Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Implicit Selective Attention: The Role of the Mesencephalic-basal Ganglia System

Author(s): Matteo Esposito, Sara Palermo, Ylenia Camassa Nahi, Marco Tamietto and Alessia Celeghin*

Volume 22, Issue 9, 2024

Published on: 31 August, 2023

Page: [1497 - 1512] Pages: 16

DOI: 10.2174/1570159X21666230831163052

Price: $65

Abstract

The ability of the brain to recognize and orient attention to relevant stimuli appearing in the visual field is highlighted by a tuning process, which involves modulating the early visual system by both cortical and subcortical brain areas. Selective attention is coordinated not only by the output of stimulus-based saliency maps but is also influenced by top-down cognitive factors, such as internal states, goals, or previous experiences. The basal ganglia system plays a key role in implicitly modulating the underlying mechanisms of selective attention, favouring the formation and maintenance of implicit sensory-motor memories that are capable of automatically modifying the output of priority maps in sensory-motor structures of the midbrain, such as the superior colliculus. The article presents an overview of the recent literature outlining the crucial contribution of several subcortical structures to the processing of different sources of salient stimuli. In detail, we will focus on how the mesencephalic- basal ganglia closed loops contribute to implicitly addressing and modulating selective attention to prioritized stimuli. We conclude by discussing implicit behavioural responses observed in clinical populations in which awareness is compromised at some level. Implicit (emergent) awareness in clinical conditions that can be accompanied by manifest anosognosic symptomatology (i.e., hemiplegia) or involving abnormal conscious processing of visual information (i.e., unilateral spatial neglect and blindsight) represents interesting neurocognitive “test cases” for inferences about mesencephalicbasal ganglia closed-loops involvement in the formation of implicit sensory-motor memories.

Graphical Abstract

[1]
Itti, L.; Koch, C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res., 2000, 40(10-12), 1489-1506.
[http://dx.doi.org/10.1016/S0042-6989(99)00163-7] [PMID: 10788654]
[2]
Itti, L.; Koch, C. Feature combination strategies for saliency-based visual attention systems. J. Electron. Imaging, 2001, 10(1), 161-169.
[http://dx.doi.org/10.1117/1.1333677]
[3]
Itti, L.; Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci., 2001, 2(3), 194-203.
[http://dx.doi.org/10.1038/35058500] [PMID: 11256080]
[4]
Lee, D.K.; Itti, L.; Koch, C.; Braun, J. Attention activates winner-take-all competition among visual filters. Nat. Neurosci., 1999, 2(4), 375-381.
[http://dx.doi.org/10.1038/7286] [PMID: 10204546]
[5]
Fecteau, J.; Munoz, D. Salience, relevance, and firing: A priority map for target selection. Trends Cogn. Sci., 2006, 10(8), 382-390.
[http://dx.doi.org/10.1016/j.tics.2006.06.011] [PMID: 16843702]
[6]
Klink, P.C.; Jentgens, P.; Lorteije, J.A.M. Priority maps explain the roles of value, attention, and salience in goal-oriented behavior. J. Neurosci., 2014, 34(42), 13867-13869.
[http://dx.doi.org/10.1523/JNEUROSCI.3249-14.2014] [PMID: 25319682]
[7]
Kim, A.J.; Anderson, B.A. How does threat modulate the motivational effects of reward on attention? Exp. Psychol., 2021, 68(3), 165-172.
[http://dx.doi.org/10.1027/1618-3169/a000521] [PMID: 34711076]
[8]
Todd, R.M.; Manaligod, M.G.M. Implicit guidance of attention: The priority state space framework. Cortex, 2018, 102, 121-138.
[http://dx.doi.org/10.1016/j.cortex.2017.08.001] [PMID: 28863855]
[9]
Joshua, M.; Adler, A.; Mitelman, R.; Vaadia, E.; Bergman, H. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J. Neurosci., 2008, 28(45), 11673-11684.
[http://dx.doi.org/10.1523/JNEUROSCI.3839-08.2008] [PMID: 18987203]
[10]
Jiang, Y.V.; Won, B.Y.; Swallow, K.M. First saccadic eye movement reveals persistent attentional guidance by implicit learning. J. Exp. Psychol. Hum. Percept. Perform., 2014, 40(3), 1161-1173.
[http://dx.doi.org/10.1037/a0035961] [PMID: 24512610]
[11]
Zhao, J.; Al-Aidroos, N.; Turk-Browne, N.B. Attention is spontaneously biased toward regularities. Psychol. Sci., 2013, 24(5), 667-677.
[http://dx.doi.org/10.1177/0956797612460407] [PMID: 23558552]
[12]
Shomstein, S.; Gottlieb, J. Spatial and non-spatial aspects of visual attention: Interactive cognitive mechanisms and neural underpinnings. Neuropsychologia, 2016, 92, 9-19.
[http://dx.doi.org/10.1016/j.neuropsychologia.2016.05.021] [PMID: 27256592]
[13]
Shomstein, S.; Behrmann, M. Cortical systems mediating visual attention to both objects and spatial locations. Proc. Natl. Acad. Sci. USA, 2006, 103(30), 11387-11392.
[http://dx.doi.org/10.1073/pnas.0601813103] [PMID: 16840559]
[14]
Chelazzi, L.; Perlato, A.; Santandrea, E.; Della Libera, C. Rewards teach visual selective attention. Vision Res., 2013, 85, 58-72.
[http://dx.doi.org/10.1016/j.visres.2012.12.005] [PMID: 23262054]
[15]
Chelazzi, L. E to inova, J.; Calletti, R.; Lo Gerfo, E.; Sani, I.; Della Libera, C.; Santandrea, E. Altering spatial priority maps via reward-based learning. J. Neurosci., 2014, 34(25), 8594-8604.
[http://dx.doi.org/10.1523/JNEUROSCI.0277-14.2014] [PMID: 24948813]
[16]
Anderson, B.A.; Laurent, P.A.; Yantis, S. Learned value magnifies salience-based attentional capture. PLoS One, 2011, 6(11), e27926.
[http://dx.doi.org/10.1371/journal.pone.0027926] [PMID: 22132170]
[17]
Raymond, J.E.; O’Brien, J.L. Selective visual attention and motivation: The consequences of value learning in an attentional blink task. Psychol. Sci., 2009, 20(8), 981-988.
[http://dx.doi.org/10.1111/j.1467-9280.2009.02391.x] [PMID: 19549080]
[18]
Markovic, J.; Anderson, A.K.; Todd, R.M. Tuning to the significant: Neural and genetic processes underlying affective enhancement of visual perception and memory. Behav. Brain Res., 2014, 259, 229-241.
[http://dx.doi.org/10.1016/j.bbr.2013.11.018] [PMID: 24269973]
[19]
Mather, M.; Sutherland, M.R. Arousal-biased competition in perception and memory. Perspect. Psychol. Sci., 2011, 6(2), 114-133.
[http://dx.doi.org/10.1177/1745691611400234] [PMID: 21660127]
[20]
Todd, R.M.; Cunningham, W.A.; Anderson, A.K.; Thompson, E. Affect-biased attention as emotion regulation. Trends Cogn. Sci., 2012, 16(7), 365-372.
[http://dx.doi.org/10.1016/j.tics.2012.06.003] [PMID: 22717469]
[21]
Vuilleumier, P. Affective and motivational control of vision. Curr. Opin. Neurol., 2015, 28(1), 29-35.
[http://dx.doi.org/10.1097/WCO.0000000000000159] [PMID: 25490197]
[22]
Anderson, B.A. Value-driven attentional priority is context specific. Psychon. Bull. Rev., 2015, 22(3), 750-756.
[http://dx.doi.org/10.3758/s13423-014-0724-0] [PMID: 25199468]
[23]
McHaffie, J.; Stanford, T.; Stein, B.; Coizet, V.; Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci., 2005, 28(8), 401-407.
[http://dx.doi.org/10.1016/j.tins.2005.06.006] [PMID: 15982753]
[24]
Redgrave, P.; Coizet, V.; Comoli, E.; McHaffie, J.G.; Leriche, M.; Vautrelle, N.; Hayes, L.M.; Overton, P. Interactions between the midbrain superior colliculus and the basal ganglia. Front. Neuroanat., 2010, 4, 4.
[http://dx.doi.org/10.3389/fnana.2010.00132] [PMID: 20941324]
[25]
May, P.J. The mammalian superior colliculus: Laminar structure and connections. Prog. Brain Res., 2006, 151, 321-378.
[http://dx.doi.org/10.1016/S0079-6123(05)51011-2] [PMID: 16221594]
[26]
Schiller, P.H.; Sandell, J.H. Interactions between visually and electrically elicited saccades before and after superior colliculus and frontal eye field ablations in the rhesus monkey. Exp. Brain Res., 1983, 49(3), 381-392.
[http://dx.doi.org/10.1007/BF00238780] [PMID: 6641836]
[27]
Albano, J.E.; Norton, T.T.; Hall, W.C. Laminar origin of projections from the superficial layers of the superior colliculus in the tree shrew, Tupaia glis. Brain Res., 1979, 173(1), 1-11.
[http://dx.doi.org/10.1016/0006-8993(79)91090-4] [PMID: 90538]
[28]
Harting, J.K.; Huerta, M.F.; Hashikawa, T.; van Lieshout, D.P. Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: Organization of tectogeniculate pathways in nineteen species. J. Comp. Neurol., 1991, 304(2), 275-306.
[http://dx.doi.org/10.1002/cne.903040210] [PMID: 1707899]
[29]
Basso, M.A.; Bickford, M.E.; Cang, J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron, 2021, 109(6), 918-937.
[http://dx.doi.org/10.1016/j.neuron.2021.01.013] [PMID: 33548173]
[30]
Isa, T.; Marquez-Legorreta, E.; Grillner, S.; Scott, E.K. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr. Biol., 2021, 31(11), R741-R762.
[http://dx.doi.org/10.1016/j.cub.2021.04.001] [PMID: 34102128]
[31]
Chen, C.Y.; Hafed, Z.M. Orientation and contrast tuning properties and temporal flicker fusion characteristics of primate superior colliculus neurons. Front. Neural Circuits, 2018, 12, 58.
[http://dx.doi.org/10.3389/fncir.2018.00058] [PMID: 30087598]
[32]
Veale, R.; Hafed, Z.M.; Yoshida, M. How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372(1714), 20160113.
[http://dx.doi.org/10.1098/rstb.2016.0113] [PMID: 28044023]
[33]
White, B.J.; Berg, D.J.; Kan, J.Y.; Marino, R.A.; Itti, L.; Munoz, D.P. Superior colliculus neurons encode a visual saliency map during free viewing of natural dynamic video. Nat. Commun., 2017, 8(1), 14263.
[http://dx.doi.org/10.1038/ncomms14263] [PMID: 28117340]
[34]
White, B.J.; Kan, J.Y.; Levy, R.; Itti, L.; Munoz, D.P. Superior colliculus encodes visual saliency before the primary visual cortex. Proc. Natl. Acad. Sci. USA, 2017, 114(35), 9451-9456.
[http://dx.doi.org/10.1073/pnas.1701003114] [PMID: 28808026]
[35]
Basso, M.A.; Wurtz, R.H. Modulation of neuronal activity in superior colliculus by changes in target probability. J. Neurosci., 1998, 18(18), 7519-7534.
[http://dx.doi.org/10.1523/JNEUROSCI.18-18-07519.1998] [PMID: 9736670]
[36]
Krauzlis, R.J.; Lovejoy, L.P.; Zénon, A. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci., 2013, 36(1), 165-182.
[http://dx.doi.org/10.1146/annurev-neuro-062012-170249] [PMID: 23682659]
[37]
Kustov, A.A.; Lee Robinson, D. Shared neural control of attentional shifts and eye movements. Nature, 1996, 384(6604), 74-77.
[http://dx.doi.org/10.1038/384074a0] [PMID: 8900281]
[38]
Müller, J.R.; Philiastides, M.G.; Newsome, W.T. Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc. Natl. Acad. Sci. USA, 2005, 102(3), 524-529.
[http://dx.doi.org/10.1073/pnas.0408311101] [PMID: 15601760]
[39]
Lovejoy, L.P.; Krauzlis, R.J. Changes in perceptual sensitivity related to spatial cues depends on subcortical activity. Proc. Natl. Acad. Sci. USA, 2017, 114(23), 6122-6126.
[http://dx.doi.org/10.1073/pnas.1609711114] [PMID: 28533384]
[40]
Basso, M.A.; May, P.J. Circuits for Action and Cognition: A View from the Superior colliculus. Annu. Rev. Vis. Sci., 2017, 3(1), 197-226.
[http://dx.doi.org/10.1146/annurev-vision-102016-061234] [PMID: 28617660]
[41]
Koch, C.; Ullman, S. Selecting One Among the Many: A Simple Network Implementing Shifts in Selective Visual Attention; Massachusetts Inst Of Tech Cambridge Artificial Intelligence Lab, 1984.
[42]
Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20(11), 1254-1259.
[http://dx.doi.org/10.1109/34.730558]
[43]
Mendez, C.A.; Celeghin, A.; Diano, M.; Orsenigo, D.; Ocak, B.; Tamietto, M. A deep neural network model of the primate superior colliculus for emotion recognition. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2022, 377(1863), 20210512.
[http://dx.doi.org/10.1098/rstb.2021.0512]
[44]
Soares, S.C.; Maior, R.S.; Isbell, L.A.; Tomaz, C.; Nishijo, H. Fast detector/first responder: Interactions between the superior colliculus-pulvinar pathway and stimuli relevant to primates. Front. Neurosci., 2017, 11, 67.
[http://dx.doi.org/10.3389/fnins.2017.00067] [PMID: 28261046]
[45]
Romanski, L.M.; Giguere, M.; Bates, J.F.; Goldman-Rakic, P.S. Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J. Comp. Neurol., 1997, 379(3), 313-332.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19970317)379:3<313::AID-CNE1>3.0.CO;2-6] [PMID: 9067827]
[46]
Bisley, J.W.; Goldberg, M.E. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci., 2010, 33(1), 1-21.
[http://dx.doi.org/10.1146/annurev-neuro-060909-152823] [PMID: 20192813]
[47]
Sommer, M.A.; Wurtz, R.H. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. J. Neurophysiol., 2004, 91(3), 1381-1402.
[http://dx.doi.org/10.1152/jn.00738.2003] [PMID: 14573558]
[48]
Johnson, J.A.; Strafella, A.P.; Zatorre, R.J. The role of the dorsolateral prefrontal cortex in bimodal divided attention: Two transcranial magnetic stimulation studies. J. Cogn. Neurosci., 2007, 19(6), 907-920.
[http://dx.doi.org/10.1162/jocn.2007.19.6.907] [PMID: 17536962]
[49]
Loose, R.; Kaufmann, C.; Tucha, O.; Auer, D.P.; Lange, K.W. Neural networks of response shifting: Influence of task speed and stimulus material. Brain Res., 2006, 1090(1), 146-155.
[http://dx.doi.org/10.1016/j.brainres.2006.03.039] [PMID: 16643867]
[50]
Esposito, M.; Tamietto, M.; Geminiani, G.C.; Celeghin, A. A subcortical network for implicit visuo-spatial attention: Implications for Parkinson’s Disease. Cortex, 2021, 141, 421-435.
[http://dx.doi.org/10.1016/j.cortex.2021.05.003] [PMID: 34144272]
[51]
Anderson, B.A. The attention habit: how reward learning shapes attentional selection. Ann. N. Y. Acad. Sci., 2016, 1369(1), 24-39.
[http://dx.doi.org/10.1111/nyas.12957] [PMID: 26595376]
[52]
Deijen, J.B.; Stoffers, D.; Berendse, H.W.; Wolters, E.C.; Theeuwes, J. Abnormal susceptibility to distracters hinders perception in early stage Parkinson’s disease: A controlled study. BMC Neurol., 2006, 6(1), 43.
[http://dx.doi.org/10.1186/1471-2377-6-43] [PMID: 17156486]
[53]
Lee, E.Y.; Cowan, N.; Vogel, E.K.; Rolan, T.; Valle-Inclán, F.; Hackley, S.A. Visual working memory deficits in patients with Parkinson’s disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain, 2010, 133(9), 2677-2689.
[http://dx.doi.org/10.1093/brain/awq197] [PMID: 20688815]
[54]
McNab, F.; Klingberg, T. Prefrontal cortex and basal ganglia control access to working memory. Nat. Neurosci., 2008, 11(1), 103-107.
[http://dx.doi.org/10.1038/nn2024] [PMID: 18066057]
[55]
Tommasi, G.; Fiorio, M.; Yelnik, J.; Krack, P.; Sala, F.; Schmitt, E.; Fraix, V.; Bertolasi, L.; Le Bas, J.F.; Ricciardi, G.K.; Fiaschi, A.; Theeuwes, J.; Pollak, P.; Chelazzi, L. Disentangling the role of cortico-basal ganglia loops in top-down and bottom-up visual attention: An investigation of attention deficits in parkinson disease. J. Cogn. Neurosci., 2015, 27(6), 1215-1237.
[http://dx.doi.org/10.1162/jocn_a_00770] [PMID: 25514652]
[56]
van Schouwenburg, M.R.; den Ouden, H.E.M.; Cools, R. The human basal ganglia modulate frontal-posterior connectivity during attention shifting. J. Neurosci., 2010, 30(29), 9910-9918.
[http://dx.doi.org/10.1523/JNEUROSCI.1111-10.2010] [PMID: 20660273]
[57]
van Schouwenburg, M.R.; den Ouden, H.E.M.; Cools, R. Selective attentional enhancement and inhibition of fronto-posterior connectivity by the basal ganglia during attention switching. Cereb. Cortex, 2015, 25(6), 1527-1534.
[http://dx.doi.org/10.1093/cercor/bht345] [PMID: 24343891]
[58]
Ravizza, S.M.; Ivry, R.B. Comparison of the basal ganglia and cerebellum in shifting attention. J. Cogn. Neurosci., 2001, 13(3), 285-297.
[http://dx.doi.org/10.1162/08989290151137340] [PMID: 11371307]
[59]
Shulman, G.L.; Astafiev, S.V.; Franke, D.; Pope, D.L.W.; Snyder, A.Z.; McAvoy, M.P.; Corbetta, M. Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. J. Neurosci., 2009, 29(14), 4392-4407.
[http://dx.doi.org/10.1523/JNEUROSCI.5609-08.2009] [PMID: 19357267]
[60]
Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci., 1986, 9(1), 357-381.
[http://dx.doi.org/10.1146/annurev.ne.09.030186.002041] [PMID: 3085570]
[61]
Nakano, K.; Kayahara, T.; Tsutsumi, T.; Ushiro, H. Neural circuits and functional organization of the striatum. J. Neurol., 2000, 247(S5)(Suppl. 5), V1-V15.
[http://dx.doi.org/10.1007/PL00007778] [PMID: 11081799]
[62]
Postuma, R.B.; Dagher, A. Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb. Cortex, 2006, 16(10), 1508-1521.
[http://dx.doi.org/10.1093/cercor/bhj088] [PMID: 16373457]
[63]
Comoli, E.; Coizet, V.; Boyes, J.; Bolam, J.P.; Canteras, N.S.; Quirk, R.H.; Overton, P.G.; Redgrave, P. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci., 2003, 6(9), 974-980.
[http://dx.doi.org/10.1038/nn1113] [PMID: 12925855]
[64]
May, P.J.; McHaffie, J.G.; Stanford, T.R.; Jiang, H.; Costello, M.G.; Coizet, V.; Hayes, L.M.; Haber, S.N.; Redgrave, P. Tectonigral projections in the primate: A pathway for pre-attentive sensory input to midbrain dopaminergic neurons. Eur. J. Neurosci., 2009, 29(3), 575-587.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06596.x] [PMID: 19175405]
[65]
McHaffie, J.G.; Jiang, H.; May, P.J.; Coizet, V.; Overton, P.G.; Stein, B.E.; Redgrave, P. A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience, 2006, 138(1), 221-234.
[http://dx.doi.org/10.1016/j.neuroscience.2005.11.015] [PMID: 16361067]
[66]
Coizet, V.; Graham, J.H.; Moss, J.; Bolam, J.P.; Savasta, M.; McHaffie, J.G.; Redgrave, P.; Overton, P.G. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci., 2009, 29(17), 5701-5709.
[http://dx.doi.org/10.1523/JNEUROSCI.0247-09.2009] [PMID: 19403836]
[67]
Tokuno, H.; Takada, M.; Ikai, Y.; Mizuno, N. Direct projections from the deep layers of the superior colliculus to the subthalamic nucleus in the rat. Brain Res., 1994, 639(1), 156-160.
[http://dx.doi.org/10.1016/0006-8993(94)91776-0] [PMID: 8180831]
[68]
Nambu, A. Seven problems on the basal ganglia. Curr. Opin. Neurobiol., 2008, 18(6), 595-604.
[http://dx.doi.org/10.1016/j.conb.2008.11.001] [PMID: 19081243]
[69]
Nambu, A.; Tokuno, H.; Takada, M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci. Res., 2002, 43(2), 111-117.
[http://dx.doi.org/10.1016/S0168-0102(02)00027-5] [PMID: 12067746]
[70]
Bočková, M.; Chládek, J.; Jurák, P.; Halámek, J.; Baláž, M.; Rektor, I. Involvement of the subthalamic nucleus and globus pallidus internus in attention. J. Neural Transm. (Vienna), 2011, 118(8), 1235-1245.
[http://dx.doi.org/10.1007/s00702-010-0575-4] [PMID: 21191623]
[71]
Wessel, J.R.; Jenkinson, N.; Brittain, J.S.; Voets, S.H.E.M.; Aziz, T.Z.; Aron, A.R. Surprise disrupts cognition via a fronto-basal ganglia suppressive mechanism. Nat. Commun., 2016, 7(1), 11195.
[http://dx.doi.org/10.1038/ncomms11195] [PMID: 27088156]
[72]
Fife, K.H.; Gutierrez-Reed, N.A.; Zell, V.; Bailly, J.; Lewis, C.M.; Aron, A.R.; Hnasko, T.S. Causal role for the subthalamic nucleus in interrupting behavior. eLife, 2017, 6, e27689.
[http://dx.doi.org/10.7554/eLife.27689] [PMID: 28742497]
[73]
Failing, M.; Feldmann-Wüstefeld, T.; Wang, B.; Olivers, C.; Theeuwes, J. Statistical regularities induce spatial as well as feature-specific suppression. J. Exp. Psychol. Hum. Percept. Perform., 2019, 45(10), 1291-1303.
[http://dx.doi.org/10.1037/xhp0000660] [PMID: 31157536]
[74]
Ferrante, O.; Patacca, A.; Di Caro, V.; Della Libera, C.; Santandrea, E.; Chelazzi, L. Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 2018, 102, 67-95.
[http://dx.doi.org/10.1016/j.cortex.2017.09.027] [PMID: 29096874]
[75]
Leber, A.B.; Gwinn, R.E.; Hong, Y.; O’Toole, R.J. Implicitly learned suppression of irrelevant spatial locations. Psychon. Bull. Rev., 2016, 23(6), 1873-1881.
[http://dx.doi.org/10.3758/s13423-016-1065-y] [PMID: 27225635]
[76]
Mukai, I.; Kim, D.; Fukunaga, M.; Japee, S.; Marrett, S.; Ungerleider, L.G. Activations in visual and attention-related areas predict and correlate with the degree of perceptual learning. J. Neurosci., 2007, 27(42), 11401-11411.
[http://dx.doi.org/10.1523/JNEUROSCI.3002-07.2007] [PMID: 17942734]
[77]
Graybiel, A.M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci., 2008, 31(1), 359-387.
[http://dx.doi.org/10.1146/annurev.neuro.29.051605.112851] [PMID: 18558860]
[78]
Redgrave, P.; Rodriguez, M.; Smith, Y.; Rodriguez-Oroz, M.C.; Lehericy, S.; Bergman, H.; Agid, Y.; DeLong, M.R.; Obeso, J.A. Goal-directed and habitual control in the basal ganglia: Implications for Parkinson’s disease. Nat. Rev. Neurosci., 2010, 11(11), 760-772.
[http://dx.doi.org/10.1038/nrn2915] [PMID: 20944662]
[79]
Krauzlis, R.J.; Bogadhi, A.R.; Herman, J.P.; Bollimunta, A. Selective attention without a neocortex. Cortex, 2018, 102, 161-175.
[http://dx.doi.org/10.1016/j.cortex.2017.08.026] [PMID: 28958417]
[80]
Hikosaka, O.; Yasuda, M.; Nakamura, K.; Isoda, M.; Kim, H.F.; Terao, Y.; Amita, H.; Maeda, K. Multiple neuronal circuits for variable object–action choices based on short- and long-term memories. Proc. Natl. Acad. Sci. USA, 2019, 116(52), 26313-26320.
[http://dx.doi.org/10.1073/pnas.1902283116] [PMID: 31871157]
[81]
Kim, H.F.; Hikosaka, O. Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron, 2013, 79(5), 1001-1010.
[http://dx.doi.org/10.1016/j.neuron.2013.06.044] [PMID: 23954031]
[82]
Ragozzino, M.E. Role of the striatum in learning and memory. Neurobiol. Learn. Mem., 2007, 355-379.
[83]
Yasuda, M.; Hikosaka, O. Functional territories in primate substantia nigra pars reticulata separately signaling stable and flexible values. J. Neurophysiol., 2015, 113(6), 1681-1696.
[http://dx.doi.org/10.1152/jn.00674.2014] [PMID: 25540224]
[84]
Anderson, B.A.; Laurent, P.A.; Yantis, S. Value-driven attentional priority signals in human basal ganglia and visual cortex. Brain Res., 2014, 1587, 88-96.
[http://dx.doi.org/10.1016/j.brainres.2014.08.062] [PMID: 25171805]
[85]
Kim, H.F.; Amita, H.; Hikosaka, O. Indirect pathway of caudal basal ganglia for rejection of valueless visual objects. Neuron, 2017, 94(4), 920-930.e3.
[http://dx.doi.org/10.1016/j.neuron.2017.04.033] [PMID: 28521141]
[86]
Kunimatsu, J.; Maeda, K.; Hikosaka, O. The caudal part of putamen represents the historical object value information. J. Neurosci., 2019, 39(9), 1709-1719.
[PMID: 30573645]
[87]
Yamamoto, S.; Kim, H.F.; Hikosaka, O. Reward value-contingent changes of visual responses in the primate caudate tail associated with a visuomotor skill. J. Neurosci., 2013, 33(27), 11227-11238.
[http://dx.doi.org/10.1523/JNEUROSCI.0318-13.2013] [PMID: 23825426]
[88]
Kim, H.F.; Ghazizadeh, A.; Hikosaka, O. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories. Front. Neuroanat., 2014, 8, 120.
[http://dx.doi.org/10.3389/fnana.2014.00120] [PMID: 25400553]
[89]
Herman, J.P.; Arcizet, F.; Krauzlis, R.J. Attention-related modulation of caudate neurons depends on superior colliculus activity. eLife, 2020, 9e53998.
[http://dx.doi.org/10.7554/eLife.53998] [PMID: 32940607]
[90]
Kang, J.; Kim, H.; Hwang, S.H.; Han, M.; Lee, S.H.; Kim, H.F. Primate ventral striatum maintains neural representations of the value of previously rewarded objects for habitual seeking. Nat. Commun., 2021, 12(1), 2100.
[http://dx.doi.org/10.1038/s41467-021-22335-5] [PMID: 33833228]
[91]
Codispoti, M.; De Cesarei, A.; Biondi, S.; Ferrari, V. The fate of unattended stimuli and emotional habituation: Behavioral interference and cortical changes. Cogn. Affect. Behav. Neurosci., 2016, 16(6), 1063-1073.
[http://dx.doi.org/10.3758/s13415-016-0453-0] [PMID: 27557884]
[92]
Micucci, A.; Ferrari, V.; De Cesarei, A.; Codispoti, M. Contextual modulation of emotional distraction: Attentional capture and motivational significance. J. Cogn. Neurosci., 2020, 32(4), 621-633.
[http://dx.doi.org/10.1162/jocn_a_01505] [PMID: 31765599]
[93]
Diano, M.; Celeghin, A.; Bagnis, A.; Tamietto, M. Amygdala response to emotional stimuli without awareness: Facts and interpretations. Front. Psychol., 2017, 7, 2029.
[http://dx.doi.org/10.3389/fpsyg.2016.02029] [PMID: 28119645]
[94]
Nishijo, H.; Rafal, R.; Tamietto, M. Editorial: Limbic-Brainstem roles in perception, cognition, emotion, and behavior. Front. Neurosci., 2018, 12, 395.
[http://dx.doi.org/10.3389/fnins.2018.00395] [PMID: 29946232]
[95]
Pourtois, G.; Schettino, A.; Vuilleumier, P. Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biol. Psychol., 2013, 92(3), 492-512.
[http://dx.doi.org/10.1016/j.biopsycho.2012.02.007] [PMID: 22373657]
[96]
Tamietto, M.; de Gelder, B. Neural bases of the non-conscious perception of emotional signals. Nat. Rev. Neurosci., 2010, 11(10), 697-709.
[http://dx.doi.org/10.1038/nrn2889] [PMID: 20811475]
[97]
Le Doux, J. Emotional networks and motor control: a fearful view. Prog. Brain Res., 1996, 107, 437-446.
[http://dx.doi.org/10.1016/s0079-6123(08)61880-4]
[98]
Phelps, E.A.; LeDoux, J.E. Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 2005, 48(2), 175-187.
[http://dx.doi.org/10.1016/j.neuron.2005.09.025] [PMID: 16242399]
[99]
LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci., 2000, 23(1), 155-184.
[http://dx.doi.org/10.1146/annurev.neuro.23.1.155] [PMID: 10845062]
[100]
LeDoux, J.E. Emotion, memory and the brain. Sci. Am., 1994, 270(6), 50-57.
[http://dx.doi.org/10.1038/scientificamerican0694-50] [PMID: 8023118]
[101]
Morris, J.S.; Öhman, A.; Dolan, R.J. A subcortical pathway to the right amygdala mediating “unseen” fear. Proc. Natl. Acad. Sci. USA, 1999, 96(4), 1680-1685.
[http://dx.doi.org/10.1073/pnas.96.4.1680] [PMID: 9990084]
[102]
Rafal, R.D.; Koller, K.; Bultitude, J.H.; Mullins, P.; Ward, R.; Mitchell, A.S.; Bell, A.H. Connectivity between the superior colliculus and the amygdala in humans and macaque monkeys: virtual dissection with probabilistic DTI tractography. J. Neurophysiol., 2015, 114(3), 1947-1962.
[http://dx.doi.org/10.1152/jn.01016.2014] [PMID: 26224780]
[103]
Vuilleumier, P.; Armony, J.L.; Driver, J.; Dolan, R.J. Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci., 2003, 6(6), 624-631.
[http://dx.doi.org/10.1038/nn1057] [PMID: 12740580]
[104]
Koller, K.; Rafal, R.D.; Platt, A.; Mitchell, N.D. Orienting toward threat: Contributions of a subcortical pathway transmitting retinal afferents to the amygdala via the superior colliculus and pulvinar. Neuropsychologia, 2019, 128, 78-86.
[http://dx.doi.org/10.1016/j.neuropsychologia.2018.01.027] [PMID: 29410291]
[105]
Pegna, A.J.; Khateb, A.; Lazeyras, F.; Seghier, M.L. Discriminating emotional faces without primary visual cortices involves the right amygdala. Nat. Neurosci., 2005, 8(1), 24-25.
[http://dx.doi.org/10.1038/nn1364] [PMID: 15592466]
[106]
Burra, N.; Hervais-Adelman, A.; Celeghin, A.; de Gelder, B.; Pegna, A.J. Affective blindsight relies on low spatial frequencies. Neuropsychologia, 2019, 128, 44-49.
[http://dx.doi.org/10.1016/j.neuropsychologia.2017.10.009] [PMID: 28993236]
[107]
de Gelder, B.; Tamietto, M.; Pegna, A.J.; Van den Stock, J. Visual imagery influences brain responses to visual stimulation in bilateral cortical blindness. Cortex, 2015, 72, 15-26.
[http://dx.doi.org/10.1016/j.cortex.2014.11.009] [PMID: 25571770]
[108]
McFadyen, J.; Mattingley, J.B.; Garrido, M.I. An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. eLife, 2019, 8e40766.
[http://dx.doi.org/10.7554/eLife.40766] [PMID: 30648533]
[109]
Morris, J.; Friston, K.J.; Büchel, C.; Frith, C.D.; Young, A.W.; Calder, A.J.; Dolan, R.J. A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain, 1998, 121(1), 47-57.
[http://dx.doi.org/10.1093/brain/121.1.47] [PMID: 9549487]
[110]
Whalen, P.J.; Rauch, S.L.; Etcoff, N.L.; McInerney, S.C.; Lee, M.B.; Jenike, M.A. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J. Neurosci., 1998, 18(1), 411-418.
[http://dx.doi.org/10.1523/JNEUROSCI.18-01-00411.1998] [PMID: 9412517]
[111]
Critchley, H.D.; Mathias, C.J.; Dolan, R.J. Fear conditioning in humans: The influence of awareness and autonomic arousal on functional neuroanatomy. Neuron, 2002, 33(4), 653-663.
[http://dx.doi.org/10.1016/S0896-6273(02)00588-3] [PMID: 11856537]
[112]
Killgore, W.D.S.; Yurgelun-Todd, D.A. Activation of the amygdala and anterior cingulate during nonconscious processing of sad versus happy faces. Neuroimage, 2004, 21(4), 1215-1223.
[http://dx.doi.org/10.1016/j.neuroimage.2003.12.033] [PMID: 15050549]
[113]
Pasley, B.N.; Mayes, L.C.; Schultz, R.T. Subcortical discrimination of unperceived objects during binocular rivalry. Neuron, 2004, 42(1), 163-172.
[http://dx.doi.org/10.1016/S0896-6273(04)00155-2] [PMID: 15066273]
[114]
Williams, L.M.; Das, P.; Liddell, B.J.; Kemp, A.H.; Rennie, C.J.; Gordon, E. Mode of functional connectivity in amygdala pathways dissociates level of awareness for signals of fear. J. Neurosci., 2006, 26(36), 9264-9271.
[http://dx.doi.org/10.1523/JNEUROSCI.1016-06.2006] [PMID: 16957082]
[115]
Williams, L.M.; Liddell, B.J.; Rathjen, J.; Brown, K.J.; Gray, J.; Phillips, M.; Young, A.; Gordon, E. Mapping the time course of nonconscious and conscious perception of fear: An integration of central and peripheral measures. Hum. Brain Mapp., 2004, 21(2), 64-74.
[http://dx.doi.org/10.1002/hbm.10154] [PMID: 14755594]
[116]
Liddell, B.J.; Brown, K.J.; Kemp, A.H.; Barton, M.J.; Das, P.; Peduto, A.; Gordon, E.; Williams, L.M. A direct brainstem-amygdala-cortical ‘alarm’ system for subliminal signals of fear. Neuroimage, 2005, 24(1), 235-243.
[http://dx.doi.org/10.1016/j.neuroimage.2004.08.016] [PMID: 15588615]
[117]
Williams, L.M.; Liddell, B.J.; Kemp, A.H.; Bryant, R.A.; Meares, R.A.; Peduto, A.S.; Gordon, E. Amygdala–prefrontal dissociation of subliminal and supraliminal fear. Hum. Brain Mapp., 2006, 27(8), 652-661.
[http://dx.doi.org/10.1002/hbm.20208] [PMID: 16281289]
[118]
Carlson, J.M.; Reinke, K.S.; Habib, R. A left amygdala mediated network for rapid orienting to masked fearful faces. Neuropsychologia, 2009, 47(5), 1386-1389.
[http://dx.doi.org/10.1016/j.neuropsychologia.2009.01.026] [PMID: 19428403]
[119]
Yoon, K.L.; Hong, S.W.; Joormann, J.; Kang, P. Perception of facial expressions of emotion during binocular rivalry. Emotion, 2009, 9(2), 172-182.
[http://dx.doi.org/10.1037/a0014714] [PMID: 19348530]
[120]
Juruena, M.F.; Giampietro, V.P.; Smith, S.D.; Surguladze, S.A.; Dalton, J.A.; Benson, P.J.; Cleare, A.J.; Fu, C.H. Amygdala activation to masked happy facial expressions. J. Int. Neuropsychol. Soc., 2010, 16(2), 383-387.
[http://dx.doi.org/10.1017/S1355617709991172] [PMID: 19958569]
[121]
Troiani, V.; Schultz, R.T. Amygdala, pulvinar, and inferior parietal cortex contribute to early processing of faces without awareness. Front. Hum. Neurosci., 2013, 7, 241.
[http://dx.doi.org/10.3389/fnhum.2013.00241] [PMID: 23761748]
[122]
Stepniewska, I.; Qi, H-X.; Kaas, J.H. Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys. Vis. Neurosci., 2000, 17(4), 529-549.
[http://dx.doi.org/10.1017/S0952523800174048] [PMID: 11016573]
[123]
Benevento, L.A.; Standage, G.P. The organization of projections of the retinorecipient and nonretinorecipient nuclei of the pretectal complex and layers of the superior colliculus to the lateral pulvinar and medial pulvinar in the macaque monkey. J. Comp. Neurol., 1983, 217(3), 307-336.
[http://dx.doi.org/10.1002/cne.902170307] [PMID: 6886056]
[124]
Benevento, L.A.; Fallon, J.H. The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta). J. Comp. Neurol., 1975, 160(3), 339-361.
[http://dx.doi.org/10.1002/cne.901600306] [PMID: 1112928]
[125]
Jacobson, S.; Trojanowski, J.Q. Corticothalamic neurons and thalamocortical terminal fields: An investigation in rat using horseradish peroxidase and autoradiography. Brain Res., 1975, 85(3), 385-401.
[http://dx.doi.org/10.1016/0006-8993(75)90815-X] [PMID: 46175]
[126]
Elorette, C.; Forcelli, P.A.; Saunders, R.C.; Malkova, L. Colocalization of tectal inputs with amygdala-projecting neurons in the macaque pulvinar. Front. Neural Circuits, 2018, 12, 91.
[http://dx.doi.org/10.3389/fncir.2018.00091] [PMID: 30405362]
[127]
Locke, S. The projection of the medical pulvinar of the macaque. J. Comp. Neurol., 1960, 115(2), 155-169.
[http://dx.doi.org/10.1002/cne.901150205] [PMID: 13762988]
[128]
Jones, E.G.; Burton, H. A projection from the medial pulvinar to the amygdala in primates. Brain Res., 1976, 104(1), 142-147.
[http://dx.doi.org/10.1016/0006-8993(76)90654-5] [PMID: 813820]
[129]
Aggleton, J.P.; Burton, M.J.; Passingham, R.E. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res., 1980, 190(2), 347-368.
[http://dx.doi.org/10.1016/0006-8993(80)90279-6] [PMID: 6768425]
[130]
Norita, M.; Kawamura, K. Subcortical afferents to the monkey amygdala: An HRP study. Brain Res., 1980, 190(1), 225-230.
[http://dx.doi.org/10.1016/0006-8993(80)91171-3] [PMID: 6769534]
[131]
Stefanacci, L.; Amaral, D.G. Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: A retrograde tracing study. J. Comp. Neurol., 2000, 421(1), 52-79.
[http://dx.doi.org/10.1002/(SICI)1096-9861(20000522)421:1<52::AID-CNE4>3.0.CO;2-O] [PMID: 10813772]
[132]
Amaral, D.G.; Price, J.L. Amygdalo-cortical projections in the monkey (Macaca fascicularis). J. Comp. Neurol., 1984, 230(4), 465-496.
[http://dx.doi.org/10.1002/cne.902300402] [PMID: 6520247]
[133]
Gattass, R.; Soares, J.G.M.; Lima, B. Connectivity of the Pulvinar. Adv. Anat. Embryol. Cell Biol., 2018, 225, 19-29.
[http://dx.doi.org/10.1007/978-3-319-70046-5_5] [PMID: 29116446]
[134]
Fudge, J.L.; Haber, S.N. The central nucleus of the amygdala projection to dopamine subpopulations in primates. Neuroscience, 2000, 97(3), 479-494.
[http://dx.doi.org/10.1016/S0306-4522(00)00092-0] [PMID: 10828531]
[135]
Griggs, W.S.; Kim, H.F.; Ghazizadeh, A.; Costello, M.G.; Wall, K.M.; Hikosaka, O. Flexible and stable value coding areas in caudate head and tail receive anatomically distinct cortical and subcortical inputs. Front. Neuroanat., 2017, 11, 106.
[http://dx.doi.org/10.3389/fnana.2017.00106] [PMID: 29225570]
[136]
Price, J.L.; Amaral, D.G. An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J. Neurosci., 1981, 1(11), 1242-1259.
[http://dx.doi.org/10.1523/JNEUROSCI.01-11-01242.1981] [PMID: 6171630]
[137]
Shinonaga, Y.; Takada, M.; Mizuno, N. Direct projections from the central amygdaloid nucleus to the globus pallidus and substantia nigra in the cat. Neuroscience, 1992, 51(3), 691-703.
[http://dx.doi.org/10.1016/0306-4522(92)90308-O] [PMID: 1283209]
[138]
Vankova, M.; Arluison, M.; Leviel, V.; Tramu, G. Afferent connections of the rat substantia nigra pars lateralis with special reference to peptide-containing neurons of the amygdalo-nigral pathway. J. Chem. Neuroanat., 1992, 5(1), 39-50.
[http://dx.doi.org/10.1016/0891-0618(92)90032-L] [PMID: 1376607]
[139]
Maeda, K.; Inoue, K.; Kunimatsu, J.; Takada, M.; Hikosaka, O. Primate amygdalo-nigral pathway for boosting oculomotor action in motivating situations. iScience, 2020, 23(6), 101194.
[http://dx.doi.org/10.1016/j.isci.2020.101194] [PMID: 32516719]
[140]
Maeda, K.; Kunimatsu, J.; Hikosaka, O. Amygdala activity for the modulation of goal-directed behavior in emotional contexts. PLoS Biol., 2018, 16(6), e2005339.
[http://dx.doi.org/10.1371/journal.pbio.2005339] [PMID: 29870524]
[141]
Mograbi, D.C.; Morris, R.G. The developing concept of implicit awareness: A rejoinder and reply to commentaries on Mograbi and Morris. Cogn. Neurosci., 2014, 5(3-4), 138-142.
[http://dx.doi.org/10.1080/17588928.2014.905522] [PMID: 24717089]
[142]
Starkstein, S.E.; Jorge, R.E.; Robinson, R.G. The frequency, clinical correlates, and mechanism of anosognosia after stroke. Can. J. Psychiatry, 2010, 55(6), 355-361.
[http://dx.doi.org/10.1177/070674371005500604] [PMID: 20540830]
[143]
McGlynn, S.M.; Schacter, D.L. Unawareness of deficits in neuropsychological syndromes. J. Clin. Exp. Neuropsychol., 1989, 11(2), 143-205.
[http://dx.doi.org/10.1080/01688638908400882] [PMID: 2647781]
[144]
Prigatano, G.P. The study of anosognosia; Oxford University Press, 2010.
[145]
Celeghin, A.; Diano, M.; de Gelder, B.; Weiskrantz, L.; Marzi, C.A.; Tamietto, M. Intact hemisphere and corpus callosum compensate for visuomotor functions after early visual cortex damage. Proc. Natl. Acad. Sci. USA, 2017, 114(48), E10475-E10483.
[http://dx.doi.org/10.1073/pnas.1714801114] [PMID: 29133428]
[146]
Celeghin, A.; Tamietto, M. Blindsight: Functions, methods and neural substrates; Reference Module in Neuroscience and Biobehavioral Psychology, 2021.
[147]
Weiskrantz, L.; Warrington, E.K.; Sanders, M.D.; Marshall, J. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain, 1974, 97(1), 709-728.
[http://dx.doi.org/10.1093/brain/97.1.709] [PMID: 4434190]
[148]
Georgy, L.; Celeghin, A.; Marzi, C.A.; Tamietto, M.; Ptito, A. The superior colliculus is sensitive to gestalt-like stimulus configuration in hemispherectomy patients. Cortex, 2016, 81, 151-161.
[http://dx.doi.org/10.1016/j.cortex.2016.04.018] [PMID: 27208816]
[149]
Celeghin, A.; Barabas, M.; Mancini, F.; Bendini, M.; Pedrotti, E.; Prior, M.; Cantagallo, A.; Savazzi, S.; Marzi, C.A. Speeded manual responses to unseen visual stimuli in hemianopic patients: What kind of blindsight? Conscious. Cogn., 2015, 32, 6-14.
[http://dx.doi.org/10.1016/j.concog.2014.07.010] [PMID: 25123328]
[150]
Celeghin, A.; de Gelder, B.; Tamietto, M. From affective blindsight to emotional consciousness. Conscious. Cogn., 2015, 36, 414-425.
[http://dx.doi.org/10.1016/j.concog.2015.05.007] [PMID: 26058355]
[151]
Celeghin, A.; Savazzi, S.; Barabas, M.; Bendini, M.; Marzi, C.A. Blindsight is sensitive to stimulus numerosity and configuration: evidence from the redundant signal effect. Exp. Brain Res., 2015, 233(5), 1617-1623.
[http://dx.doi.org/10.1007/s00221-015-4236-6] [PMID: 25712088]
[152]
Tamietto, M.; Morrone, M.C. Visual plasticity: blindsight bridges anatomy and function in the visual system. Curr. Biol., 2016, 26(2), R70-R73.
[http://dx.doi.org/10.1016/j.cub.2015.11.026] [PMID: 26811892]
[153]
Kinoshita, M.; Kato, R.; Isa, K.; Kobayashi, K.; Kobayashi, K.; Onoe, H.; Isa, T. Dissecting the circuit for blindsight to reveal the critical role of pulvinar and superior colliculus. Nat. Commun., 2019, 10(1), 135.
[http://dx.doi.org/10.1038/s41467-018-08058-0] [PMID: 30635570]
[154]
Kato, R.; Takaura, K.; Ikeda, T.; Yoshida, M.; Isa, T. Contribution of the retino-tectal pathway to visually guided saccades after lesion of the primary visual cortex in monkeys. Eur. J. Neurosci., 2011, 33(11), 1952-1960.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07729.x] [PMID: 21645091]
[155]
Bisiach, E.; Rusconi, M.L. Break-down of perceptual awareness in unilateral neglect. Cortex, 1990, 26(4), 643-649.
[http://dx.doi.org/10.1016/S0010-9452(13)80313-9] [PMID: 2081401]
[156]
Làdavas, E.; Paladini, R.; Cubelli, R. Implicit associative priming in a patient with left visual neglect. Neuropsychologia, 1993, 31(12), 1307-1320.
[http://dx.doi.org/10.1016/0028-3932(93)90100-E] [PMID: 8127429]
[157]
Shaqiri, A.; Anderson, B. Priming and statistical learning in right brain damaged patients. Neuropsychologia, 2013, 51(13), 2526-2533.
[http://dx.doi.org/10.1016/j.neuropsychologia.2013.09.024] [PMID: 24075841]
[158]
Wansard, M.; Bartolomeo, P.; Vanderaspoilden, V.; Geurten, M.; Meulemans, T. Can the exploration of left space be induced implicitly in unilateral neglect? Conscious. Cogn., 2015, 31, 115-123.
[http://dx.doi.org/10.1016/j.concog.2014.11.004] [PMID: 25460245]
[159]
Brown, C.R.H. The prioritisation of motivationally salient stimuli in hemi-spatial neglect may be underpinned by goal-relevance: A meta-analytic review. Cortex, 2022, 150, 85-107.
[http://dx.doi.org/10.1016/j.cortex.2022.03.001] [PMID: 35381470]
[160]
Domínguez-Borràs, J.; Saj, A.; Armony, J.L.; Vuilleumier, P. Emotional processing and its impact on unilateral neglect and extinction. Neuropsychologia, 2012, 50(6), 1054-1071.
[http://dx.doi.org/10.1016/j.neuropsychologia.2012.03.003] [PMID: 22406694]
[161]
Tamietto, M.; Latini, C.L.; Pia, L.; Zettin, M.; Gionco, M.; Geminiani, G. Effects of emotional face cueing on line bisection in neglect: A single case study. Neurocase, 2005, 11(6), 399-404.
[http://dx.doi.org/10.1080/13554790500259717] [PMID: 16393753]
[162]
Tamietto, M.; Cauda, F.; Celeghin, A.; Diano, M.; Costa, T.; Cossa, F.M.; Sacco, K.; Duca, S.; Geminiani, G.C.; de Gelder, B. Once you feel it, you see it: Insula and sensory-motor contribution to visual awareness for fearful bodies in parietal neglect. Cortex, 2015, 62, 56-72.
[http://dx.doi.org/10.1016/j.cortex.2014.10.009] [PMID: 25465122]
[163]
Tamietto, M.; Geminiani, G.; Genero, R.; de Gelder, B. Seeing fearful body language overcomes attentional deficits in patients with neglect. J. Cogn. Neurosci., 2007, 19(3), 445-454.
[http://dx.doi.org/10.1162/jocn.2007.19.3.445] [PMID: 17335393]
[164]
Domínguez-Borràs, J.; Armony, J.L.; Maravita, A.; Driver, J.; Vuilleumier, P. Partial recovery of visual extinction by pavlovian conditioning in a patient with hemispatial neglect. Cortex, 2013, 49(3), 891-898.
[http://dx.doi.org/10.1016/j.cortex.2012.11.005] [PMID: 23337458]
[165]
Lucas, N.; Schwartz, S.; Leroy, R.; Pavin, S.; Diserens, K.; Vuilleumier, P. Gambling against neglect: Unconscious spatial biases induced by reward reinforcement in healthy people and brain-damaged patients. Cortex, 2013, 49(10), 2616-2627.
[http://dx.doi.org/10.1016/j.cortex.2013.06.004] [PMID: 23969194]
[166]
Geng, J.J.; Behrmann, M. Probability cuing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychol. Sci., 2002, 13(6), 520-525.
[http://dx.doi.org/10.1111/1467-9280.00491] [PMID: 12430835]
[167]
Jiang, Y.; Chun, M.M. Selective attention modulates implicit learning. Q. J. Exp. Psychol. A, 2001, 54(4), 1105-1124.
[http://dx.doi.org/10.1080/713756001] [PMID: 11765735]
[168]
Chun, M.M.; Jiang, Y. Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cognit. Psychol., 1998, 36(1), 28-71.
[http://dx.doi.org/10.1006/cogp.1998.0681] [PMID: 9679076]
[169]
Hoffmann, J.; Kunde, W. Location-specific target expectancies in visual search. J. Exp. Psychol. Hum. Percept. Perform., 1999, 25(4), 1127-1141.
[http://dx.doi.org/10.1037/0096-1523.25.4.1127]
[170]
Mograbi, D.C.; Morris, R.G. Implicit awareness in anosognosia: Clinical observations, experimental evidence, and theoretical implications. Cogn. Neurosci., 2013, 4(3-4), 181-197.
[http://dx.doi.org/10.1080/17588928.2013.833899] [PMID: 24251606]
[171]
Nardone, I.B.; Ward, R.; Fotopoulou, A.; Turnbull, O.H. Attention and emotion in anosognosia: evidence of implicit awareness and repression? Neurocase, 2007, 13(5), 438-445.
[PMID: 18781443]
[172]
LeDoux, J.E.; Brown, R. A higher-order theory of emotional consciousness. Proc. Natl. Acad. Sci. USA, 2017, 114(10), E2016-E2025.
[http://dx.doi.org/10.1073/pnas.1619316114] [PMID: 28202735]
[173]
Rafee, S.; O’Keeffe, F.; O’Riordan, S.; Reilly, R.; Hutchinson, M. Adult onset dystonia: A disorder of the collicular–pulvinar–amygdala network. Cortex, 2021, 143, 282-289.
[http://dx.doi.org/10.1016/j.cortex.2021.05.010] [PMID: 34148640]
[174]
Hutchinson, M.; Isa, T.; Molloy, A.; Kimmich, O.; Williams, L.; Molloy, F.; Moore, H.; Healy, D.G.; Lynch, T.; Walsh, C.; Butler, J.; Reilly, R.B.; Walsh, R.; O’Riordan, S. Cervical dystonia: A disorder of the midbrain network for covert attentional orienting. Front. Neurol., 2014, 5, 54.
[http://dx.doi.org/10.3389/fneur.2014.00054] [PMID: 24803911]
[175]
Palermo, S. What is reduced self-awareness? An overview of interpretative models, bioethical issues and neuroimaging findings. In: Influences and Importance of Self-Awareness, Self-Evaluation and Self-Esteem; Thomas, H.R., Ed.; Nova Medicine & Health, 2022; pp. 65-88.
[176]
Gainotti, G. The relations between cognitive and motivational components of anosognosia for left-sided hemiplegia and the right hemisphere dominance for emotions: A historical survey. Conscious. Cogn., 2021, 94, 103180.
[http://dx.doi.org/10.1016/j.concog.2021.103180] [PMID: 34392025]
[177]
Pia, L.; Neppi-Modona, M.; Ricci, R.; Berti, A. The anatomy of anosognosia for hemiplegia: A meta-analysis. Cortex, 2004, 40(2), 367-377.
[http://dx.doi.org/10.1016/S0010-9452(08)70131-X] [PMID: 15156794]
[178]
Orfei, M.D.; Robinson, R.G.; Prigatano, G.P.; Starkstein, S.; Rüsch, N.; Bria, P.; Caltagirone, C.; Spalletta, G. Anosognosia for hemiplegia after stroke is a multifaceted phenomenon: A systematic review of the literature. Brain, 2007, 130(12), 3075-3090.
[http://dx.doi.org/10.1093/brain/awm106] [PMID: 17533170]
[179]
Berti, A.; Bottini, G.; Gandola, M.; Pia, L.; Smania, N.; Stracciari, A.; Castiglioni, I.; Vallar, G.; Paulesu, E. Shared cortical anatomy for motor awareness and motor control. Science, 2005, 309(5733), 488-491.
[http://dx.doi.org/10.1126/science.1110625] [PMID: 16020740]
[180]
Kortte, K.; Hillis, A.E. Recent advances in the understanding of neglect and anosognosia following right hemisphere stroke. Curr. Neurol. Neurosci. Rep., 2009, 9(6), 459-465.
[http://dx.doi.org/10.1007/s11910-009-0068-8] [PMID: 19818233]
[181]
Grattan, E.S.; Skidmore, E.R.; Woodbury, M.L. Examining anosognosia of neglect. OTJR (Thorofare, N.J.), 2018, 38(2), 113-120.
[http://dx.doi.org/10.1177/1539449217747586] [PMID: 29251546]
[182]
Carota, A.; Bianchini, F.; Pizzamiglio, L.; Calabrese, P. The “Altitudinal Anton’s syndrome”: coexistence of anosognosia, blindsight and left inattention. Behav. Neurol., 2013, 26(1-2), 157-163.
[http://dx.doi.org/10.1155/2013/241715] [PMID: 22713392]
[183]
Moro, V.; Scandola, M.; Bulgarelli, C.; Avesani, R.; Fotopoulou, A. Error-based training and emergent awareness in anosognosia for hemiplegia. Neuropsychol. Rehabil., 2015, 25(4), 593-616.
[http://dx.doi.org/10.1080/09602011.2014.951659] [PMID: 25142215]
[184]
D’Imperio, D.; Bulgarelli, C.; Bertagnoli, S.; Avesani, R.; Moro, V. Modulating anosognosia for hemiplegia: The role of dangerous actions in emergent awareness. Cortex, 2017, 92, 187-203.
[http://dx.doi.org/10.1016/j.cortex.2017.04.009] [PMID: 28501758]
[185]
Saj, A.; Vocat, R.; Vuilleumier, P. On the contribution of unconscious processes to implicit anosognosia. Cogn. Neurosci., 2013, 4(3-4), 198-199.
[http://dx.doi.org/10.1080/17588928.2013.854760] [PMID: 24251607]
[186]
Michel, M.; Beck, D.; Block, N.; Blumenfeld, H.; Brown, R.; Carmel, D.; Carrasco, M.; Chirimuuta, M.; Chun, M.; Cleeremans, A.; Dehaene, S.; Fleming, S.M.; Frith, C.; Haggard, P.; He, B.J.; Heyes, C.; Goodale, M.A.; Irvine, L.; Kawato, M.; Kentridge, R.; King, J.R.; Knight, R.T.; Kouider, S.; Lamme, V.; Lamy, D.; Lau, H.; Laureys, S.; LeDoux, J.; Lin, Y.T.; Liu, K.; Macknik, S.L.; Martinez-Conde, S.; Mashour, G.A.; Melloni, L.; Miracchi, L.; Mylopoulos, M.; Naccache, L.; Owen, A.M.; Passingham, R.E.; Pessoa, L.; Peters, M.A.K.; Rahnev, D.; Ro, T.; Rosenthal, D.; Sasaki, Y.; Sergent, C.; Solovey, G.; Schiff, N.D.; Seth, A.; Tallon-Baudry, C.; Tamietto, M.; Tong, F.; van Gaal, S.; Vlassova, A.; Watanabe, T.; Weisberg, J.; Yan, K.; Yoshida, M. Opportunities and challenges for a maturing science of consciousness. Nat. Hum. Behav., 2019, 3(2), 104-107.
[http://dx.doi.org/10.1038/s41562-019-0531-8] [PMID: 30944453]
[187]
Lehrer, D.S.; Lorenz, J. Anosognosia in schizophrenia: hidden in plain sight. Innov. Clin. Neurosci., 2014, 11(5-6), 10-17.
[PMID: 25152841]
[188]
Jenkinson, P.M.; Preston, C.; Ellis, S.J. Unawareness after stroke: A review and practical guide to understanding, assessing, and managing anosognosia for hemiplegia. J. Clin. Exp. Neuropsychol., 2011, 33(10), 1079-1093.
[http://dx.doi.org/10.1080/13803395.2011.596822] [PMID: 21936643]
[189]
Wickens, J.R.; Reynolds, J.N.J.; Hyland, B.I. Neural mechanisms of reward-related motor learning. Curr. Opin. Neurobiol., 2003, 13(6), 685-690.
[http://dx.doi.org/10.1016/j.conb.2003.10.013] [PMID: 14662369]
[190]
Maier, M.; Ballester, B.R.; Verschure, P.F.M.J. Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front. Syst. Neurosci., 2019, 13, 74.
[http://dx.doi.org/10.3389/fnsys.2019.00074] [PMID: 31920570]
[191]
Abe, M.; Schambra, H.; Wassermann, E.M.; Luckenbaugh, D.; Schweighofer, N.; Cohen, L.G. Reward improves long-term retention of a motor memory through induction of offline memory gains. Curr. Biol., 2011, 21(7), 557-562.
[http://dx.doi.org/10.1016/j.cub.2011.02.030] [PMID: 21419628]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy