Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Application of a Quantitative Proton Nuclear Magnetic Resonance Method for the Determination of Protopine in Radix Dactylicapnotis

Author(s): Xue-Jiao Li, Jian-Wei Dong*, Zheng-Fen Liu, Jun-You Shi, Feng-Mei Zhang, Yan-Mei Fa, Ya-Li Li and Xue-Xian Wang

Volume 19, Issue 7, 2023

Published on: 25 August, 2023

Page: [527 - 532] Pages: 6

DOI: 10.2174/1573412919666230823144117

Price: $65

Abstract

Background: The Bai ethnologic herb Radix Dactylicapnotis, the root and tuber of Dactylicapnos scandens (Papaveraceae), is used for clearing heat, relieving pain, and achieving hemostasis and antihypertensive effects.

Objective: The study aimed to develop a quantitative method for determining the protopine content in Radix Dactylicapnotis by using proton nuclear magnetic resonance (1H NMR) spectroscopy.

Methods: The deuterium solvent, internal standard, and NMR parameters were optimized. The quantitative method was validated by linearity, precision, accuracy, repeatability, and stability, as well as limit-of-detection (LOD) and limit-of-quantitation (LOQ) assays.

Results: A mixture solution consisting of 500 μL of DMSO-d6 and 20 μL of D2O enabled satisfactory separation of the signals to be integrated into the 1H NMR spectrum. Trimethyl benzene-1,3,5- tricarboxylate (TMBT) was selected as an internal standard. The integration of δ 6.05-6.08 corresponding to OCH2O was selected to quantify protopine. The developed quantitative method was found to be precise and accurate and to exhibit excellent linearity and range. The protopine content in Radix Dactylicapnotis could be quantified accurately using the featured signal.

Conclusion: This is the first study to report quantitative 1H NMR determination of protopine in Radix Dactylicapnotis. The study results indicate that quantitative 1H NMR represents a feasible alternative to HPLC-based methods for the quantitation of protopine in Radix Dactylicapnotis, and is suitable for the quality control of Radix Dactylicapnotis.

Graphical Abstract

[1]
An encyclopedia of chinese materia medica; Shanghai Science and Technology Press: Shanghai, 2006, p. 3291.
[2]
Tong, W.; Wang, B.R.; Ai, T.M. Pharmacognostical studies on Dactylicapnos scandens. Zhongguo Zhongyao Zazhi, 2003, 28(5), 405-409.
[PMID: 15139122]
[3]
Wang, B.; Zhao, Y.J.; Zhao, Y.L.; Liu, Y.P.; Li, X.N.; Zhang, H.; Luo, X.D. Exploring aporphine as anti-inflammatory and analgesic lead from Dactylicapnos scandens. Org. Lett., 2020, 22(1), 257-260.
[http://dx.doi.org/10.1021/acs.orglett.9b04252] [PMID: 31860319]
[4]
Wang, B.; Yang, Z.F.; Zhao, Y.L.; Liu, Y.P.; Deng, J.; Huang, W.Y.; Li, X.N.; Wang, X.H.; Luo, X.D. Anti-inflammatory isoquinoline with Bis- seco -aporphine Skeleton from Dactylicapnos scandens. Org. Lett., 2018, 20(6), 1647-1650.
[http://dx.doi.org/10.1021/acs.orglett.8b00400] [PMID: 29508621]
[5]
Wang, X.; Dong, H.; Yang, B.; Liu, D.; Duan, W.; Huang, L. Preparative isolation of alkaloids from Dactylicapnos scandens using pH-zone-refining counter-current chromatography by changing the length of the separation column. J. Chromatogr. B., 2011, 879, 3767-3770.
[6]
Wu, Y-r.; Zhao, Y-x.; Liu, Y-q. ZHou, J. Alkaloids from dactylicapnos scandens. Nat. Prod. Res. Dev., 2008, 20, 622-626.
[7]
Luo, J-R.; Qian, J-F.; Zhou, N. Study on liposoluble chemical constituents of Dactylicapnos scandens. Xibei Yaoxue Zazhi, 2010, 25(1), 19-20.
[8]
Xu, L.F.; Chu, W.J.; Qing, X.Y.; Li, S.; Wang, X.S.; Qing, G.W.; Fei, J.; Guo, L.H. Protopine inhibits serotonin transporter and noradrenaline transporter and has the antidepressant-like effect in mice models. Neuropharmacology, 2006, 50(8), 934-940.
[http://dx.doi.org/10.1016/j.neuropharm.2006.01.003] [PMID: 16530230]
[9]
Wu, D-G. Alkaloids of dactylicapnos scandens hutch. Chin. Herb. Med. Newslett, 1977, 4, 9-11.
[10]
Yan, T.Q.; Yang, Y.F.; Ai, T.M. Determination of protopine and isocorydine in root of Dactylicapnos scandens by HPLC Zhongguo Zhongyao Zazhi, 2004, 29(10), 961-963.
[PMID: 15631083]
[11]
Boerkamp, V.J.P.; Merkx, D.W.H.; Wang, J.; Vincken, J.P.; Hennebelle, M.; van Duynhoven, J.P.M. Quantitative assessment of epoxide formation in oil and mayonnaise by 1H-13C HSQC NMR spectroscopy. Food Chem., 2022, 390, 133145.
[http://dx.doi.org/10.1016/j.foodchem.2022.133145]
[12]
Qin, C.J.; Hu, J.; Tong, W.; Zhang, T.T.; Tian, G.Z.; Zou, X.P.; Liu, J.K.; Yin, J. Determination of ribose and phosphorus contents in haemophilus influenzae type b capsular polysaccharide by a quantitative NMR method using a single internal standard. Chin. J. Nat. Med., 2022, 20(8), 633-640.
[http://dx.doi.org/10.1016/S1875-5364(22)60184-5] [PMID: 36031235]
[13]
Humpierre, A.R.; Zanuy, A.; Saenz, M.; Vasco, A.V.; Méndez, Y.; Westermann, B.; Cardoso, F.; Quintero, L.; Santana, D.; Verez, V.; Valdés, Y.; Rivera, D.G.; Garrido, R. Quantitative NMR for the structural analysis of novel bivalent glycoconjugates as vaccine candidates. J. Pharm. Biomed. Anal., 2022, 214, 114721.
[http://dx.doi.org/10.1016/j.jpba.2022.114721]
[14]
Silva, R.C.d.A.; de Sousa, E.G.R.; Mazzei, J.L.; de Carvalho, E.M. Quantitative 1H NMR method for analyzing primaquine diphosphate in active pharmaceutical ingredients. J. Pharm. Biomed. Anal., 2022, 210, 114585.
[http://dx.doi.org/10.1016/j.jpba.2022.114585]
[15]
Maki, H. Quantitative NMR in analytical chemistry. Anal. Sci., 2021, 37(11), 1485-1486.
[http://dx.doi.org/10.2116/analsci.highlights2111] [PMID: 34759091]
[16]
Suzuki, R.; Kasuya, Y.; Sano, A.; Tomita, J.; Maruyama, T.; Kitamura, M. Comparison of various commercially available cinnamon barks using NMR metabolomics and the quantification of coumarin by quantitative NMR methods. J. Nat. Med., 2022, 76(1), 87-93.
[http://dx.doi.org/10.1007/s11418-021-01554-6] [PMID: 34357482]
[17]
The Pharmacopoeia of the People’s Republic of China. Part 1; China Medical Science and Technology Press: Beijing, 2020, p. 138.
[18]
Zhao, H.; Wang, X.; Zhang, Y.; Huang, X.; Jiang, Y.; Ma, H.; An, L.; Wu, X.; Wang, Q. Quantitative 1H NMR for the direct quantification of saikosaponins in Bupleurum chinense DC. Anal. Sci., 2021, 37(10), 1413-1418.
[http://dx.doi.org/10.2116/analsci.20P462] [PMID: 33775977]
[19]
Su, F.; Chen, J.P.; Zhu, P.X.; Wang, Y.F.; Liang, X.R.; Su, W.K. Development of a quantitative nmr method for direct and simultaneous determination of four flavonoids in scutellaria baicalensis georgi extracts. Curr. Pharm. Anal., 2021, 17(2), 194-200.
[http://dx.doi.org/10.2174/1573412916666191218111610]
[20]
Tanaka, R.; Inagaki, R.; Sugimoto, N.; Akiyama, H.; Nagatsu, A. Application of a quantitative 1H-NMR (1H-qNMR) method for the determination of geniposidic acid and acteoside in Plantaginis semen. J. Nat. Med., 2017, 71(1), 315-320.
[http://dx.doi.org/10.1007/s11418-016-1040-y] [PMID: 27631429]
[21]
Yin, T.; Lu, J.; Liu, Q.; Zhu, G.; Zhang, W.; Jiang, Z. Validated quantitative 1 H NMR method for simultaneous quantification of indole alkaloids in Uncaria rhynchophylla. ACS Omega, 2021, 6(47), 31810-31817.
[http://dx.doi.org/10.1021/acsomega.1c04464] [PMID: 34870003]
[22]
Li, X.; Dong, J.; Gao, X.; Li, G.; Shi, J.; Zhang, Y. Application of a quantitative 1H NMR method for rapid extraction and determination of the content of paeonol in Cynanchum paniculatum. J. Chin. Pharm. Sci., 2020, 29(6), 422-430.
[http://dx.doi.org/10.5246/jcps.2020.06.040]
[23]
Dong, J-W.; Li, X-J.; Cai, L.; Shi, J-Y.; Li, Y-F.; Yang, C.; Li, Z-J. imultaneous determination of alkaloids dicentrine and sinomenine in Stephania epigeae by 1H NMR spectroscopy. J. Pharm. Biomed. Anal., 2018, 160, 330-335.
[http://dx.doi.org/10.1016/j.jpba.2018.08.007]
[24]
Tanaka, R.; Shibata, H.; Sugimoto, N.; Akiyama, H.; Nagatsu, A. Application of a quantitative 1H-NMR method for the determination of paeonol in Moutan cortex. Hachimijiogan and Keishibukuryogan. J. Nat. Med., 2016, 70(4), 797-802.
[http://dx.doi.org/10.1007/s11418-016-1003-3] [PMID: 27164909]
[25]
Liang, T.; Miyakawa, T.; Yang, J.; Ishikawa, T.; Tanokura, M. Quantification of terpene trilactones in Ginkgo biloba with a 1H NMR method. J. Nat. Med., 2018, 72(3), 793-797.
[http://dx.doi.org/10.1007/s11418-018-1203-0] [PMID: 29569220]
[26]
Farhadi, F.; Soltani, S.; Saberi, S.; Iranshahi, M. A qHNMR method for simultaneous quantification of terpenoids from Ferula ovina (Boiss.) Boiss roots. J. Pharm. Biomed. Anal., 2019, 172, 120-125.
[http://dx.doi.org/10.1016/j.jpba.2019.04.039]
[27]
Bharti, S.K.; Roy, R. Quantitative 1H NMR spectroscopy. TrAC Trends Analyt. Chem., 2012, 35, 5-26.
[http://dx.doi.org/10.1016/j.trac.2012.02.007]

© 2024 Bentham Science Publishers | Privacy Policy