Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

The Role of METTL3 in the Progression of Cardiac Fibrosis

Author(s): Samir Bolívar, Marian Pérez-Cantillo, Jassiris Monterroza-Torres, César Vásquez-Trincado, Jairo Castellar-Lopez and Evelyn Mendoza-Torres*

Volume 23, Issue 26, 2023

Published on: 16 October, 2023

Page: [2427 - 2435] Pages: 9

DOI: 10.2174/1568026623666230825144949

Price: $65

Abstract

Cardiac fibrosis is known as the expansion of the cardiac interstitium through excessive deposition of extracellular matrix proteins; this process is performed by a multifunctional cell known as the cardiac fibroblast. After the myocardial injury, these cells are activated as a repair program, increase, and switch to a contractile phenotype, which is evidenced by an increase in alpha- smooth muscle actin. Likewise, there is an increase in type I and III collagen, which are considered profibrotic biomarkers. It is believed that one of the proteins involved in cardiac remodeling is METTL3, which is the enzyme responsible for N6-methyladenosine (m6A) methylation, the most common and abundant epigenetic modification of eukaryotic mRNA. This review focuses on recent studies in which the possible role of METTL3 in the progression of fibrosis has been demonstrated, mainly in cardiac fibrogenesis.

Next »
Graphical Abstract

[1]
Frangogiannis, N.G. Cardiac fibrosis. Cardiovasc. Res., 2021, 117(6), 1450-1488.
[http://dx.doi.org/10.1093/cvr/cvaa324] [PMID: 33135058]
[2]
Frangogiannis, N.G. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol. Aspects Med., 2019, 65, 70-99.
[http://dx.doi.org/10.1016/j.mam.2018.07.001] [PMID: 30056242]
[3]
Lu, L.; Guo, J.; Hua, Y.; Huang, K.; Magaye, R.; Cornell, J.; Kelly, D.J.; Reid, C.; Liew, D.; Zhou, Y.; Chen, A.; Xiao, W.; Fu, Q.; Wang, B.H. Cardiac fibrosis in the ageing heart: Contributors and mechanisms. Clin. Exp. Pharmacol. Physiol., 2017, 44(1)(Suppl. 1), 55-63.
[http://dx.doi.org/10.1111/1440-1681.12753] [PMID: 28316086]
[4]
Chen, W.; Frangogiannis, N.G. Fibroblasts in post-infarction inflammation and cardiac repair. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(4), 945-953.
[http://dx.doi.org/10.1016/j.bbamcr.2012.08.023] [PMID: 22982064]
[5]
Díaz-Araya, G.; Vivar, R.; Humeres, C.; Boza, P.; Bolivar, S.; Muñoz, C. Cardiac fibroblasts as sentinel cells in cardiac tissue: Receptors, signaling pathways and cellular functions. Pharmacol. Res., 2015, 101, 30-40.
[http://dx.doi.org/10.1016/j.phrs.2015.07.001] [PMID: 26151416]
[6]
Li, T.; Zhuang, Y.; Yang, W.; Xie, Y.; Shang, W.; Su, S.; Dong, X.; Wu, J.; Jiang, W.; Zhou, Y.; Li, Y.; Zhou, X.; Zhang, M.; Lu, Y.; Pan, Z. Silencing of METTL3 attenuates cardiac fibrosis induced by myocardial infarction via inhibiting the activation of cardiac fibroblasts. FASEB J., 2021, 35(2), e21162.
[http://dx.doi.org/10.1096/fj.201903169R] [PMID: 33150686]
[7]
Huang, W.; Chen, T.Q.; Fang, K.; Zeng, Z.C.; Ye, H.; Chen, Y.Q. N6-methyladenosine methyltransferases: Functions, regulation, and clinical potential. J. Hematol. Oncol., 2021, 14(1), 117.
[http://dx.doi.org/10.1186/s13045-021-01129-8] [PMID: 34315512]
[8]
Liu, M.; López de Juan Abad, B.; Cheng, K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv. Drug Deliv. Rev., 2021, 173, 504-519.
[http://dx.doi.org/10.1016/j.addr.2021.03.021] [PMID: 33831476]
[9]
Frangogiannis, N.G. Transforming growth factor–β in tissue fibrosis. J. Exp. Med., 2020, 217(3), e20190103.
[http://dx.doi.org/10.1084/jem.20190103] [PMID: 32997468]
[10]
Talman, V.; Ruskoaho, H. Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell Tissue Res., 2016, 365(3), 563-581.
[http://dx.doi.org/10.1007/s00441-016-2431-9] [PMID: 27324127]
[11]
Humeres, C.; Frangogiannis, N.G. Fibroblasts in the infarcted, remodeling, and failing heart. JACC Basic Transl. Sci., 2019, 4(3), 449-467.
[http://dx.doi.org/10.1016/j.jacbts.2019.02.006] [PMID: 31312768]
[12]
Murtha, L.A.; Schuliga, M.J.; Mabotuwana, N.S.; Hardy, S.A.; Waters, D.W.; Burgess, J.K.; Knight, D.A.; Boyle, A.J. The processes and mechanisms of cardiac and pulmonary fibrosis. Front. Physiol., 2017, 8, 777.
[http://dx.doi.org/10.3389/fphys.2017.00777] [PMID: 29075197]
[13]
Shinde, A.V.; Frangogiannis, N.G. Fibroblasts in myocardial infarction: A role in inflammation and repair. J. Mol. Cell. Cardiol., 2014, 70, 74-82.
[http://dx.doi.org/10.1016/j.yjmcc.2013.11.015] [PMID: 24321195]
[14]
Frangogiannis, N.G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol., 2014, 11(5), 255-265.
[http://dx.doi.org/10.1038/nrcardio.2014.28] [PMID: 24663091]
[15]
Prabhu, S.D.; Frangogiannis, N.G. The biological basis for cardiac repair after myocardial infarction. Circ. Res., 2016, 119(1), 91-112.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303577] [PMID: 27340270]
[16]
D’Urso, M.; Kurniawan, N.A. Mechanical and physical regulation of fibroblast–myofibroblast transition: From cellular mechanoresponse to tissue pathology. Front. Bioeng. Biotechnol., 2020, 8, 609653.
[http://dx.doi.org/10.3389/fbioe.2020.609653] [PMID: 33425874]
[17]
Ivey, M.J.; Tallquist, M.D. Defining the cardiac fibroblast. Circ. J., 2016, 80(11), 2269-2276.
[http://dx.doi.org/10.1253/circj.CJ-16-1003] [PMID: 27746422]
[18]
Kendall, R.T.; Feghali-Bostwick, C.A. Fibroblasts in fibrosis: Novel roles and mediators. Front. Pharmacol., 2014, 5, 123.
[http://dx.doi.org/10.3389/fphar.2014.00123] [PMID: 24904424]
[19]
Souders, C.A.; Bowers, S.L.K.; Baudino, T.A. Cardiac fibroblast. Circ. Res., 2009, 105(12), 1164-1176.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.209809] [PMID: 19959782]
[20]
Tallquist, M.D.; Molkentin, J.D. Redefining the identity of cardiac fibroblasts. Nat. Rev. Cardiol., 2017, 14(8), 484-491.
[http://dx.doi.org/10.1038/nrcardio.2017.57] [PMID: 28436487]
[21]
Pellman, J.; Zhang, J.; Sheikh, F. Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems. J. Mol. Cell. Cardiol., 2016, 94, 22-31.
[http://dx.doi.org/10.1016/j.yjmcc.2016.03.005] [PMID: 26996756]
[22]
Myofibroblasts, H.B. Exp. Eye Res., 2016, 142, 56-70.
[http://dx.doi.org/10.1016/j.exer.2015.07.009] [PMID: 26192991]
[23]
Zhang, X.; Qu, H.; Yang, T.; Kong, X.; Zhou, H. Regulation and functions of NLRP3 inflammasome in cardiac fibrosis: Current knowledge and clinical significance. Biomed. Pharmacother., 2021, 143, 112219.
[http://dx.doi.org/10.1016/j.biopha.2021.112219] [PMID: 34560540]
[24]
Turner, N.A. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J. Mol. Cell. Cardiol., 2016, 94, 189-200.
[http://dx.doi.org/10.1016/j.yjmcc.2015.11.002] [PMID: 26542796]
[25]
Aránguiz-Urroz, P.; Canales, J.; Copaja, M.; Troncoso, R.; Vicencio, J.M.; Carrillo, C.; Lara, H.; Lavandero, S.; Díaz-Araya, G. Beta2-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation. Biochim. Biophys. Acta Mol. Basis Dis., 2011, 1812(1), 23-31.
[http://dx.doi.org/10.1016/j.bbadis.2010.07.003] [PMID: 20637865]
[26]
Catalán, M.; Smolic, C.; Contreras, A.; Ayala, P.; Olmedo, I.; Copaja, M.; Boza, P.; Vivar, R.; Avalos, Y.; Lavandero, S.; Velarde, V.; Díaz-Araya, G. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast. Toxicol. Appl. Pharmacol., 2012, 261(3), 300-308.
[http://dx.doi.org/10.1016/j.taap.2012.04.013] [PMID: 22554775]
[27]
Thomas, T.P.; Grisanti, L.A. The dynamic interplay between cardiac inflammation and fibrosis. Front. Physiol., 2020, 11, 529075.
[http://dx.doi.org/10.3389/fphys.2020.529075] [PMID: 33041853]
[28]
Hinderer, S.; Schenke-Layland, K. Cardiac fibrosis – A short review of causes and therapeutic strategies. Adv. Drug Deliv. Rev., 2019, 146, 77-82.
[http://dx.doi.org/10.1016/j.addr.2019.05.011] [PMID: 31158407]
[29]
Du, Y.; Hou, G.; Zhang, H.; Dou, J.; He, J.; Guo, Y.; Li, L.; Chen, R.; Wang, Y.; Deng, R.; Huang, J.; Jiang, B.; Xu, M.; Cheng, J.; Chen, G.Q.; Zhao, X.; Yu, J. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res., 2018, 46(10), 5195-5208.
[http://dx.doi.org/10.1093/nar/gky156] [PMID: 29506078]
[30]
Xu, Z.; Lv, B.; Qin, Y.; Zhang, B. Emerging roles and mechanism of m6A methylation in cardiometabolic diseases. Cells, 2022, 11(7), 1101.
[http://dx.doi.org/10.3390/cells11071101] [PMID: 35406663]
[31]
Qin, Y.; Li, L.; Luo, E.; Hou, J.; Yan, G.; Wang, D.; Qiao, Y.; Tang, C. Role of m6A RNA methylation in cardiovascular disease (Review). Int. J. Mol. Med., 2020, 46(6), 1958-1972.
[http://dx.doi.org/10.3892/ijmm.2020.4746] [PMID: 33125109]
[32]
Liu, S.; Zhuo, L.; Wang, J.; Zhang, Q.; Li, Q.; Li, G.; Yan, L.; Jin, T.; Pan, T.; Sui, X.; Lv, Q.; Xie, T. METTL3 plays multiple functions in biological processes. Am. J. Cancer Res., 2020, 10(6), 1631-1646.
[PMID: 32642280]
[33]
Oerum, S.; Meynier, V.; Catala, M.; Tisné, C. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res., 2021, 49(13), 7239-7255.
[http://dx.doi.org/10.1093/nar/gkab378] [PMID: 34023900]
[34]
Huang, J.; Dong, X.; Gong, Z.; Qin, L.Y.; Yang, S.; Zhu, Y.L.; Wang, X.; Zhang, D.; Zou, T.; Yin, P.; Tang, C. Solution structure of the RNA recognition domain of METTL3-METTL14 N6-methyladenosine methyltransferase. Protein Cell, 2019, 10(4), 272-284.
[http://dx.doi.org/10.1007/s13238-018-0518-7] [PMID: 29542011]
[35]
Ke, S.; Alemu, E.A.; Mertens, C.; Gantman, E.C.; Fak, J.J.; Mele, A.; Haripal, B.; Zucker-Scharff, I.; Moore, M.J.; Park, C.Y.; Vågbø, C.B.; Kusśnierczyk, A.; Klungland, A.; Darnell, J.E., Jr; Darnell, R.B. A majority of m 6 A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev., 2015, 29(19), 2037-2053.
[http://dx.doi.org/10.1101/gad.269415.115] [PMID: 26404942]
[36]
Wang, P.; Doxtader, K.A.; Nam, Y. Structural basis for cooperative function of mettl3 and mettl14 methyltransferases. Mol. Cell, 2016, 63(2), 306-317.
[http://dx.doi.org/10.1016/j.molcel.2016.05.041] [PMID: 27373337]
[37]
Zeng, C.; Huang, W.; Li, Y.; Weng, H. Roles of METTL3 in cancer: Mechanisms and therapeutic targeting. J. Hematol. Oncol., 2020, 13(1), 117.
[http://dx.doi.org/10.1186/s13045-020-00951-w] [PMID: 32854717]
[38]
Liu, J.; Yue, Y.; Han, D.; Wang, X.; Fu, Y.; Zhang, L.; Jia, G.; Yu, M.; Lu, Z.; Deng, X.; Dai, Q.; Chen, W.; He, C. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol., 2014, 10(2), 93-95.
[http://dx.doi.org/10.1038/nchembio.1432] [PMID: 24316715]
[39]
Lin, Z.; Hsu, P.J.; Xing, X.; Fang, J.; Lu, Z.; Zou, Q.; Zhang, K.J.; Zhang, X.; Zhou, Y.; Zhang, T.; Zhang, Y.; Song, W.; Jia, G.; Yang, X.; He, C.; Tong, M.H. Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Res., 2017, 27(10), 1216-1230.
[http://dx.doi.org/10.1038/cr.2017.117] [PMID: 28914256]
[40]
Zaccara, S.; Ries, R.J.; Jaffrey, S.R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol., 2019, 20(10), 608-624.
[http://dx.doi.org/10.1038/s41580-019-0168-5] [PMID: 31520073]
[41]
Wang, X.; Feng, J.; Xue, Y.; Guan, Z.; Zhang, D.; Liu, Z.; Gong, Z.; Wang, Q.; Huang, J.; Tang, C.; Zou, T.; Yin, P. Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature, 2016, 534(7608), 575-578.
[http://dx.doi.org/10.1038/nature18298] [PMID: 27281194]
[42]
Śledź, P.; Jinek, M. Structural insights into the molecular mechanism of the m6A writer complex. eLife, 2016, 5, e18434.
[http://dx.doi.org/10.7554/eLife.18434] [PMID: 27627798]
[43]
Ping, X.L.; Sun, B.F.; Wang, L.; Xiao, W.; Yang, X.; Wang, W.J.; Adhikari, S.; Shi, Y.; Lv, Y.; Chen, Y.S.; Zhao, X.; Li, A.; Yang, Y.; Dahal, U.; Lou, X.M.; Liu, X.; Huang, J.; Yuan, W.P.; Zhu, X.F.; Cheng, T.; Zhao, Y.L.; Wang, X.; Danielsen, J.M.R.; Liu, F.; Yang, Y.G. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res., 2014, 24(2), 177-189.
[http://dx.doi.org/10.1038/cr.2014.3] [PMID: 24407421]
[44]
Huang, Q.; Mo, J.; Liao, Z.; Chen, X.; Zhang, B. The RNA m6A writer WTAP in diseases: Structure, roles, and mechanisms. Cell Death Dis., 2022, 13(10), 852.
[http://dx.doi.org/10.1038/s41419-022-05268-9] [PMID: 36207306]
[45]
Yue, Y.; Liu, J.; Cui, X.; Cao, J.; Luo, G.; Zhang, Z.; Cheng, T.; Gao, M.; Shu, X.; Ma, H.; Wang, F.; Wang, X.; Shen, B.; Wang, Y.; Feng, X.; He, C.; Liu, J. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov., 2018, 4(1), 10.
[http://dx.doi.org/10.1038/s41421-018-0019-0] [PMID: 29507755]
[46]
Patil, D.P.; Chen, C.K.; Pickering, B.F.; Chow, A.; Jackson, C.; Guttman, M.; Jaffrey, S.R. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature, 2016, 537(7620), 369-373.
[http://dx.doi.org/10.1038/nature19342] [PMID: 27602518]
[47]
Wang, Y.; Zhang, L.; Ren, H.; Ma, L.; Guo, J.; Mao, D.; Lu, Z.; Lu, L.; Yan, D. Role of Hakai in m6A modification pathway in Drosophila. Nat. Commun., 2021, 12(1), 2159.
[http://dx.doi.org/10.1038/s41467-021-22424-5] [PMID: 33846330]
[48]
Knuckles, P.; Lence, T.; Haussmann, I.U.; Jacob, D.; Kreim, N.; Carl, S.H.; Masiello, I.; Hares, T.; Villaseñor, R.; Hess, D.; Andrade-Navarro, M.A.; Biggiogera, M.; Helm, M.; Soller, M.; Bühler, M.; Roignant, J.Y. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m 6 A machinery component Wtap/Fl(2)d. Genes Dev., 2018, 32(5-6), 415-429.
[http://dx.doi.org/10.1101/gad.309146.117] [PMID: 29535189]
[49]
Jiang, X.; Liu, B.; Nie, Z.; Duan, L.; Xiong, Q.; Jin, Z.; Yang, C.; Chen, Y. The role of m6A modification in the biological functions and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 74.
[http://dx.doi.org/10.1038/s41392-020-00450-x] [PMID: 33611339]
[50]
Liao, S.; Sun, H.; Xu, C. YTH Domain: A Family of N 6 -methyladenosine (m 6 A) Readers. Genomics Proteomics Bioinformatics, 2018, 16(2), 99-107.
[http://dx.doi.org/10.1016/j.gpb.2018.04.002] [PMID: 29715522]
[51]
Schöller, E.; Weichmann, F.; Treiber, T.; Ringle, S.; Treiber, N.; Flatley, A.; Feederle, R.; Bruckmann, A.; Meister, G. Interactions, localization, and phosphorylation of the m 6 A generating METTL3–METTL14–WTAP complex. RNA, 2018, 24(4), 499-512.
[http://dx.doi.org/10.1261/rna.064063.117] [PMID: 29348140]
[52]
Alarcón, C.R.; Goodarzi, H.; Lee, H.; Liu, X.; Tavazoie, S.; Tavazoie, S.F. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell, 2015, 162(6), 1299-1308.
[http://dx.doi.org/10.1016/j.cell.2015.08.011] [PMID: 26321680]
[53]
Huang, H.; Weng, H.; Sun, W.; Qin, X.; Shi, H.; Wu, H.; Zhao, B.S.; Mesquita, A.; Liu, C.; Yuan, C.L.; Hu, Y.C.; Hüttelmaier, S.; Skibbe, J.R.; Su, R.; Deng, X.; Dong, L.; Sun, M.; Li, C.; Nachtergaele, S.; Wang, Y.; Hu, C.; Ferchen, K.; Greis, K.D.; Jiang, X.; Wei, M.; Qu, L.; Guan, J.L.; He, C.; Yang, J.; Chen, J. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol., 2018, 20(3), 285-295.
[http://dx.doi.org/10.1038/s41556-018-0045-z] [PMID: 29476152]
[54]
Meyer, K.D.; Jaffrey, S.R. Rethinking m 6 a readers, writers, and erasers. Annu. Rev. Cell Dev. Biol., 2017, 33(1), 319-342.
[http://dx.doi.org/10.1146/annurev-cellbio-100616-060758] [PMID: 28759256]
[55]
Roundtree, I.A.; Luo, G.Z.; Zhang, Z.; Wang, X.; Zhou, T.; Cui, Y.; Sha, J.; Huang, X.; Guerrero, L.; Xie, P.; He, E.; Shen, B.; He, C. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. eLife, 2017, 6, e31311.
[http://dx.doi.org/10.7554/eLife.31311] [PMID: 28984244]
[56]
Xiao, W.; Adhikari, S.; Dahal, U.; Chen, Y.S.; Hao, Y.J.; Sun, B.F.; Sun, H.Y.; Li, A.; Ping, X.L.; Lai, W.Y.; Wang, X.; Ma, H.L.; Huang, C.M.; Yang, Y.; Huang, N.; Jiang, G.B.; Wang, H.L.; Zhou, Q.; Wang, X.J.; Zhao, Y.L.; Yang, Y.G. Nuclear m 6 a reader YTHDC1 regulates mRNA splicing. Mol. Cell, 2016, 61(4), 507-519.
[http://dx.doi.org/10.1016/j.molcel.2016.01.012] [PMID: 26876937]
[57]
Kretschmer, J.; Rao, H.; Hackert, P.; Sloan, K.E.; Höbartner, C.; Bohnsack, M.T. The m 6 A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′–3′ exoribonuclease XRN1. RNA, 2018, 24(10), 1339-1350.
[http://dx.doi.org/10.1261/rna.064238.117] [PMID: 29970596]
[58]
Hsu, P.J.; Zhu, Y.; Ma, H.; Guo, Y.; Shi, X.; Liu, Y.; Qi, M.; Lu, Z.; Shi, H.; Wang, J.; Cheng, Y.; Luo, G.; Dai, Q.; Liu, M.; Guo, X.; Sha, J.; Shen, B.; He, C. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res., 2017, 27(9), 1115-1127.
[http://dx.doi.org/10.1038/cr.2017.99] [PMID: 28809393]
[59]
Chen, Z.; Zhong, X.; Xia, M.; Zhong, J. The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Mol. Ther. Nucleic Acids, 2021, 26, 1270-1279.
[http://dx.doi.org/10.1016/j.omtn.2021.10.023] [PMID: 34853726]
[60]
Wang, X.; Zhao, B.S.; Roundtree, I.A.; Lu, Z.; Han, D.; Ma, H.; Weng, X.; Chen, K.; Shi, H.; He, C. N6-methyladenosine modulates messenger RNA translation efficiency. Cell, 2015, 161(6), 1388-1399.
[http://dx.doi.org/10.1016/j.cell.2015.05.014] [PMID: 26046440]
[61]
Du, H.; Zhao, Y.; He, J.; Zhang, Y.; Xi, H.; Liu, M.; Ma, J.; Wu, L. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat. Commun., 2016, 7(1), 12626.
[http://dx.doi.org/10.1038/ncomms12626] [PMID: 27558897]
[62]
Wang, J.; Lu, A. The biological function of m6A reader YTHDF2 and its role in human disease. Cancer Cell Int., 2021, 21(1), 109.
[http://dx.doi.org/10.1186/s12935-021-01807-0] [PMID: 33593354]
[63]
Shi, H.; Wang, X.; Lu, Z.; Zhao, B.S.; Ma, H.; Hsu, P.J.; Liu, C.; He, C. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res., 2017, 27(3), 315-328.
[http://dx.doi.org/10.1038/cr.2017.15] [PMID: 28106072]
[64]
Zou, S.; Toh, J.D.W.; Wong, K.H.Q.; Gao, Y.G.; Hong, W.; Woon, E.C.Y. N6-Methyladenosine: A conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5. Sci. Rep., 2016, 6(1), 25677.
[http://dx.doi.org/10.1038/srep25677] [PMID: 27156733]
[65]
Shen, D.; Wang, B.; Gao, Y.; Zhao, L.; Bi, Y.; Zhang, J.; Wang, N.; Kang, H.; Pang, J.; Liu, Y.; Pang, L.; Chen, Z.S.; Zheng, Y.C.; Liu, H.M. Detailed resume of RNA m6A demethylases. Acta Pharm. Sin. B, 2022, 12(5), 2193-2205.
[http://dx.doi.org/10.1016/j.apsb.2022.01.003] [PMID: 35646549]
[66]
Fedeles, B.I.; Singh, V.; Delaney, J.C.; Li, D.; Essigmann, J.M. The AlkB family of Fe(II)/α-Ketoglutarate-dependent dioxygenases: Repairing nucleic acid alkylation damage and beyond. J. Biol. Chem., 2015, 290(34), 20734-20742.
[http://dx.doi.org/10.1074/jbc.R115.656462] [PMID: 26152727]
[67]
Zhao, X.; Yang, Y.; Sun, B.F.; Shi, Y.; Yang, X.; Xiao, W.; Hao, Y.J.; Ping, X.L.; Chen, Y.S.; Wang, W.J.; Jin, K.X.; Wang, X.; Huang, C.M.; Fu, Y.; Ge, X.M.; Song, S.H.; Jeong, H.S.; Yanagisawa, H.; Niu, Y.; Jia, G.F.; Wu, W.; Tong, W.M.; Okamoto, A.; He, C.; Danielsen, J.M.R.; Wang, X.J.; Yang, Y.G. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res., 2014, 24(12), 1403-1419.
[http://dx.doi.org/10.1038/cr.2014.151] [PMID: 25412662]
[68]
Mathiyalagan, P.; Adamiak, M.; Mayourian, J.; Sassi, Y.; Liang, Y.; Agarwal, N.; Jha, D.; Zhang, S.; Kohlbrenner, E.; Chepurko, E.; Chen, J.; Trivieri, M.G.; Singh, R.; Bouchareb, R.; Fish, K.; Ishikawa, K.; Lebeche, D.; Hajjar, R.J.; Sahoo, S. FTO-dependent N 6-methyladenosine regulates cardiac function during remodeling and repair. Circulation, 2019, 139(4), 518-532.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.033794] [PMID: 29997116]
[69]
Zheng, G.; Dahl, J.A.; Niu, Y.; Fedorcsak, P.; Huang, C.M.; Li, C.J.; Vågbø, C.B.; Shi, Y.; Wang, W.L.; Song, S.H.; Lu, Z.; Bosmans, R.P.G.; Dai, Q.; Hao, Y.J.; Yang, X.; Zhao, W.M.; Tong, W.M.; Wang, X.J.; Bogdan, F.; Furu, K.; Fu, Y.; Jia, G.; Zhao, X.; Liu, J.; Krokan, H.E.; Klungland, A.; Yang, Y.G.; He, C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell, 2013, 49(1), 18-29.
[http://dx.doi.org/10.1016/j.molcel.2012.10.015] [PMID: 23177736]
[70]
Zhou, Y.; Song, K.; Tu, B.; Sun, H.; Ding, J.F.; Luo, Y.; Sha, J.M.; Li, R.; Zhang, Y.; Zhao, J.Y.; Tao, H. METTL3 boosts glycolysis and cardiac fibroblast proliferation by increasing AR methylation. Int. J. Biol. Macromol., 2022, 223(Pt A), 899-915.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.11.042] [PMID: 36370857]
[71]
Cheng, H.; Li, L.; Xue, J.; Ma, J.; Ge, J. TNC accelerates hypoxia-induced cardiac injury in a METTL3-dependent manner. Genes, 2023, 14(3), 591.
[http://dx.doi.org/10.3390/genes14030591] [PMID: 36980863]
[72]
Zhuang, Y.; Li, T.; Hu, X.; Xie, Y.; Pei, X.; Wang, C.; Li, Y.; Liu, J.; Tian, Z.; Zhang, X.; Peng, L.; Meng, B.; Wu, H.; Yuan, W.; Pan, Z.; Lu, Y. METBIL as a novel molecular regulator in ischemia-induced cardiac fibrosis via METTL3 -mediated M6A modification. FASEB J., 2023, 37(3), e22797.
[http://dx.doi.org/10.1096/fj.202201734R] [PMID: 36753405]
[73]
Tu, B.; Song, K.; Zhou, Y.; Sun, H.; Liu, Z.Y.; Lin, L.C.; Ding, J.F.; Sha, J.M.; Shi, Y.; Yang, J.J.; Li, R.; Zhang, Y.; Zhao, J.Y.; Tao, H. METTL3 boosts mitochondrial fission and induces cardiac fibrosis by enhancing LncRNA GAS5 methylation. Pharmacol. Res., 2023, 194, 106840.
[http://dx.doi.org/10.1016/j.phrs.2023.106840] [PMID: 37379961]
[74]
Ding, J.F.; Sun, H.; Song, K.; Zhou, Y.; Tu, B.; Shi, K.H.; Lu, D.; Xu, S.S.; Tao, H. IGFBP3 epigenetic promotion induced by METTL3 boosts cardiac fibroblast activation and fibrosis. Eur. J. Pharmacol., 2023, 942, 175494.
[http://dx.doi.org/10.1016/j.ejphar.2023.175494] [PMID: 36657656]
[75]
Liu, P.; Zhang, B.; Chen, Z.; He, Y.; Du, Y.; Liu, Y.; Chen, X. m6A-induced lncRNA MALAT1 aggravates renal fibrogenesis in obstructive nephropathy through the miR-145/FAK pathway. Aging, 2020, 12(6), 5280-5299.
[http://dx.doi.org/10.18632/aging.102950] [PMID: 32203053]
[76]
Zhu, Y.; Pan, X.; Du, N.; Li, K.; Hu, Y.; Wang, L.; Zhang, J.; Liu, Y.; Zuo, L.; Meng, X.; Hu, C.; Wu; Jin, J.; Wu, W.; Chen, X.; Wu, F.; Huang, Y. ASIC1a regulates miR-350/SPRY2 by N 6 -methyladenosine to promote liver fibrosis. FASEB J., 2020, 34(11), 14371-14388.
[http://dx.doi.org/10.1096/fj.202001337R] [PMID: 32949431]
[77]
Zhang, J.; Huang, P.; Wang, D.; Yang, W.; Lu, J.; Zhu, Y.; Meng, X.; Wu, X.; Lin, Q.; Lv, H.; Xie, H.; Wang, R. m6A modification regulates lung fibroblast-to-myofibroblast transition through modulating KCNH6 mRNA translation. Mol. Ther., 2021, 29(12), 3436-3448.
[http://dx.doi.org/10.1016/j.ymthe.2021.06.008] [PMID: 34111558]
[78]
González, A.; Schelbert, E.B.; Díez, J.; Butler, J. Myocardial interstitial fibrosis in heart failure. J. Am. Coll. Cardiol., 2018, 71(15), 1696-1706.
[http://dx.doi.org/10.1016/j.jacc.2018.02.021] [PMID: 29650126]
[79]
Shao, J.; Liu, J.; Zuo, S. Roles of epigenetics in cardiac fibroblast activation and fibrosis. Cells, 2022, 11(15), 2347.
[http://dx.doi.org/10.3390/cells11152347] [PMID: 35954191]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy