Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Chemical Composition, In vitro and In silico Evaluation of Essential Oil from Ocimum tenuiflorum and Coriandrum sativum Linn for Lung Cancer

Author(s): Bhim Singh, Kumari Sunita Prajapati, Amit Kumar, Shivam Patel, Shashank Kumar and Vikas Jaitak*

Volume 20, Issue 5, 2024

Published on: 11 September, 2023

Page: [628 - 639] Pages: 12

DOI: 10.2174/1573409920666230831144716

Price: $65

Abstract

Background: Medicinal plants play an essential role in everyday life; plants highly contain therapeutic phytoconstituents commonly used to treat various diseases. This paper discusses the Chemical composition, In vitro antiproliferative activity and In silico study of essential oil extracted from Ocimum tenuiflorum (family Lamiaceae) and Coriandrum sativum (family Apiaceae).

Objective: In present study GC-MS was used to identify the chemical constituents from O. tenuiflorum and C. sativum. In vitro antiproliferative activity was performed on A549 cancer cell lines. In silico study was performed by Schrodinger’s maestro software to identify chemical constituents in both plants as potential EGFR inhibitors for the treatment of lung cancer.

Methods: The essential oil was extracted by hydro distillation from aerial parts of O. tenuiflorum and C. sativum. The volatile oil sample was analyzed by (GC-MS) Gas Chromatography- Mass Spectrometry. Different chemical constituents were identified based on the retention index and compared with the NIST library. The oil samples from O. tenuiflorum and C. sativum was also evaluated for antiproliferative activity against human lung cancer A549 cell lines. In silico study was performed by Schrodinger maestro software against EGFR (PDB ID 5HG8).

Results: O. tenuiflorum essential oil contains Eugenol (42.90%), 2-β-Elemene (25.98%), β- Caryophyllene (19.12%) are the major constituents. On the other side, C. sativum contains nnonadecanol- 1 (16.37%), decanal (12.37%), dodecanal (12.27%), 2-Dodecanal (9.67%), Phytol (8.81%) as the major constituents. Both the oils have shown in vitro antiproliferative activity against human lung cancer cell lines A549 having IC50 values of 38.281 μg/ml (O. tenuiflorum) and 74.536 μg/ml (C. sativum). Molecular interactions of constituents hydro distilled from two oils was analysed by schrodinger maestro software against EGFR (PDB ID 5HG8).

Conclusion: The oil sample extracted from O. tenuiflorum showed more antiproliferative activity than C. sativum. In silico study showed that two chemical constituents, namely di-isobutyl phthalate (-7.542 kcal/mol) and dibutyl phthalate (-7.181 kcal/mol) from O. tenuiflorum and one diethyl phthalate (-7.224 kcal/mol) from C. sativum having more docking score than standard Osimertinib which indicates the effectiveness of oils for lung cancer.

Graphical Abstract

[1]
Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J., 2022, 135(5), 584-590.
[http://dx.doi.org/10.1097/CM9.0000000000002108] [PMID: 35143424]
[2]
Deo, S.V.S.; Sharma, J.; Kumar, S. GLOBOCAN 2020 report on global cancer burden: Challenges and opportunities for surgical oncologists. Ann. Surg. Oncol., 2022, 29(11), 6497-6500.
[http://dx.doi.org/10.1245/s10434-022-12151-6] [PMID: 35838905]
[3]
Pradhan, K.S.; Chawla, P.; Tiwari, R. HRDEL: High ranking deep ensemble learning-based lung cancer diagnosis model. Expert Syst. Appl., 2023, 213, 118956.
[http://dx.doi.org/10.1016/j.eswa.2022.118956]
[4]
Sharma, P.; Mehta, M.; Dhanjal, D.S.; Kaur, S.; Gupta, G.; Singh, H.; Thangavelu, L.; Rajeshkumar, S.; Tambuwala, M.; Bakshi, H.A.; Chellappan, D.K.; Dua, K.; Satija, S. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact., 2019, 309, 108720.
[http://dx.doi.org/10.1016/j.cbi.2019.06.033] [PMID: 31226287]
[5]
Chen, L.; Fu, W.; Zheng, L.; Liu, Z.; Liang, G. Recent progress of small-molecule epidermal growth factor receptor (EGFR) inhibitors against C797S resistance in non-small-cell lung cancer: Miniperspective. J. Med. Chem., 2018, 61(10), 4290-4300.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01310] [PMID: 29136465]
[6]
Tian, X.; Gu, T.; Lee, M.H.; Dong, Z. Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(1), 188645.
[http://dx.doi.org/10.1016/j.bbcan.2021.188645] [PMID: 34793897]
[7]
Cao, S.Y.; Li, Y.; Meng, X.; Zhao, C.N.; Li, S.; Gan, R.Y.; Li, H.B. Dietary natural products and lung cancer: Effects and mechanisms of action. J. Funct. Foods, 2019, 52, 316-331.
[http://dx.doi.org/10.1016/j.jff.2018.11.004]
[8]
Hoy, H.; Lynch, T.; Beck, M. Surgical treatment of lung cancer. Crit. Care Nurs. Clin. North Am., 2019, 31(3), 303-313.
[PMID: 31351552]
[9]
Eltayeb, K.; La Monica, S.; Tiseo, M.; Alfieri, R.; Fumarola, C. Reprogramming of lipid metabolism in lung cancer: An overview with focus on EGFR-Mutated non-small cell lung cancer. Cells, 2022, 11(3), 413.
[http://dx.doi.org/10.3390/cells11030413] [PMID: 35159223]
[10]
Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737.
[http://dx.doi.org/10.1038/s41416-019-0573-8] [PMID: 31564718]
[11]
Skribek, M.; Rounis, K.; Tsakonas, G.; Ekman, S. Complications following novel therapies for non‐small cell lung cancer. J. Intern. Med., 2022, 291(6), 732-754.
[http://dx.doi.org/10.1111/joim.13445] [PMID: 35032058]
[12]
Alam, M.; Alam, S.; Shamsi, A.; Adnan, M.; Elasbali, A.M.; Al-Soud, W.A.; Alreshidi, M.; Hawsawi, Y.M.; Tippana, A.; Pasupuleti, V.R.; Hassan, M.I. Bax/Bcl-2 cascade is regulated by the EGFR pathway: Therapeutic targeting of non-small cell lung cancer. Front. Oncol., 2022, 12, 869672.
[http://dx.doi.org/10.3389/fonc.2022.869672] [PMID: 35402265]
[13]
Sharma, S.; Kumar, K.; Thakur, N.; Chauhan, S.; Chauhan, M.S. Eco-friendly Ocimum tenuiƒlorum green route synthesis of CuO nanoparticles: Characterizations on photocatalytic and antibacterial activities. J. Environ. Chem. Eng., 2021, 9(4), 105395.
[http://dx.doi.org/10.1016/j.jece.2021.105395]
[14]
Piras, A.; Gonçalves, M.J.; Alves, J.; Falconieri, D.; Porcedda, S.; Maxia, A.; Salgueiro, L. Ocimum tenuiƒlorum L. and Ocimum basilicum L., two spices of Lamiaceae family with bioactive essential oils. Ind. Crops Prod., 2018, 113, 89-97.
[http://dx.doi.org/10.1016/j.indcrop.2018.01.024]
[15]
Chandra, M.; Kushwaha, S.; Mishra, B.; Sangwan, N. Molecular and structural insights for the regulation of terpenoids in Ocimum basilicum and Ocimum tenuiƒlorum. Plant Growth Regul., 2022, 97(1), 61-75.
[http://dx.doi.org/10.1007/s10725-022-00796-y]
[16]
Prakash, P.; Gupta, N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian J. Physiol. Pharmacol., 2005, 49(2), 125-131.
[PMID: 16170979]
[17]
Sampath Kumar, K.P.; Bhowmik, D.; Biswajit, C.; Tripathi, K.K. Traditional indian herbal plants tulsi and its medicinal importance. J. Pharmacogn. Phytochem., 2010, 2(2), 93-101.
[18]
M, S.; Kr, S.; B, S.; G, V.; S, R.; K, S.; K, M. Ocimum sanctum: A review on the pharmacological properties. Int. J. Basic Clin. Pharmacol., 2016, 5(3), 558-565.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20161491]
[19]
Al-Khayri, J.M.; Banadka, A.; Nandhini, M.; Nagella, P.; Al-Mssallem, M.Q.; Alessa, F.M. Essential Oil from Coriandrum sativum: A review on its phytochemistry and biological activity. Molecules, 2023, 28(2), 696.
[http://dx.doi.org/10.3390/molecules28020696] [PMID: 36677754]
[20]
Kačániová, M.; Galovičová, L.; Ivanišová, E.; Vukovic, N.L.; Štefániková, J.; Valková, V.; Borotová, P.; Žiarovská, J.; Terentjeva, M.; Felšöciová, S.; Tvrdá, E. Antioxidant, antimicrobial and antibiofilm activity of coriander (Coriandrum sativum L.) essential oil for its application in foods. Foods, 2020, 9(3), 282.
[http://dx.doi.org/10.3390/foods9030282] [PMID: 32143314]
[21]
Ahmed, E.H.; Abadi, R.S.; Mohammed, A.M. Phytochemical screening, chemical composition and antioxidant activity of seeds essential oil of Coriandrum sativum L. from the Sudan. Int. J. Herb. Med., 2018, 6(1), 1-4.
[22]
Zeb, A. Coriander (Coriandrum sativum) Oils. In: Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: San Diego, 2016; pp. 359-364.
[http://dx.doi.org/10.1016/B978-0-12-416641-7.00040-7]
[23]
Pavlić, B.; Vidović, S.; Vladić, J.; Radosavljević, R.; Zeković, Z. Isolation of coriander (Coriandrum sativum L.) essential oil by green extractions versus traditional techniques. J. Supercrit. Fluids, 2015, 99, 23-28.
[http://dx.doi.org/10.1016/j.supflu.2015.01.029]
[24]
Sourmaghi, M.H.S.; Kiaee, G.; Golfakhrabadi, F.; Jamalifar, H.; Khanavi, M. Comparison of essential oil composition and antimicrobial activity of Coriandrum sativum L. extracted by hydrodistillation and microwave-assisted hydrodistillation. J. Food Sci. Technol., 2015, 52(4), 2452-2457.
[http://dx.doi.org/10.1007/s13197-014-1286-x] [PMID: 25829632]
[25]
Salem, M.A.; Manaa, E.G.; Osama, N.; Aborehab, N.M.; Ragab, M.F.; Haggag, Y.A.; Ibrahim, M.T.; Hamdan, D.I. Coriander (Coriandrum sativum L.) essential oil and oil-loaded nano-formulations as an anti-aging potentiality via TGFβ/SMAD pathway. Sci. Rep., 2022, 12(1), 6578.
[http://dx.doi.org/10.1038/s41598-022-10494-4] [PMID: 35449437]
[26]
Saini, N.; Grewal, A.S.; Lather, V.; Gahlawat, S.K. Natural alkaloids targeting EGFR in non-small cell lung cancer: Molecular docking and ADMET predictions. Chem. Biol. Interact., 2022, 358, 109901.
[http://dx.doi.org/10.1016/j.cbi.2022.109901] [PMID: 35341731]
[27]
Hasan, M.R.; Alotaibi, B.S.; Althafar, Z.M.; Mujamammi, A.H.; Jameela, J. An update on the therapeutic anticancer potential of ocimum sanctum L.: “Elixir of life”. Molecules, 2023, 28(3), 1193.
[http://dx.doi.org/10.3390/molecules28031193] [PMID: 36770859]
[28]
Boonyanugomol, W.; Rukseree, K.; Prapatpong, P.; Reamtong, O.; Baik, S.-C.; Jung, M.; Shin, M.-K.; Kang, H.-L.; Lee, W.-K. An in vitro anti-cancer activity of ocimum tenuiƒlorum essential oil by inducing apoptosis in human gastric cancer cell line. Medicina, 2021, 57(8), 784.
[http://dx.doi.org/10.3390/medicina57080784]
[29]
Kumar, A.; Yadav, P.; Navik, U.; Jaitak, V. Chemical composition, in vitro and in silico evaluation of essential oil from Eucalyptus tereticornis leaves for lung cancer. Nat. Prod. Res., 2023, 37(10), 1656-1661.
[30]
Kumar, A.; Gupta, K.B.; Dhiman, M.; Arora, S.; Jaitak, V. New pentacyclic triterpene from Potentilla atrosanguinea Lodd. as anticancer agent for breast cancer targeting estrogen receptor- α. Nat. Prod. Res., 2022, 36(17), 4352-4357.
[http://dx.doi.org/10.1080/14786419.2021.1986495] [PMID: 34606404]
[31]
Kumar, A.; Kalra, S.; Jangid, K.; Jaitak, V. Flavonoids as P-glycoprotein inhibitors for multidrug resistance in cancer: An in-silico approach. J. Biomol. Struct. Dyn., 2023, 41(16), 7627-7639.
[http://dx.doi.org/10.1080/07391102.2022.2123390] [PMID: 36120941]
[32]
Aravind, AP.; Kumar, A.; Jangid, K.; Vinod, K.; Vikas, J. Structure-Structure for the identification of terpenoids as potential DPP-4 inhibitors. Curr. Comput. Aided. Drug Des., 2023.
[33]
Justus, B.; Kanunfre, C.C.; Budel, J.M.; de Faria, M.F.; Raman, V.; de Paula, J.P.; Farago, P.V. New insights into the mechanisms of French lavender essential oil on non-small-cell lung cancer cell growth. Ind. Crops Prod., 2019, 136, 28-36.
[http://dx.doi.org/10.1016/j.indcrop.2019.04.051]
[34]
Sharma, M.; Grewal, K.; Jandrotia, R.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed. Pharmacother., 2022, 146, 112514.
[http://dx.doi.org/10.1016/j.biopha.2021.112514] [PMID: 34963087]
[35]
Odogwu, L.; Mathieu, L.; Goldberg, K.B.; Blumenthal, G.M.; Larkins, E.; Fiero, M.H.; Rodriguez, L.; Bijwaard, K.; Lee, E.Y.; Philip, R.; Fan, I.; Donoghue, M.; Keegan, P.; McKee, A.; Pazdur, R. FDA benefit-risk assessment of osimertinib for the treatment of metastatic non-small cell lung cancer harboring epidermal growth factor receptor T790M mutation. Oncologist, 2018, 23(3), 353-359.
[http://dx.doi.org/10.1634/theoncologist.2017-0425] [PMID: 29242281]
[36]
QikProp. 2022. Available from: https://www.schrodinger.com/products/qikprop

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy