Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

A Computational Approach for Designing and Validating Small Interfering RNA against SARS-CoV-2 Variants

Author(s): Kishore Dhotre, Debashree Dass, Anwesha Banerjee, Vijay Nema and Anupam Mukherjee*

Volume 20, Issue 6, 2024

Published on: 14 September, 2023

Page: [876 - 887] Pages: 12

DOI: 10.2174/1573409920666230825111406

Price: $65

Abstract

Aims: The aim of this study is to develop a novel antiviral strategy capable of efficiently targeting a broad set of SARS-CoV-2 variants.

Background: Since the first emergence of SARS-CoV-2, it has rapidly transformed into a global pandemic, posing an unprecedented threat to public health. SARS-CoV-2 is prone to mutation and continues to evolve, leading to the emergence of new variants capable of escaping immune protection achieved due to previous SARS-CoV-2 infections or by vaccination.

Objective: RNA interference (RNAi) is a remarkable biological mechanism that can induce gene silencing by targeting complementary mRNA and inhibiting its translation.

Methods: In this study, using the computational approach, we predicted the most efficient siRNA capable of inhibiting SARS-CoV-2 variants of concern (VoCs).

Results: The presented siRNA was characterized and evaluated for its thermodynamic properties, offsite-target hits, and in silico validation by molecular docking and molecular dynamics simulations (MD) with Human AGO2 protein.

Conclusion: The study contributes to the possibility of designing and developing an effective response strategy against existing variants of concerns and preventing further.

Graphical Abstract

[1]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in china, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[2]
Adil, M.T.; Rahman, R.; Whitelaw, D.; Jain, V.; Al-Taan, O.; Rashid, F.; Munasinghe, A.; Jambulingam, P. SARS-CoV-2 and the pandemic of COVID-19. Postgrad. Med. J., 2021, 97(1144), 110-116.
[http://dx.doi.org/10.1136/postgradmedj-2020-138386] [PMID: 32788312]
[3]
WHO. WHO Coronavirus (COVID-19) Dashboard. 2023. Available From: https://covid19.who.int/
[4]
Sharma, A.; Ahmad Farouk, I.; Lal, S.K. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses, 2021, 13(2), 202.
[http://dx.doi.org/10.3390/v13020202] [PMID: 33572857]
[5]
Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; Du, B.; Li, L.; Zeng, G.; Yuen, K.Y.; Chen, R.; Tang, C.; Wang, T.; Chen, P.; Xiang, J.; Li, S.; Wang, J.; Liang, Z.; Peng, Y.; Wei, L.; Liu, Y.; Hu, Y.; Peng, P.; Wang, J.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; Zhong, N. Clinical characteristics of coronavirus disease 2019 in china. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[6]
Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in china. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[7]
Brian, D.A.; Baric, R.S. Coronavirus genome structure and replication. Coronavirus Replication and Reverse Genetics; Enjuanes, L., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2005, Vol. 287, pp. 1-30.
[http://dx.doi.org/10.1007/3-540-26765-4_1]
[8]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[9]
Tang, X.; Wu, C.; Li, X.; Song, Y.; Yao, X.; Wu, X.; Duan, Y.; Zhang, H.; Wang, Y.; Qian, Z.; Cui, J.; Lu, J. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev., 2020, 7(6), 1012-1023.
[http://dx.doi.org/10.1093/nsr/nwaa036] [PMID: 34676127]
[10]
Telenti, A.; Arvin, A.; Corey, L.; Corti, D.; Diamond, M.S.; García-Sastre, A.; Garry, R.F.; Holmes, E.C.; Pang, P.S.; Virgin, H.W. After the pandemic: Perspectives on the future trajectory of COVID-19. Nature, 2021, 596(7873), 495-504.
[http://dx.doi.org/10.1038/s41586-021-03792-w] [PMID: 34237771]
[11]
Cele, S.; Gazy, I.; Jackson, L.; Hwa, S.H.; Tegally, H.; Lustig, G.; Giandhari, J.; Pillay, S.; Wilkinson, E.; Naidoo, Y.; Karim, F.; Ganga, Y.; Khan, K.; Bernstein, M.; Balazs, A.B.; Gosnell, B.I.; Hanekom, W.; Moosa, M.Y.S.; Lessells, R.J.; de Oliveira, T.; Sigal, A. Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature, 2021, 593(7857), 142-146.
[http://dx.doi.org/10.1038/s41586-021-03471-w] [PMID: 33780970]
[12]
Chan, K.W.; Wong, V.T.; Tang, S.C.W. COVID-19: An update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative chinese-western medicine for the management of 2019 novel coronavirus disease. Am. J. Chin. Med., 2020, 48(3), 737-762.
[http://dx.doi.org/10.1142/S0192415X20500378] [PMID: 32164424]
[13]
Mlcochova, P.; Kemp, S.A.; Dhar, M.S.; Papa, G.; Meng, B.; Ferreira, I.A.T.M.; Datir, R.; Collier, D.A.; Albecka, A.; Singh, S.; Pandey, R.; Brown, J.; Zhou, J.; Goonawardane, N.; Mishra, S.; Whittaker, C.; Mellan, T.; Marwal, R.; Datta, M.; Sengupta, S.; Ponnusamy, K.; Radhakrishnan, V.S.; Abdullahi, A.; Charles, O.; Chattopadhyay, P.; Devi, P.; Caputo, D.; Peacock, T.; Wattal, C.; Goel, N.; Satwik, A.; Vaishya, R.; Agarwal, M.; Chauhan, H.; Dikid, T.; Gogia, H.; Lall, H.; Verma, K.; Dhar, M.S.; Singh, M.K.; Soni, N.; Meena, N.; Madan, P.; Singh, P.; Sharma, R.; Sharma, R.; Kabra, S.; Kumar, S.; Kumari, S.; Sharma, U.; Chaudhary, U.; Sivasubbu, S.; Scaria, V.; Oberoi, J.K.; Raveendran, R.; Datta, S.; Das, S.; Maitra, A.; Chinnaswamy, S.; Biswas, N.K.; Parida, A.; Raghav, S.K.; Prasad, P.; Sarin, A.; Mayor, S.; Ramakrishnan, U.; Palakodeti, D.; Seshasayee, A.S.N.; Thangaraj, K.; Bashyam, M.D.; Dalal, A.; Bhat, M.; Shouche, Y.; Pillai, A.; Abraham, P.; Potdar, V.A.; Cherian, S.S.; Desai, A.S.; Pattabiraman, C.; Manjunatha, M.V.; Mani, R.S.; Udupi, G.A.; Nandicoori, V.; Tallapaka, K.B.; Sowpati, D.T.; Kawabata, R.; Morizako, N.; Sadamasu, K.; Asakura, H.; Nagashima, M.; Yoshimura, K.; Ito, J.; Kimura, I.; Uriu, K.; Kosugi, Y.; Suganami, M.; Oide, A.; Yokoyama, M.; Chiba, M.; Saito, A.; Butlertanaka, E.P.; Tanaka, Y.L.; Ikeda, T.; Motozono, C.; Nasser, H.; Shimizu, R.; Yuan, Y.; Kitazato, K.; Hasebe, H.; Nakagawa, S.; Wu, J.; Takahashi, M.; Fukuhara, T.; Shimizu, K.; Tsushima, K.; Kubo, H.; Shirakawa, K.; Kazuma, Y.; Nomura, R.; Horisawa, Y.; Takaori-Kondo, A.; Tokunaga, K.; Ozono, S.; Baker, S.; Dougan, G.; Hess, C.; Kingston, N.; Lehner, P.J.; Lyons, P.A.; Matheson, N.J.; Owehand, W.H.; Saunders, C.; Summers, C.; Thaventhiran, J.E.D.; Toshner, M.; Weekes, M.P.; Maxwell, P.; Shaw, A.; Bucke, A.; Calder, J.; Canna, L.; Domingo, J.; Elmer, A.; Fuller, S.; Harris, J.; Hewitt, S.; Kennet, J.; Jose, S.; Kourampa, J.; Meadows, A.; O’Brien, C.; Price, J.; Publico, C.; Rastall, R.; Ribeiro, C.; Rowlands, J.; Ruffolo, V.; Tordesillas, H.; Bullman, B.; Dunmore, B.J.; Fawke, S.; Gräf, S.; Hodgson, J.; Huang, C.; Hunter, K.; Jones, E.; Legchenko, E.; Matara, C.; Martin, J.; Mescia, F.; O’Donnell, C.; Pointon, L.; Pond, N.; Shih, J.; Sutcliffe, R.; Tilly, T.; Treacy, C.; Tong, Z.; Wood, J.; Wylot, M.; Bergamaschi, L.; Betancourt, A.; Bower, G.; Cossetti, C.; De Sa, A.; Epping, M.; Fawke, S.; Gleadall, N.; Grenfell, R.; Hinch, A.; Huhn, O.; Jackson, S.; Jarvis, I.; Krishna, B.; Lewis, D.; Marsden, J.; Nice, F.; Okecha, G.; Omarjee, O.; Perera, M.; Potts, M.; Richoz, N.; Romashova, V.; Yarkoni, N.S.; Sharma, R.; Stefanucci, L.; Stephens, J.; Strezlecki, M.; Turner, L.; De Bie, E.M.D.D.; Bunclark, K.; Josipovic, M.; Mackay, M.; Rossi, S.; Selvan, M.; Spencer, S.; Yong, C.; Allison, J.; Butcher, H.; Caputo, D.; Clapham-Riley, D.; Dewhurst, E.; Furlong, A.; Graves, B.; Gray, J.; Ivers, T.; Kasanicki, M.; Le Gresley, E.; Linger, R.; Meloy, S.; Muldoon, F.; Ovington, N.; Papadia, S.; Phelan, I.; Stark, H.; Stirrups, K.E.; Townsend, P.; Walker, N.; Webster, J.; Scholtes, I.; Hein, S.; King, R.; Mavousian, A.; Lee, J.H.; Bassi, J.; Silacci-Fegni, C.; Saliba, C.; Pinto, D.; Irie, T.; Yoshida, I.; Hamilton, W.L.; Sato, K.; Bhatt, S.; Flaxman, S.; James, L.C.; Corti, D.; Piccoli, L.; Barclay, W.S.; Rakshit, P.; Agrawal, A.; Gupta, R.K. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature, 2021, 599(7883), 114-119.
[http://dx.doi.org/10.1038/s41586-021-03944-y] [PMID: 34488225]
[14]
Naveca, F.G.; Nascimento, V.; de Souza, V.C.; Corado, A.L.; Nascimento, F.; Silva, G.; Costa, Á.; Duarte, D.; Pessoa, K.; Mejía, M.; Brandão, M.J.; Jesus, M.; Gonçalves, L.; da Costa, C.F.; Sampaio, V.; Barros, D.; Silva, M.; Mattos, T.; Pontes, G.; Abdalla, L.; Santos, J.H.; Arantes, I.; Dezordi, F.Z.; Siqueira, M.M.; Wallau, G.L.; Resende, P.C.; Delatorre, E.; Gräf, T.; Bello, G. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat. Med., 2021, 27(7), 1230-1238.
[http://dx.doi.org/10.1038/s41591-021-01378-7] [PMID: 34035535]
[15]
Brandal, L.T.; MacDonald, E.; Veneti, L.; Ravlo, T.; Lange, H.; Naseer, U.; Feruglio, S.; Bragstad, K.; Hungnes, O.; Ødeskaug, L.E.; Hagen, F.; Hanch-Hansen, K.E.; Lind, A.; Watle, S.V.; Taxt, A.M.; Johansen, M.; Vold, L.; Aavitsland, P.; Nygård, K.; Madslien, E.H. Outbreak caused by the SARS-CoV-2 Omicron variant in Norway, November to December 2021. Euro Surveill., 2021, 26(50), 2101147.
[http://dx.doi.org/10.2807/1560-7917.ES.2021.26.50.2101147] [PMID: 34915975]
[16]
Levanova, A.; Poranen, M.M. RNA interference as a prospective tool for the control of human viral infections. Front. Microbiol., 2018, 9, 2151.
[http://dx.doi.org/10.3389/fmicb.2018.02151] [PMID: 30254624]
[17]
Müller, M.; Fazi, F.; Ciaudo, C. Argonaute proteins: From structure to function in development and pathological cell fate determination. Front. Cell Dev. Biol., 2020, 7, 360.
[http://dx.doi.org/10.3389/fcell.2019.00360] [PMID: 32039195]
[18]
Elkayam, E.; Kuhn, C.D.; Tocilj, A.; Haase, A.D.; Greene, E.M.; Hannon, G.J.; Joshua-Tor, L. The structure of human argonaute-2 in complex with miR-20a. Cell, 2012, 150(1), 100-110.
[http://dx.doi.org/10.1016/j.cell.2012.05.017] [PMID: 22682761]
[19]
Pickett, B.E.; Sadat, E.L.; Zhang, Y.; Noronha, J.M.; Squires, R.B.; Hunt, V.; Liu, M.; Kumar, S.; Zaremba, S.; Gu, Z.; Zhou, L.; Larson, C.N.; Dietrich, J.; Klem, E.B.; Scheuermann, R.H. ViPR: An open bioinformatics database and analysis resource for virology research. Nucleic Acids Res., 2012, 40(D1), D593-D598.
[http://dx.doi.org/10.1093/nar/gkr859] [PMID: 22006842]
[20]
Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform., 2019, 20(4), 1160-1166.
[http://dx.doi.org/10.1093/bib/bbx108] [PMID: 28968734]
[21]
Amarzguioui, M.; Prydz, H. An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun., 2004, 316(4), 1050-1058.
[http://dx.doi.org/10.1016/j.bbrc.2004.02.157] [PMID: 15044091]
[22]
Reynolds, A.; Leake, D.; Boese, Q.; Scaringe, S.; Marshall, W.S.; Khvorova, A. Rational siRNA design for RNA interference. Nat. Biotechnol., 2004, 22(3), 326-330.
[http://dx.doi.org/10.1038/nbt936] [PMID: 14758366]
[23]
Ui-Tei, K.; Naito, Y.; Takahashi, F.; Haraguchi, T.; Ohki-Hamazaki, H.; Juni, A.; Ueda, R.; Saigo, K. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res., 2004, 32(3), 936-948.
[http://dx.doi.org/10.1093/nar/gkh247] [PMID: 14769950]
[24]
Kibbe, W.A. OligoCalc: An online oligonucleotide properties calculator. Nucleic Acids Res., 2007, 35(Web Server), W43-W46.
[http://dx.doi.org/10.1093/nar/gkm234] [PMID: 17452344]
[25]
Bellaousov, S.; Reuter, J.S.; Seetin, M.G.; Mathews, D.H. RNAstructure: Web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res., 2013, 41(W1), W471-W474.
[http://dx.doi.org/10.1093/nar/gkt290] [PMID: 23620284]
[26]
Markham, N.R.; Zuker, M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res., 2005, 33(Web Server), W577-W581.
[http://dx.doi.org/10.1093/nar/gki591] [PMID: 15980540]
[27]
Meister, G.; Landthaler, M.; Patkaniowska, A.; Dorsett, Y.; Teng, G.; Tuschl, T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell, 2004, 15(2), 185-197.
[http://dx.doi.org/10.1016/j.molcel.2004.07.007] [PMID: 15260970]
[28]
Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res., 2018, 46(W1), W296-W303.
[http://dx.doi.org/10.1093/nar/gky427] [PMID: 29788355]
[29]
Schirle, N.T.; Sheu-Gruttadauria, J.; Chandradoss, S.D.; Joo, C.; MacRae, I.J. Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets. eLife, 2015, 4, e07646.
[http://dx.doi.org/10.7554/eLife.07646] [PMID: 26359634]
[30]
Heo, L.; Park, H.; Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res., 2013, 41(W1), W384-W388.
[http://dx.doi.org/10.1093/nar/gkt458] [PMID: 23737448]
[31]
Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35(Web Server), W407-W410.
[http://dx.doi.org/10.1093/nar/gkm290] [PMID: 17517781]
[32]
Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 2003, 31(13), 3406-3415.
[http://dx.doi.org/10.1093/nar/gkg595] [PMID: 12824337]
[33]
Popenda, M.; Szachniuk, M.; Antczak, M.; Purzycka, K.J.; Lukasiak, P.; Bartol, N.; Blazewicz, J.; Adamiak, R.W. Automated 3D structure composition for large RNAs. Nucleic Acids Res., 2012, 40(14), e112-e112.
[http://dx.doi.org/10.1093/nar/gks339] [PMID: 22539264]
[34]
Yan, Y.; Zhang, D.; Zhou, P.; Li, B.; Huang, S.Y. HDOCK: A web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res., 2017, 45(W1), W365-W373.
[http://dx.doi.org/10.1093/nar/gkx407] [PMID: 28521030]
[35]
Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534.
[http://dx.doi.org/10.1093/nar/gkab294] [PMID: 33950214]
[36]
Auweter, S.D.; Fasan, R.; Reymond, L.; Underwood, J.G.; Black, D.L.; Pitsch, S.; Allain, F.H.T. Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO J., 2006, 25(1), 163-173.
[http://dx.doi.org/10.1038/sj.emboj.7600918] [PMID: 16362037]
[37]
Kalra, K.; Gorle, S.; Cavallo, L.; Oliva, R.; Chawla, M. Occurrence and stability of lone pair-π and OH–π interactions between water and nucleobases in functional RNAs. Nucleic Acids Res., 2020, 48(11), 5825-5838.
[http://dx.doi.org/10.1093/nar/gkaa345] [PMID: 32392301]
[38]
Corley, M.; Burns, M.C.; Yeo, G.W. How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell, 2020, 78(1), 9-29.
[http://dx.doi.org/10.1016/j.molcel.2020.03.011] [PMID: 32243832]
[39]
Kumar, S.; Nussinov, R. Close-range electrostatic interactions in proteins. ChemBioChem, 2002, 3(7), 604-617.
[http://dx.doi.org/10.1002/1439-7633(20020703)3:7<604::AID-CBIC604>3.0.CO;2-X] [PMID: 12324994]
[40]
Tolstorukov, M.Y.; Jernigan, R.L.; Zhurkin, V.B. Protein-DNA hydrophobic recognition in the minor groove is facilitated by sugar switching. J. Mol. Biol., 2004, 337(1), 65-76.
[http://dx.doi.org/10.1016/j.jmb.2004.01.011] [PMID: 15001352]
[41]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[42]
Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem., 2003, 24(16), 1999-2012.
[http://dx.doi.org/10.1002/jcc.10349] [PMID: 14531054]
[43]
Shawan, M.M.A.K.; Sharma, A.R.; Bhattacharya, M.; Mallik, B.; Akhter, F.; Shakil, M.S.; Hossain, M.M.; Banik, S.; Lee, S.S.; Hasan, M.A.; Chakraborty, C. Designing an effective therapeutic siRNA to silence RdRp gene of SARS-CoV-2. Infect. Genet. Evol., 2021, 93, 104951.
[http://dx.doi.org/10.1016/j.meegid.2021.104951] [PMID: 34089909]
[44]
Amiri, A.; Barreto, G.; Sathyapalan, T.; Sahebkar, A. siRNA Therapeutics: Future Promise for Neurodegenerative Diseases. Curr. Neuropharmacol., 2021, 19(11), 1896-1911.
[http://dx.doi.org/10.2174/1570159X19666210402104054]
[45]
Beniac, D.R.; Andonov, A.; Grudeski, E.; Booth, T.F. Architecture of the SARS coronavirus prefusion spike. Nat. Struct. Mol. Biol., 2006, 13(8), 751-752.
[http://dx.doi.org/10.1038/nsmb1123] [PMID: 16845391]
[46]
Delmas, B.; Laude, H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J. Virol., 1990, 64(11), 5367-5375.
[http://dx.doi.org/10.1128/jvi.64.11.5367-5375.1990] [PMID: 2170676]
[47]
Bhattacharya, M.; Chatterjee, S.; Sharma, A.R.; Agoramoorthy, G.; Chakraborty, C. D614G mutation and SARS-CoV-2: Impact on S-protein structure, function, infectivity, and immunity. Appl. Microbiol. Biotechnol., 2021, 105(24), 9035-9045.
[http://dx.doi.org/10.1007/s00253-021-11676-2] [PMID: 34755213]
[48]
Naito, Y.; Yoshimura, J.; Morishita, S.; Ui-Tei, K. siDirect 2.0: Updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics, 2009, 10(1), 392.
[http://dx.doi.org/10.1186/1471-2105-10-392] [PMID: 19948054]
[49]
Brechin, V.; Shinohara, F.; Saito, J.; Seitz, H.; Tomari, Y. Mechanistic analysis of the enhanced RNAi activity by 6-mCEPh-purine at the 5′ end of the siRNA guide strand. RNA, 2021, 27(2), 151-162.
[http://dx.doi.org/10.1261/rna.073775.119] [PMID: 33177187]
[50]
Boland, A.; Tritschler, F.; Heimstädt, S.; Izaurralde, E.; Weichenrieder, O. Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. EMBO Rep., 2010, 11(7), 522-527.
[http://dx.doi.org/10.1038/embor.2010.81] [PMID: 20539312]
[51]
Kandeel, M.; Kitade, Y. Computational analysis of siRNA recognition by the Ago2 PAZ domain and identification of the determinants of RNA-induced gene silencing. PLoS One, 2013, 8(2), e57140.
[http://dx.doi.org/10.1371/journal.pone.0057140] [PMID: 23441235]
[52]
Chowdhury, U.F.; Sharif Shohan, M.U.; Hoque, K.I.; Beg, M.A.; Sharif Siam, M.K.; Moni, M.A. A computational approach to design potential siRNA molecules as a prospective tool for silencing nucleocapsid phosphoprotein and surface glycoprotein gene of SARS-CoV-2. Genomics, 2021, 113(1), 331-343.
[http://dx.doi.org/10.1016/j.ygeno.2020.12.021] [PMID: 33321203]
[53]
Shi, H.; Ullu, E.; Tschudi, C. Function of the Trypanosome Argonaute 1 protein in RNA interference requires the N-terminal RGG domain and arginine 735 in the Piwi domain. J. Biol. Chem., 2004, 279(48), 49889-49893.
[http://dx.doi.org/10.1074/jbc.M409280200] [PMID: 15383544]
[54]
Dana, H.; Chalbatani, G.M.; Mahmoodzadeh, H.; Karimloo, R.; Rezaiean, O.; Moradzadeh, A molecular mechanisms and biological functions of siRNA. Int. J. Biomed. Sci., 2017, 13, 48-57.
[http://dx.doi.org/10.59566/IJBS.2017.13048]
[55]
Yonezawa, S.; Koide, H.; Asai, T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv. Drug Deliv. Rev., 2020, 154-155, 64-78.
[http://dx.doi.org/10.1016/j.addr.2020.07.022] [PMID: 32768564]
[56]
de Paula Brandão, P.R.; Titze-de-Almeida, S.S.; Titze-de-Almeida, R. Leading RNA interference therapeutics part 2: Silencing Delta-Aminolevulinic Acid Synthase 1, with a Focus on Givosiran. Mol. Diagn. Ther., 2020, 24(1), 61-68.
[http://dx.doi.org/10.1007/s40291-019-00438-6] [PMID: 31792921]
[57]
Hoy, S.M. Patisiran: First global approval. Drugs, 2018, 78(15), 1625-1631.
[http://dx.doi.org/10.1007/s40265-018-0983-6] [PMID: 30251172]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy