Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Short Communication

Synthesis of Epichlorohydrin-based Click-dendrons with Different Functional Groups

Author(s): Evgeny Ocherednyuk*, Vladimir Burilov, Tatiana Shilyaeva, Svetlana Solovieva and Igor Antipin

Volume 27, Issue 11, 2023

Published on: 27 September, 2023

Page: [979 - 982] Pages: 4

DOI: 10.2174/1385272827666230830105808

Price: $65

Abstract

A methodology for synthesizing 1st generation triazole-containing dendrons based on epichlorohydrin with different functional groups was developed using a Cu-catalyzed azide-alkyne cycloaddition reaction (CuAAC) reaction. The proposed methodology uses simple reagents and can serve as a basis for the synthesis of dendrons and dendrimers of higher generations. High reaction yields as well as the cost of starting reagents, make the preparation of such compounds economically and environmentally favorable.

« Previous
Graphical Abstract

[1]
Neumann, S.; Biewend, M.; Rana, S.; Binder, W.H. The CuAAC: Principles, homogeneous and heterogeneous catalysts, and novel developments and applications. Macromol. Rapid Commun., 2020, 41(1), 1900359.
[http://dx.doi.org/10.1002/marc.201900359] [PMID: 31631449]
[2]
Jankovič D.; Virant, M.; Gazvoda, M. Copper-catalyzed azide-alkyne cycloaddition of hydrazoic acid formed in situ from sodium azide affords 4-monosubstituted-1,2,3-triazoles. J. Org. Chem., 2022, 87(6), 4018-4028.
[http://dx.doi.org/10.1021/acs.joc.1c02775] [PMID: 35148087]
[3]
Burilov, V.; Fatykhova, A.; Mironova, D.; Sultanova, E.; Nugmanov, R.; Artemenko, A.; Volodina, A.; Daminova, A.; Evtugyn, V.; Solovieva, S.; Antipin, I. Oxyethylated fluoresceine-(thia)calix[4]arene conjugates: Synthesis and visible-light photoredox catalysis in water-organic media. Molecules, 2022, 28(1), 261.
[http://dx.doi.org/10.3390/molecules28010261] [PMID: 36615457]
[4]
Agrahari, A.K.; Singh, A.S.; Mukherjee, R.; Tiwari, V.K. An expeditious click approach towards the synthesis of galactose coated novel glyco-dendrimers and dentromers utilizing a double stage convergent method. RSC Advances, 2020, 10(52), 31553-31562.
[http://dx.doi.org/10.1039/D0RA05289B] [PMID: 35520637]
[5]
Astruc, D.; Liang, L.; Rapakousiou, A.; Ruiz, J. Click dendrimers and triazole-related aspects: Catalysts, mechanism, synthesis, and functions. A bridge between dendritic architectures and nanomaterials. Acc. Chem. Res., 2012, 45(4), 630-640.
[http://dx.doi.org/10.1021/ar200235m] [PMID: 22148925]
[6]
Hein, J.E.; Fokin, V.V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper(i) acetylides. Chem. Soc. Rev., 2010, 39(4), 1302-1315.
[http://dx.doi.org/10.1039/b904091a] [PMID: 20309487]
[7]
Hong, V.; Presolski, S.I.; Ma, C.; Finn, M.G. Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed., 2009, 48(52), 9879-9883.
[http://dx.doi.org/10.1002/anie.200905087] [PMID: 19943299]
[8]
AlHaddad, N.; Rifai, A.; Kasprowiak, A.; Cazier-Dennin, F.; Danjou, P.E. Solid–liquid extraction of iodide and bromide from aqueous media by a new water-insoluble phenoxycalix[4]pyrrole-epichlorohydrin polymer. Org. Biomol. Chem., 2019, 17(31), 7330-7336.
[http://dx.doi.org/10.1039/C9OB01306G] [PMID: 31312833]
[9]
Teruel-Juanes, R.; Pascual-Jose, B.; Graf, R.; Reina, J.; Giamberini, M.; Ribes-Greus, A. Effect of dendritic side groups on the mobility of modified poly(epichlorohydrin) copolymers. Polymers, 2021, 13(12), 1961.
[http://dx.doi.org/10.3390/polym13121961] [PMID: 34199206]
[10]
Timmer, B.J.J.; Flos, M.A.; Jørgensen, L.M.; Proverbio, D.; Altun, S.; Ramström, O.; Aastrup, T.; Vincent, S.P. Spatially well-defined carbohydrate nanoplatforms: Synthesis, characterization and lectin interaction study. Chem. Commun., 2016, 52(83), 12326-12329.
[http://dx.doi.org/10.1039/C6CC06737A] [PMID: 27711353]
[11]
Yadav, D.; Shankar Singh, M. Transition‐metal‐free one‐pot [3+3] heteroannulative coupling of thioamides with epichlorohydrin: Access to diverse 1,3‐thiazinanes. Eur. J. Org. Chem., 2023, 26(10), e202201335.
[http://dx.doi.org/10.1002/ejoc.202201335]
[12]
Mohy El Dine, T.; Jimmidi, R.; Diaconu, A.; Fransolet, M.; Michiels, C.; De Winter, J.; Gillon, E.; Imberty, A.; Coenye, T.; Vincent, S.P. Pillar[5]arene-based polycationic glyco[2]rotaxanes designed as Pseudomonas aeruginosa antibiofilm agents. J. Med. Chem., 2021, 64(19), 14728-14744.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01241] [PMID: 34542288]
[13]
Meng, G.; Guo, T.; Ma, T.; Zhang, J.; Shen, Y.; Sharpless, K.B.; Dong, J. Modular click chemistry libraries for functional screens using a diazotizing reagent. Nature, 2019, 574(7776), 86-89.
[http://dx.doi.org/10.1038/s41586-019-1589-1] [PMID: 31578481]
[14]
Xu, X.; Seiffert, A.K.; Lenaerts, R.; Ryskulova, K.; Jana, S.; Van Hecke, K.; Jerca, V.V.; Hoogenboom, R. [2 × 2] metallo-supramolecular grids based on 4,6-bis((1H-1,2,3-triazol-4-yl)-pyridin-2-yl)-2-phenylpyrimidine ligands: From discrete [2 × 2] grid structures to star-shaped supramolecular polymeric architectures. Dalton Trans., 2021, 50(25), 8746-8751.
[http://dx.doi.org/10.1039/D1DT01373D] [PMID: 34079970]
[15]
Verdoes, M.; Florea, B.I.; Hillaert, U.; Willems, L.I.; van der Linden, W.A.; Sae-Heng, M.; Filippov, D.V.; Kisselev, A.F.; van der Marel, G.A.; Overkleeft, H.S. Azido-BODIPY acid reveals quantitative Staudinger-Bertozzi ligation in two-step activity-based proteasome profiling. ChemBioChem, 2008, 9(11), 1735-1738.
[http://dx.doi.org/10.1002/cbic.200800231] [PMID: 18600815]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy