Abstract
Background: Azolium salts are the organic salts used as stable precursors for generating N-Heterocyclic Carbenes and their metal complexes. Azolium salts have also been reported to have significant biological potential. Hence, in the current study, four tetra-dentate azolium salts were derived from bis-azolium salts by a new synthetic strategy.
Methods: The tetra azolium salts have been synthesized by reacting the imidazole or methyl imidazole with dibromo xylene (meta, para)/ 1-bromo methyl imidazole or dibromo ethane resulting in the mono or bis azolium salts namely I-IV. V-VII have been obtained by reacting I with II-IV, resulting in the tetra azolium salts. Each product was analyzed by various analytical techniques, i.e., microanalysis, FT-IR, and NMR (1H & 13C). Salts V-VII were evaluated for their antiproliferative effect against human colon cancer cells (HCT-116) using MTT assay.
Results: Four chemical shifts for acidic protons between 8.5-9.5 δ ppm in 1H NMR and resonance of respective carbons around 136-146 δ ppm in 13C NMR indicated the successful synthesis of tetra azolium salts. Salt V showed the highest IC50 value, 24.8 μM among all synthesized compounds.
Conclusion: Tetra-azolium salts may play a better cytotoxicity effect compared to mono-, bi-& tri-azolium salts.
Graphical Abstract
(b) Kamal, A.; Iqbal, M.A.; Bhatti, H.N. Therapeutic applications of selenium-derived compounds. Rev. Inorg. Chem., 2018, 38(2), 49-76.
[http://dx.doi.org/10.1016/S0140-6736(16)31679-8] [PMID: 27733284]
[http://dx.doi.org/10.1016/j.ejso.2021.10.005] [PMID: 34657780]
(b) Zhao, Q.; Wang, F.; Chen, Y.X.; Chen, S.; Yao, Y.C.; Zeng, Z.L.; Jiang, T.J.; Wang, Y.N.; Wu, C.Y.; Jing, Y. Comprehensive profiling of 1015 patients’ exomes reveals genomic-clinical associations in colorectal cancer. Nat. Commun., 2022, 13(1), 2342.
(b) Kawai, K.; Okada, J.; Nakae, M.; Tsujimura, T.; Karuo, Y.; Tarui, A.; Sato, K.; Yamashita, S.; Kataoka, M.; Omote, M. Discovery of benzyloxyphenyl-and phenethylphenyl-imidazole derivatives as a new class of ante–drug type boosters. Bioorganic & Medicinal Chemistry Letters, 2022, 72, 128868.;
(c) Deng, C.; Yan, H.; Wang, J.; Liu, B.S.; Liu, K.; Shi, Y.M. The anti-HIV potential of imidazole, oxazole and thiazole hybrids: A mini-review. Arab. J. Chem., 2022, 104242.;
(d) Slassi, S.; Aarjane, M.; Amine, A. Novel triazole derivatives possessing imidazole: Synthesis, spectroscopic characterization (FT-IR, NMR, UV–Vis), DFT studies and antibacterial in vitro evaluation. J. Mol. Struct., 2023, 1276, 134788.
(b) Alghamdi, S.S.; Suliman, R.S.; Almutairi, K.; Kahtani, K.; Aljatli, D. Imidazole as a promising medicinal scaffold: Current status and future direction. Drug Des. Devel. Ther., 2021, 3289-3312.;
(c) Zheng, X.; Ma, Z.; Zhang, D. Synthesis of imidazole-based medicinal molecules utilizing the van leusen imidazole synthesis. Pharmaceuticals, 2020, 13(3), 37.;
(d) Rulhania, S.; Kumar, S.; Nehra, B.; Gupta, G.; Monga, V. An insight into the medicinal perspective of synthetic analogs of imidazole. J. Mol. Struct., 2020, 1232, 129982.
(b) Li, C.G.; Chai, Y.M.; Chai, L.Q.; Xu, L.Y. Novel zinc (II) and nickel (II) complexes of a quinazoline‐based ligand with an imidazole ring: Synthesis, spectroscopic property, antibacterial activities, time‐dependent density functional theory calculations and Hirshfeld surface analysis. Appl. Organomet. Chem., 2022, 36(5), e6622.;
(c) Eftekhari, S.; Foroughifar, N.; Hallajian, S.; Khajeh-Amiri, A. Green Synthesis of Some Novel Imidazole Schiff base Derivatives Under Microwave Irradiation/Reflux Conditions and Evaluations of the Antibacterial Activity. Curr. Microw. Chem., 2020, 7(3), 207-215.
(b) Zhang, j.; Sun, J.; Liu, Y.; Yu, J.; Guo, X. Immobilized cellulose-based Chiralpak IC chiral stationary phase for Enantioseparation of eight imidazole antifungal drugs in normal-phase, polar organic phase and reversed-phase conditions using high-performance liquid chromatography. Chromatographia, 2019, 82, 649-660.;
(c) Tippannanavar, M.; Verma, A.; Kumar, A.; Gogoi, R.; Kundu, A.; Patanjali, N. Preparation of nanofungicides based on imidazole drugs and their antifungal evaluation. J. Agric. Food Chem., 2020, 68, 16-4566.
[http://dx.doi.org/10.1016/j.ejps.2022.106323] [PMID: 36336277]
[PMID: 18032039];
(b) Habib, A.; Iqbal, M.A.; Bhatti, H.N.; Shahid, M. Effect of ring substitution on synthesis of benzimidazolium salts and their silver (I) complexes: characterization, electrochemical studies and evaluation of anticancer potential. Transit. Met. Chem., 2019, 44, 431-443.;
(c) Emami, S.; Foroumadi, A.; Falahati, M.; Lotfali, E.; Rajabalian, S.; Ebrahimi, S.A.; Farahyar, S.; Shafiee, A. 2-Hydroxyphenacyl azoles and related azolium derivatives as antifungal agents. Bioorganic Med. Chem. Lett., 2008, 18(1), 141-146.
[http://dx.doi.org/10.1016/j.molliq.2022.120921]
[http://dx.doi.org/10.1515/znc-2020-0069] [PMID: 32589611]
[http://dx.doi.org/10.1007/s00044-022-02942-7];
(b) Hayat, K.; Shkeel, M.; Iqbal, M.A.; Quah, C.K.; Wong, Q.A.; Nazari, M.; Ahamed, M.B.K.; Hameed, S. O-Halogen-substituted arene linked selenium-N-heterocyclic carbene compounds induce significant cytotoxicity: Crystal structures and molecular docking studies. J. Organomet. Chem., 2023, 985, 122593.;
(c) Nadeem, R.Y.; Yaqoob, M.; Yam, W.; Haque, R.A.; Iqbal, M.A. Synthesis, characterization and biological evaluation of Bis-benzimidazolium salts and their silver(I)-N-heterocyclic carbene complexes. Med. Chem. Res., 2022, 31(10), 1783-1791.
[http://dx.doi.org/10.1016/j.bioorg.2019.103042] [PMID: 31226469]
[http://dx.doi.org/10.1016/j.jorganchem.2015.10.023]
[http://dx.doi.org/10.1016/j.jorganchem.2017.10.045]
[http://dx.doi.org/10.1186/1752-153X-7-27] [PMID: 23391345]
[http://dx.doi.org/10.1002/aoc.3735]
[http://dx.doi.org/10.1016/j.ejmech.2015.11.034] [PMID: 26649905]
[http://dx.doi.org/10.1080/00958972.2022.2101921]
[http://dx.doi.org/10.1007/s00044-012-0240-6]
(b) Naz, N.; Saqib, S.; Ashraf, R.; Majeed, M.L.; Iqbal, M.A. Synthesis of new organoselenium compounds: characterization and biological studies. Maced. J. Chem. Chem., 2020, 39(1), 1-10.;
(c) Haque, R.A.; Iqbal, M.A.; Mohamad, F.; Razali, M.R. Antibacterial and DNA cleavage activity of carbonyl functionalized N-heterocyclic carbene-silver (I) and selenium compounds. J. Mol. Struct., 2018, 1155, 362-370.;
(d) Iqbal, M.A.; Haque, R.A.; Budagumpi, S.; Ahamed, M.B.K.; Majid, A.M.A. Short metal–metal separations and in vitro anticancer studies of a new dinuclear silver (I)-N-heterocyclic carbene complex of para-xylyl-linked bis-benzimidazolium salt. Inorg. Chem. Commun., 2018, 28, 64-69.
(b) Verlinden, k.; Buhl, h.; Frank, W.; Ganter, C.; Frank, W.; Frank, W. Determining the ligand properties of N‐heterocyclic carbenes from 77Se NMR parameters. Eur. J. Inorg. Chem., 2015, 2015(14), 2416-2425.
[http://dx.doi.org/10.1016/j.bmc.2015.12.050] [PMID: 26780833]