Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Fluorescent Bodipy Sensor for Trace Detection of Nerve Agents Simulant via Supramolecular Approach

Author(s): Rossella Santonocito, Alessia Cavallaro, Roberta Puglisi, Manuelamaria Intravaia, Rosa Maria Toscano, Andrea Pappalardo and Giuseppe Trusso Sfrazzetto*

Volume 27, Issue 10, 2023

Published on: 06 September, 2023

Page: [876 - 882] Pages: 7

DOI: 10.2174/1385272827666230828121210

Price: $65

Abstract

The use of organophosphorus (OP) Nerve Agents (NAs) as chemical weapons still represents a real danger for the safety of population threaten by conflicts or terrorist attacks. A fast and easy-to-use detection of this hazardous gases could make the difference in emergency state. Specifically, the possibility to develop a detection system involving an easily accessible tool, such as a smartphone, is the driving force of the current research work. Due to the great advantages related to the optical sensing, we here report two new BODIPY-based fluorescent receptors for Dimethyl methyl phosphonate (DMMP) NA simulant, with one of the lowest limit of detection. A solid sensor was then developed able to give an OFF/ON response to low ppm concentration of DMMP gas, by using a common smartphone camera with an integrated open-source processing software.

Graphical Abstract

[1]
Stone, R.U.K. attack puts nerve agent in the spotlight. Science, 2018, 359(6382), 1314-1315.
[http://dx.doi.org/10.1126/science.359.6382.1314] [PMID: 29567684]
[2]
Costanzi, S.; Machado, J.H.; Mitchell, M. Nerve agents: What they are, how they work, how to counter them. ACS Chem. Neurosci., 2018, 9(5), 873-885.
[http://dx.doi.org/10.1021/acschemneuro.8b00148] [PMID: 29664277]
[3]
Abou-Donia, M.B.; Siracuse, B.; Gupta, N.; Sobel, S.A. Sarin (GB, O-isopropyl methylphosphonofluoridate) neurotoxicity: Critical review. Crit. Rev. Toxicol., 2016, 46(10), 845-875.
[http://dx.doi.org/10.1080/10408444.2016.1220916] [PMID: 27705071]
[4]
Ovenden, S.P.B.; Webster, R.L.; Micich, E.; McDowall, L.J.; McGill, N.W.; Williams, J.; Zanatta, S.D. The identification of chemical attribution signatures of stored VX nerve agents using NMR, GC-MS, and LC-HRMS. Talanta, 2020, 211, 120753.
[http://dx.doi.org/10.1016/j.talanta.2020.120753] [PMID: 32070627]
[5]
Chen, Q.; Sun, Y.; Liu, S.; Zhang, J.; Zhang, C.; Jiang, H.; Han, X.; He, L.; Wang, S.; Zhang, K. Colorimetric and fluorescent sensors for detection of nerve agents and organophosphorus pesticides. Sens. Actuators B Chem., 2021, 344, 130278.
[http://dx.doi.org/10.1016/j.snb.2021.130278]
[6]
Kumar, V.; Kim, H.; Pandey, B.; James, T.D.; Yoon, J.; Anslyn, E.V. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: A legacy of the 21st century. Chem. Soc. Rev., 2023, 52(2), 663-704.
[http://dx.doi.org/10.1039/D2CS00651K] [PMID: 36546880]
[7]
Meng, W.Q.; Sedgwick, A.C.; Kwon, N.; Sun, M.; Xiao, K.; He, X.P.; Anslyn, E.V.; James, T.D.; Yoon, J. Fluorescent probes for the detection of chemical warfare agents. Chem. Soc. Rev., 2023, 52(2), 601-662.
[http://dx.doi.org/10.1039/D2CS00650B] [PMID: 36149439]
[8]
Xu, Y.; Li, C.; Ma, X.; Tuo, W.; Tu, L.; Li, X.; Sun, Y.; Stang, P.J.; Sun, Y. Long wavelength–emissive Ru(II) metallacycle–based photosensitizer assisting in vivo bacterial diagnosis and antibacterial treatment. Proc. Natl. Acad. Sci., 2022, 119(32), e2209904119.
[http://dx.doi.org/10.1073/pnas.2209904119] [PMID: 35914164]
[9]
Li, C.; Tu, L.; Yang, J.; Liu, C.; Xu, Y.; Li, J.; Tuo, W.; Olenyuk, B.; Sun, Y.; Stang, P.J.; Sun, Y. Acceptor engineering of metallacycles with high phototoxicity indices for safe and effective photodynamic therapy. Chem. Sci., 2023, 14(11), 2901-2909.
[http://dx.doi.org/10.1039/D2SC06936A] [PMID: 36937588]
[10]
Xu, Y.; Li, C.; An, J.; Ma, X.; Yang, J.; Luo, L.; Deng, Y.; Kim, J.S.; Sun, Y. Construction of a 980 nm laser-activated Pt(II) metallacycle nanosystem for efficient and safe photo-induced bacteria sterilization. Sci. China Chem., 2023, 66(1), 155-163.
[http://dx.doi.org/10.1007/s11426-022-1440-2]
[11]
Jang, Y.J.; Kim, K.; Tsay, O.G.; Atwood, D.A.; Churchill, D.G. Update 1 of: Destruction and detection of chemical warfare agents. Chem. Rev., 2015, 115(24), PR1-PR76.
[http://dx.doi.org/10.1021/acs.chemrev.5b00402] [PMID: 26654832]
[12]
Sambrook, M.R.; Notman, S. Supramolecular chemistry and chemical warfare agents: From fundamentals of recognition to catalysis and sensing. Chem. Soc. Rev., 2013, 42(24), 9251-9267.
[http://dx.doi.org/10.1039/c3cs60230c] [PMID: 24048279]
[13]
Butera, E.; Zammataro, A.; Pappalardo, A.; Trusso Sfrazzetto, G. Supramolecular sensing of chemical warfare agents. ChemPlusChem, 2021, 86(4), 681-695.
[http://dx.doi.org/10.1002/cplu.202100071] [PMID: 33881227]
[14]
Butala, R.R.; Creasy, W.R.; Fry, R.A.; McKee, M.L.; Atwood, D.A. Lewis acid-assisted detection of nerve agents in water. Chem. Commun., 2015, 51(45), 9269-9271.
[http://dx.doi.org/10.1039/C5CC00466G] [PMID: 25820753]
[15]
Pappalardo, A.; Gangemi, C.M.A.; Toscano, R.M.; Sfrazzetto, G.T. A new fluorescent salen-uranyl sensor for the sub-ppm detection of chemical warfare agents. Curr. Org. Chem., 2020, 24(20), 2378-2382.
[http://dx.doi.org/10.2174/138527282499920093015031]
[16]
Puglisi, R.; Mineo, P.G.; Pappalardo, A.; Gulino, A.; Trusso Sfrazzetto, G. Supramolecular detection of a nerve agent simulant by fluorescent Zn–salen oligomer receptors. Molecules, 2019, 24(11), 2160.
[http://dx.doi.org/10.3390/molecules24112160] [PMID: 31181723]
[17]
Dennison, G.H.; Curty, C.; Metherell, A.J.; Micich, E.; Zaugg, A.; Ward, M.D. Qualitative colorimetric analysis of a Ir(III)/Eu(III) dyad in the presence of chemical warfare agents and simulants on a paper matrix. RSC Adv, 2019, 9(14), 7615-7619.
[http://dx.doi.org/10.1039/C9RA00824A] [PMID: 35521155]
[18]
Metherell, A.J.; Curty, C.; Zaugg, A.; Saad, S.T.; Dennison, G.H.; Ward, M.D. Converting an intensity-based sensor to a ratiometric sensor: luminescence colour switching of an Ir/Eu dyad upon binding of a V-series chemical warfare agent simulant. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(41), 9664-9668.
[http://dx.doi.org/10.1039/C6TC03754B]
[19]
Trusso Sfrazzetto, G.; Millesi, S.; Pappalardo, A.; Tomaselli, G.A.; Ballistreri, F.P.; Toscano, R.M.; Fragalà, I.; Gulino, A. Nerve gas simulant sensing by a uranyl-salen monolayer covalently anchored on quartz substrates. Chemistry., 2017, 23(7), 1576-1583.
[http://dx.doi.org/10.1002/chem.201602292] [PMID: 27859726]
[20]
Gangemi, C.M.A.; Rimkaite, U.; Pappalardo, A.; Trusso Sfrazzetto, G. Light-up photoluminescence sensing of a nerve agent simulant by a bis-porphyrin–salen–UO2 complex. RSC Adv, 2021, 11(22), 13047-13050.
[http://dx.doi.org/10.1039/D1RA01397A] [PMID: 35423859]
[21]
Chung, Y.K.; Ha, S.; Woo, T.G.; Kim, Y.D.; Song, C.; Kim, S.K. Binding thiourea derivatives with dimethyl methylphosphonate for sensing nerve agents. RSC Adv, 2019, 9(19), 10693-10701.
[http://dx.doi.org/10.1039/C9RA00314B] [PMID: 35515324]
[22]
Hiscock, J.R.; Kirby, I.L.; Herniman, J.; Langley, J.G.; Clark, A.J.; Gale, P.A. Supramolecular gels for the remediation of reactive organophosphorus compounds. RSC Adv, 2014, 4(85), 45517-45521.
[http://dx.doi.org/10.1039/C4RA07712A]
[23]
Hiscock, J.R.; Piana, F.; Sambrook, M.R.; Wells, N.J.; Clark, A.J.; Vincent, J.C.; Busschaert, N.; Brown, R.C.D.; Gale, P.A. Detection of nerve agent via perturbation of supramolecular gel formation. Chem. Commun., 2013, 49(80), 9119-9121.
[http://dx.doi.org/10.1039/c3cc44841j] [PMID: 23994877]
[24]
Hiscock, J.R.; Sambrook, M.R.; Ede, J.A.; Wells, N.J.; Gale, P.A. Disruption of a binary organogel by the chemical warfare agent soman (GD) and common organophosphorus simulants. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(3), 1230-1234.
[http://dx.doi.org/10.1039/C4TA04834B]
[25]
Hiscock, J.R.; Sambrook, M.R.; Wells, N.J.; Gale, P.A. Detection and remediation of organophosphorus compounds by oximate containing organogels. Chem. Sci., 2015, 6(10), 5680-5684.
[http://dx.doi.org/10.1039/C5SC01864A] [PMID: 28791084]
[26]
Hiscock, J.R.; Wells, N.J.; Ede, J.A.; Gale, P.A.; Sambrook, M.R. Biasing hydrogen bond donating host systems towards chemical warfare agent recognition. Org. Biomol. Chem., 2016, 14(40), 9560-9567.
[http://dx.doi.org/10.1039/C6OB01210H] [PMID: 27722624]
[27]
Sambrook, M.R.; Hiscock, J.R.; Cook, A.; Green, A.C.; Holden, I.; Vincent, J.C.; Gale, P.A. Hydrogen bond-mediated recognition of the chemical warfare agent soman (GD). Chem. Commun., 2012, 48(45), 5605-5607.
[http://dx.doi.org/10.1039/c2cc31096a] [PMID: 22546851]
[28]
Kumar, V.; Rana, H.; Raviraju, G.; Garg, P.; Baghel, A.; Gupta, A.K. Chromogenic and fluorogenic multianalyte detection with a tuned receptor: refining selectivity for toxic anions and nerve agents. RSC Adv, 2016, 6(64), 59648-59656.
[http://dx.doi.org/10.1039/C6RA07080A]
[29]
Ha, S.; Lee, M.; Seo, H.O.; Song, S.G.; Kim, K.; Park, C.H.; Kim, I.H.; Kim, Y.D.; Song, C. Structural effect of thioureas on the detection of chemical warfare agent simulants. ACS Sens., 2017, 2(8), 1146-1151.
[http://dx.doi.org/10.1021/acssensors.7b00256] [PMID: 28776366]
[30]
Ruan, Y.; Taha, H.A.; Yoder, R.J.; Maslak, V.; Hadad, C.M. Badjić J.D. The prospect of selective recognition of nerve agents with modular basket-like hosts. A structure-activity study of the entrapment of a series of organophosphonates in aqueous media. J. Phys. Chem. B, 2013, 117(11), 3240-3249.
[http://dx.doi.org/10.1021/jp401841w] [PMID: 23445375]
[31]
Chen, S.; Ruan, Y.; Brown, J.D.; Gallucci, J.; Maslak, V.; Hadad, C.M. Badjić J.D. Assembly of amphiphilic baskets into stimuli-responsive vesicles. Developing a strategy for the detection of organophosphorus chemical nerve agents. J. Am. Chem. Soc., 2013, 135(40), 14964-14967.
[http://dx.doi.org/10.1021/ja408585j] [PMID: 24063351]
[32]
Chen, S.; Ruan, Y.; Brown, J.D.; Hadad, C.M. Badjić J.D. Recognition characteristics of an adaptive vesicular assembly of amphiphilic baskets for selective detection and mitigation of toxic nerve agents. J. Am. Chem. Soc., 2014, 136(49), 17337-17342.
[http://dx.doi.org/10.1021/ja510477q] [PMID: 25402739]
[33]
Chen, S.; Yamasaki, M.; Polen, S.; Gallucci, J.; Hadad, C.M. Badjić J.D. Dual-cavity basket promotes encapsulation in water in an allosteric fashion. J. Am. Chem. Soc., 2015, 137(38), 12276-12281.
[http://dx.doi.org/10.1021/jacs.5b06041] [PMID: 26348904]
[34]
Sambrook, M.R.; Vincent, J.C.; Ede, J.A.; Gass, I.A.; Cragg, P.J. Experimental and computational study of the inclusion complexes of β-cyclodextrin with the chemical warfare agent soman (GD) and commonly used simulants. RSC Adv., 2017, 7(60), 38069-38076.
[http://dx.doi.org/10.1039/C7RA03328A]
[35]
Ede, J.; Cragg, P.; Sambrook, M. Comparison of binding affinities of water-soluble calixarenes with the organophosphorus nerve agent soman (GD) and commonly-used nerve agent simulants. Molecules, 2018, 23(1), 207.
[http://dx.doi.org/10.3390/molecules23010207] [PMID: 29351252]
[36]
Barba-Bon, A.; Costero, A.M.; Gil, S.; Sancenón, F.; Martínez-Máñez, R. Chromo-fluorogenic BODIPY-complexes for selective detection of V-type nerve agent surrogates. Chem. Commun., 2014, 50(87), 13289-13291.
[http://dx.doi.org/10.1039/C4CC05945J] [PMID: 25233370]
[37]
Dennison, G.H.; Sambrook, M.R.; Johnston, M.R. Interactions of the G-series organophosphorus chemical warfare agent sarin and various simulants with luminescent lanthanide complexes. RSC Adv., 2014, 4(98), 55524-55528.
[http://dx.doi.org/10.1039/C4RA10700D]
[38]
Legnani, L.; Puglisi, R.; Pappalardo, A.; Chiacchio, M.A.; Trusso Sfrazzetto, G. Supramolecular recognition of phosphocholine by an enzyme-like cavitand receptor. Chem. Commun., 2020, 56(4), 539-542.
[http://dx.doi.org/10.1039/C9CC07577A] [PMID: 31829317]
[39]
Puglisi, R.; Pappalardo, A.; Gulino, A.; Trusso Sfrazzetto, G. Supramolecular recognition of a CWA simulant by metal–salen complexes: The first multi-topic approach. Chem. Commun., 2018, 54(79), 11156-11159.
[http://dx.doi.org/10.1039/C8CC06425C] [PMID: 30226513]
[40]
Puglisi, R.; Pappalardo, A.; Gulino, A.; Trusso Sfrazzetto, G. Multitopic supramolecular detection of chemical warfare agents by fluorescent sensors. ACS Omega, 2019, 4(4), 7550-7555.
[http://dx.doi.org/10.1021/acsomega.9b00502]
[41]
Foelen, Y.; Puglisi, R.; Debije, M.G.; Schenning, A.P.H.J. Photonic liquid crystal polymer absorbent for immobilization and detection of gaseous nerve agent simulants. ACS Applied. Opt. Mater., 2023, 1(1), 107-114.
[http://dx.doi.org/10.1021/acsaom.2c00014]
[42]
Tuccitto, N.; Riela, L.; Zammataro, A.; Spitaleri, L.; Li-Destri, G.; Sfuncia, G.; Nicotra, G.; Pappalardo, A.; Capizzi, G.; Trusso Sfrazzetto, G. Functionalized carbon nanoparticle-based sensors for chemical warfare agents. ACS Appl. Nano Mater., 2020, 3(8), 8182-8191.
[http://dx.doi.org/10.1021/acsanm.0c01593]
[43]
Tuccitto, N.; Spitaleri, L.; Li Destri, G.; Pappalardo, A.; Gulino, A.; Trusso Sfrazzetto, G. Supramolecular sensing of a chemical warfare agents simulant by functionalized carbon nanoparticles. Molecules, 2020, 25(23), 5731.
[http://dx.doi.org/10.3390/molecules25235731] [PMID: 33291853]
[44]
Tuccitto, N.; Catania, G.; Pappalardo, A.; Trusso Sfrazzetto, G. Agile detection of chemical warfare agents by machine vision: A supramolecular approach. Chemistry, 2021, 27(55), 13715-13718.
[http://dx.doi.org/10.1002/chem.202102094] [PMID: 34414611]
[45]
de A. Cavalcante S.F.; Alessandro, B.C.S.; Kamil, K. Nerve agents’ surrogates: Invaluable tools for development of acetylcholinesterase reactivators. Curr. Org. Chem., 2019, 23(14), 1539-1559.
[http://dx.doi.org/10.2174/1385272823666190806114017]
[46]
Bartelt-Hunt, S.L.; Knappe, D.R.U.; Barlaz, M.A. A review of chemical warfare agent simulants for the study of environmental behavior. Crit. Rev. Environ. Sci. Technol., 2008, 38(2), 112-136.
[http://dx.doi.org/10.1080/10643380701643650]
[47]
Ellaby, R.J.; Clark, E.R.; Allen, N.; Taylor, F.R.; Ng, K.K.L.; Dimitrovski, M.; Chu, D.F.; Mulvihill, D.P.; Hiscock, J.R. Identification of organophosphorus simulants for the development of next-generation detection technologies. Org. Biomol. Chem., 2021, 19(9), 2008-2014.
[http://dx.doi.org/10.1039/D0OB02523B] [PMID: 33586753]
[48]
Loudet, A.; Burgess, K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chem. Rev., 2007, 107(11), 4891-4932.
[http://dx.doi.org/10.1021/cr078381n] [PMID: 17924696]
[49]
Morgan, M.T.; Bagchi, P.; Fahrni, C.J. Designed to dissolve: Suppression of colloidal aggregation of Cu(I)-selective fluorescent probes in aqueous buffer and in-gel detection of a metallochaperone. J. Am. Chem. Soc., 2011, 133(40), 15906-15909.
[http://dx.doi.org/10.1021/ja207004v] [PMID: 21916472]
[50]
Marfin, Y.S.; Banakova, E.A.; Merkushev, D.A.; Usoltsev, S.D.; Churakov, A.V. Effects of concentration on aggregation of BODIPY-based fluorescent dyes solution. J. Fluoresc., 2020, 30(6), 1611-1621.
[http://dx.doi.org/10.1007/s10895-020-02622-y] [PMID: 32965594]
[51]
Giuffrida, M.L.; Rizzarelli, E.; Tomaselli, G.A.; Satriano, C.; Trusso Sfrazzetto, G. A novel fully water-soluble Cu(I) probe for fluorescence live cell imaging. Chem. Commun., 2014, 50(69), 9835-9838.
[http://dx.doi.org/10.1039/C4CC02147A] [PMID: 24827742]
[52]
Puglisi, R.; Ballistreri, F.P.; Gangemi, C.M.A.; Toscano, R.M.; Tomaselli, G.A.; Pappalardo, A.; Sfrazzetto, G.T. Chiral Zn–salen complexes: A new class of fluorescent receptors for enantiodiscrimination of chiral amines. New J. Chem., 2017, 41(3), 911-915.
[http://dx.doi.org/10.1039/C6NJ03592B]
[53]
Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; Tinevez, J.Y.; White, D.J.; Hartenstein, V.; Eliceiri, K.; Tomancak, P.; Cardona, A. Fiji: an open-source platform for biological-image analysis. Nat. Methods, 2012, 9(7), 676-682.
[http://dx.doi.org/10.1038/nmeth.2019] [PMID: 22743772]
[54]
Zhu, R.; Azzarelli, J.M.; Swager, T.M. Wireless hazard badges to detect nerve-agent simulants. Angew. Chem. Int. Ed., 2016, 55(33), 9662-9666.
[http://dx.doi.org/10.1002/anie.201604431] [PMID: 27384415]
[55]
Xia, H.C.; Xu, X.H.; Song, Q.H. Fluorescent chemosensor for selective detection of phosgene in solutions and in gas phase. ACS Sens., 2017, 2(1), 178-182.
[http://dx.doi.org/10.1021/acssensors.6b00723] [PMID: 28722427]
[56]
Sun, X.; Boulgakov, A.A.; Smith, L.N.; Metola, P.; Marcotte, E.M.; Anslyn, E.V. Photography coupled with self-propagating chemical cascades: Differentiation and quantitation of G- and V-nerve agent mimics via chromaticity. ACS Cent. Sci., 2018, 4(7), 854-861.
[http://dx.doi.org/10.1021/acscentsci.8b00193] [PMID: 30062113]
[57]
Zeng, L.; Miller, E.W.; Pralle, A.; Isacoff, E.Y.; Chang, C.J. A selective turn-on fluorescent sensor for imaging copper in living cells. J. Am. Chem. Soc., 2006, 128(1), 10-11.
[http://dx.doi.org/10.1021/ja055064u] [PMID: 16390096]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy