. Geraniol ameliorates diabetic nephropathy via interference with miRNA-21/PTEN/Akt/mTORC1 pathway in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(12), 2325-2337.
[http://dx.doi.org/10.1007/s00210-020-01944-9] [PMID: 32666288]
[83]
Bacanlı, M.; Anlar, H.G.; Aydın, S.; Çal, T.; Arı, N.; Ündeğer Bucurgat, Ü.; Başaran, A.A.; Başaran, N. D-limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Food Chem. Toxicol., 2017, 110, 434-442.
[http://dx.doi.org/10.1016/j.fct.2017.09.020] [PMID: 28923438]
[84]
Sadiq, S.; Nagi, A.H.; Shahzad, M.; Zia, A. The reno-protective effect of aqueous extract of Carum carvi (black zeera) seeds in streptozotocin induced diabetic nephropathy in rodents. Saudi J. Kidney Dis. Transpl., 2010, 21(6), 1058-1065.
[PMID: 21060174]
[85]
Shoaib, A.; Salem-Bekhit, M.M.; Siddiqui, H.H.; Dixit, R.K.; Bayomi, M.; Khalid, M. Badruddeen, ; Shakeel, F. Antidiabetic activity of standardized dried tubers extract of Aconitum napellus in streptozotocin‐ induced diabetic rats. 3 Biotech, 2020, 10(2), 56.
[http://dx.doi.org/10.1007/s13205-019-2043-7] [PMID: 32015952]
[86]
Zhang, L.; Mao, W.; Guo, X.; Wu, Y.; Li, C.; Lu, Z.; Su, G.; Li, X.; Liu, Z.; Guo, R.; Jie, X.; Wen, Z.; Liu, X. Ginkgo biloba extract for patients with early diabetic nephropathy: A systematic review. Evid. Based Complement. Alternat. Med., 2013, 2013, 689142.
[PMID: 23533513]
[87]
Nazaruk, J.; Borzym-Kluczyk, M. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem. Rev., 2015, 14(4), 675-690.
[http://dx.doi.org/10.1007/s11101-014-9369-x] [PMID: 26213526]
[88]
Putta, S.; Yarla, S.N.; Kilari, K.E.; Surekha, C.; Aliev, G.; Basavaraju Divakara, M.; Santosh, S. M.; Ramu, R.; Zameer, F.; Prasad MN, N.; Chintala, R.; Rao, V.P.; Shiralgi, Y.; Lakkappa D., B. Therapeutic potentials of triterpenes in diabetes and its associated complications. Curr. Top. Med. Chem., 2016, 16(23), 2532-2542.
[http://dx.doi.org/10.2174/1568026616666160414123343] [PMID: 27086788]
[89]
Jin, D.; Zhang, Y.; Zhang, Y.; Duan, L.; Zhou, R.; Duan, Y.; Sun, Y.; Lian, F.; Tong, X. Panax Ginseng C.A.Mey. as medicine: The potential use of Panax Ginseng C.A.Mey. as a remedy for kidney protection from a pharmacological perspective. Front. Pharmacol., 2021, 12, 734151.
[http://dx.doi.org/10.3389/fphar.2021.734151] [PMID: 34512359]
[90]
Chen, C.; Fu, D.; Wu, Y.; Huang, C.; Huang, P. Gypenoside, the main active compound of Gynostemma pentaphyllum, mitigates the diabetic nephropathy through down-regulating mTOR. Clin. Complement. Med. Pharmacol., 2022, 3(2), 100060.
[91]
Dai, Yaji Network pharmacology-based identification of miRNA expression of Astragalus membranaceus in the treatment of diabetic nephropathy. Medicine, 2022, 101(5), e28747.
[92]
Liu, Z.; Gong, J.; Huang, W.; Lu, F.; Dong, H. The effect of Momordica charantia in the treatment of diabetes mellitus: A review. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-14.
[http://dx.doi.org/10.1155/2021/3796265] [PMID: 33510802]
[93]
Hassan, H.M.; Mahran, Y.F.; Ghanim, A.M.H. Ganoderma lucidum ameliorates the diabetic nephropathy via down-regulatory effect on TGFβ-1 and TLR-4/NFκB signalling pathways. J. Pharm. Pharmacol., 2021, 73(9), 1250-1261.
[http://dx.doi.org/10.1093/jpp/rgab058] [PMID: 33847358]
[94]
Hou, S.; Zhang, T.; Li, Y.; Guo, F.; Jin, X. Glycyrrhizic acid prevents diabetic nephropathy by activating AMPK/SIRT1/PGC-1 α signaling in db/db mice. J. Diabetes Res., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/2865912] [PMID: 29238727]
[95]
Ramkumar, K.M.; Ponmanickam, P.; Velayuthaprabhu, S.; Archunan, G.; Rajaguru, P. Protective effect of Gymnema montanum against renal damage in experimental diabetic rats. Food Chem. Toxicol., 2009, 47(10), 2516-2521.
[http://dx.doi.org/10.1016/j.fct.2009.07.010] [PMID: 19616598]
[96]
Setyaningsih, W.A.W.; Arfian, N.; Fitriawan, A.S.; Yuniartha, R.; Sari, D.C.R. Ethanolic extract of centella asiatica treatment in the early stage of hyperglycemia condition inhibits glomerular injury and vascular remodeling in diabetic rat model. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/6671130] [PMID: 34326888]
[97]
Kang, M.Y.; Park, Y.H.; Kim, B.S.; Seo, S.Y.; Jeong, B.C.; Kim, J.I.; Kim, H.H. Preventive effects of green tea (Camellia sinensis var. assamica) on diabetic nephropathy. Yonsei Med. J., 2012, 53(1), 138-144.
[http://dx.doi.org/10.3349/ymj.2012.53.1.138] [PMID: 22187244]
[98]
Asgari, M.; Salehi, I.; Ranjbar, K.; Khosravi, M.; Zarrinkalam, E. Interval training and Crataegus persica ameliorate diabetic nephropathy via miR-126/Nrf-2 mediated inhibition of stress oxidative in rats with diabetes after myocardial ischemia-reperfusion injury. Biomed. Pharmacother., 2022, 153, 113411.
[http://dx.doi.org/10.1016/j.biopha.2022.113411] [PMID: 36076481]
[99]
Wang, Q.; Li, N.; Liu, J.; Zhou, J.; Zhuang, P. A systematic review of Orthosiphon stamineus benth. in the treatment of diabetes and its complication. Molecules, 2022, 27(2), 444.
[http://dx.doi.org/10.3390/molecules27020444] [PMID: 35056765]
[100]
Guex, C.G.; Reginato, F.Z.; de Jesus, P.R.; Brondani, J.C.; Lopes, G.H.H.; Bauermann, L.F. Antidiabetic effects of Olea europaea L. leaves in diabetic rats induced by high-fat diet and low-dose streptozotocin. J. Ethnopharmacol., 2019, 235(235), 1-7.
[http://dx.doi.org/10.1016/j.jep.2019.02.001] [PMID: 30721736]
[101]
Zhang, Y.; Hu, T.; Zhou, H.; Zhang, Y.; Jin, G.; Yang, Y. Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats. Int. J. Biol. Macromol., 2016, 83, 126-132.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.045] [PMID: 26627601]
[102]
Ziaja, K.; Muszynska, B.; Gawalska, A.; Sałaciak, K. Laetiporus sulphureus - chemical composition and medicinal value. Acta Sci. Pol. Hortorum Cultus, 2018, 17(1), 89-98.
[103]
Sawaf, H.; Thomas, G.; Taliercio, J.J.; Nakhoul, G.; Vachharajani, T.J.; Mehdi, A. Therapeutic advances in diabetic nephropathy. J. Clin. Med., 2022, 11(2), 378.
[http://dx.doi.org/10.3390/jcm11020378] [PMID: 35054076]
[104]
Raghavan, B.; Kumari, S.K. Effect of Terminalia arjuna stem bark on antioxidant status in liver and kidney of alloxan diabetic rats. Indian J. Physiol. Pharmacol., 2006, 50(2), 133-142.
[PMID: 17051732]
[105]
Kishore, L.; Kaur, N.; Singh, R. Renoprotective effect of Bacopa monnieri via inhibition of advanced glycation end products and oxidative stress in STZ-nicotinamide-induced diabetic nephropathy. Ren. Fail., 2016, 38(9), 1528-1544.
[http://dx.doi.org/10.1080/0886022X.2016.1227920] [PMID: 27784187]
[106]
Takahashi, N.; Kawada, T.; Goto, T.; Yamamoto, T.; Taimatsu, A.; Matsui, N.; Kimura, K.; Saito, M.; Hosokawa, M.; Miyashita, K.; Fushiki, T. Dual action of isoprenols from herbal medicines on both PPARγ and PPARα in 3T3-L1 adipocytes and HepG2 hepatocytes. FEBS Lett., 2002, 514(2-3), 315-322.
[http://dx.doi.org/10.1016/S0014-5793(02)02390-6] [PMID: 11943173]
[107]
Kiokias, S.; Gordon, M.H. Dietary supplementation with a natural carotenoid mixture decreases oxidative stress. Eur. J. Clin. Nutr., 2003, 57(9), 1135-1140.
[http://dx.doi.org/10.1038/sj.ejcn.1601655] [PMID: 12947433]
[108]
Alqahtani, A.; Hamid, K.; Kam, A.; Wong, K.H.; Abdelhak, Z.; Razmovski-Naumovski, V.; Chan, K.; Li, K.M.; Groundwater, P.W.; Li, G.Q. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr. Med. Chem., 2013, 20(7), 908-931.
[PMID: 23210780]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy