Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Antibacterial Evaluation of Gallic Acid and its Derivatives against a Panel of Multi-drug Resistant Bacteria

Author(s): Mohamed Abdella, Chandrajit Lahiri, Iskandar Abdullah* and Ayaz Anwar*

Volume 20, Issue 2, 2024

Published on: 18 October, 2023

Page: [130 - 139] Pages: 10

DOI: 10.2174/1573406419666230823104300

Price: $65

Abstract

Background: Infectious diseases are the second leading cause of deaths worldwide. Pathogenic bacteria have been developing tremendous resistance against antibiotics which has placed an additional burden on healthcare systems. Gallic acid belongs to a naturally occurring phenolic class of compounds and is known to possess a wide spectrum of antimicrobial activities.

Aims & Objectives: In this study, we synthesized thirteen derivatives of gallic acid and evaluated their antibacterial potential against seven multi-drug resistant bacteria, as well as cytotoxic effects against human embryonic kidney cell line in vitro.

Methods: 13 compounds were successfully synthesized with moderate to good yield and evaluated. Synthesized derivatives were characterized by using nuclear magnetic resonance spectroscopy, mass spectrometry, and Fourier transformation infrared spectroscopy. Antibacterial activity was determined using microdilution while cytotoxicyt was assessed using MTT assay.

Results: The results of antibacterial assay showed that seven out of thirteen compounds exhibited antibacterial effects with compound 6 and 13 being most potent against Staphylococcus aureus (MIC 56 μg/mL) and Salmonella enterica (MIC 475 μg/mL) respectively. On the other hand, most of these compounds showed lower cytotoxicity against human embryonic kidney cells (HEK 293), with IC50 values ranging from over 700 μg/mL.

Conclusion: Notably, compound 13 was found to be non-toxic at concentrations as high as 5000 μg/mL. These findings suggest that the present synthetic derivatives of gallic acid hold potential for further studies in the development of potent antibacterial agents.

Graphical Abstract

[1]
Contini, C.; Rotondo, J.C.; Magagnoli, F.; Maritati, M.; Seraceni, S.; Graziano, A.; Poggi, A.; Capucci, R.; Vesce, F.; Tognon, M.; Martini, F. Investigation on silent bacterial infections in specimens from pregnant women affected by spontaneous miscarriage. J. Cell. Physiol., 2019, 234(1), 100-107.
[http://dx.doi.org/10.1002/jcp.26952] [PMID: 30078192]
[2]
Pfeilmeier, S.; Caly, D.L.; Malone, J.G. Bacterial pathogenesis of plants: future challenges from a microbial perspective. Mol. Plant Pathol., 2016, 17(8), 1298-1313.
[http://dx.doi.org/10.1111/mpp.12427] [PMID: 27170435]
[3]
Uzal, F.A.; Arroyo, L.G.; Navarro, M.A.; Gomez, D.E.; Asín, J.; Henderson, E. Bacterial and viral enterocolitis in horses: A review. J. Vet. Diagn. Invest., 2022, 34(3), 354-375.
[http://dx.doi.org/10.1177/10406387211057469] [PMID: 34763560]
[4]
Cuddy, M.L.S. Centers for Disease Control and Prevention. Antibiotic resistance., 2005.https://www.cdc.gov/drugresistance/about.html
[5]
Wright, A.J. The Penicillins. Mayo Clin. Proc., 1999, 74(3), 290-307.
[http://dx.doi.org/10.4065/74.3.290] [PMID: 10090000]
[7]
Rajamanickam, K.; Yang, J.; Sakharkar, M.K. Gallic acid potentiates the antimicrobial activity of tulathromycin against two key bovine respiratory disease (BRD) causing-pathogens. Front. Pharmacol., 2019, 9, 1486.
[http://dx.doi.org/10.3389/fphar.2018.01486] [PMID: 30662404]
[8]
Sherif, M.M.; Elkhatib, W.F.; Khalaf, W.S.; Elleboudy, N.S.; Abdelaziz, N.A. Multidrug resistant Acinetobacter baumannii biofilms: Evaluation of phenotypic–genotypic association and susceptibility to cinnamic and gallic acids. Front. Microbiol., 2021, 12(September), 716627.
[http://dx.doi.org/10.3389/fmicb.2021.716627] [PMID: 34650528]
[9]
Zhao, B.; Hu, M. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncol. Lett., 2013, 6(6), 1749-1755.
[http://dx.doi.org/10.3892/ol.2013.1632] [PMID: 24843386]
[10]
Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; Bishayee, A. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci., 2019, 22(3), 225-237.
[http://dx.doi.org/10.22038/ijbms.2019.32806.7897] [PMID: 31156781]
[11]
Nayeem, N.; Smb, A. Gallic acid: A promising lead molecule for drug development. J. Appl. Pharm., 2016, 8(2), 8-11.
[http://dx.doi.org/10.4172/1920-4159.1000213]
[12]
Rajput, S.B.; Shinde, R.B.; Routh, M.M.; Karuppayil, S.M. Anti-Candida properties of asaronaldehyde of Acorus gramineus rhizome and three structural isomers. Chin. Med., 2013, 8(1), 18.
[http://dx.doi.org/10.1186/1749-8546-8-18] [PMID: 24010893]
[13]
Dos Santos, E.D.A.; Prado, P.C.; De Carvalho, W.R.; De Lima, R.V.; Beatriz, A.; De Lima, D.P.; Hamel, E.; Dyba, M.A.; Albuquerque, S. Synthesis and biological activity of sulfur compounds showing structural analogy with combretastatin A-4. Quimica Nova., 2013, 36(2), 279-283.
[http://dx.doi.org/10.1590/S0100-40422013000200014]
[14]
Kolb, M. Synthetic communications: An international journal for rapid communication of synthetic organic chemistry. Synth. Commun., 1993, 23(1), 7.
[http://dx.doi.org/10.1080/00397919308020392]
[15]
Oshimizu, S.; Takeshi, S.; Sato, T.; Yamakado, R.; Tatewaki, Y.; Okada, S. Synthesis and solid-state polymerization of 5-(pyren-1-yl)penta-2,4-diyn-1-ol derivatives with an n-phenylurethane or n-benzylurethane group. Cryst. Growth Des., 2020, 20(10), 6356-6365.
[http://dx.doi.org/10.1021/acs.cgd.0c00438]
[16]
Prakasham, A.P.; Saxena, A.K.; Luqman, S.; Chanda, D.; Kaur, T.; Gupta, A.; Yadav, D.K.; Chanotiya, C.S.; Shanker, K.; Khan, F.; Negi, A.S. Synthesis and anticancer activity of 2-benzylidene indanones through inhibiting tubulin polymerization. Bioorg. Med. Chem., 2012, 20(9), 3049-3057.
[http://dx.doi.org/10.1016/j.bmc.2012.02.057] [PMID: 22472045]
[17]
Wang, J.; Xia, F.; Jin, W.B.; Guan, J.Y.; Zhao, H. Efficient synthesis and antioxidant activities of N-heterocyclyl substituted Coenzyme Q analogues. Bioorg. Chem., 2016, 68, 214-218.
[http://dx.doi.org/10.1016/j.bioorg.2016.08.008] [PMID: 27561631]
[18]
Nomura, K.; Terwilliger, P. Simple and convenient two step synthesis of 5-bromo-2,3-dimethoxy-6-methyl-1,4-benzoquinone. Spec. Matrices, 2019, 7(1), 1-19.
[http://dx.doi.org/10.1515/spma-2019-0001]
[19]
Greene, L.E.; Godin, R.; Cosa, G. Fluorogenic ubiquinone analogue for monitoring chemical and biological redox processes. J. Am. Chem. Soc., 2016, 138(35), 11327-11334.
[http://dx.doi.org/10.1021/jacs.6b06899] [PMID: 27508986]
[20]
Theodorou, V.; Skobridis, K.; Tzakos, A.G.; Ragoussis, V. A simple method for the alkaline hydrolysis of esters. Tetrahedron Lett., 2007, 48(46), 8230-8233.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.074]
[21]
Risch, P.; Pfeifer, T.; Segrestaa, J.; Fretz, H.; Pothier, J. Verification of the major metabolic oxidation path for the naphthoyl group in chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTh2) antagonist 2-(2-(1-naphthoyl)-8-fluoro-3,4-dihydro-1 H -pyrido[4,3-b]indol-5(2 H)-yl)acetic Acid. J. Med. Chem., 2015, 58(20), 8011-8035.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00824] [PMID: 26398218]
[22]
Cong, Z.Q.; Wang, C.I.; Chen, T.; Yin, B.Z. Efficient and rapid method for the oxidation of electron‐rich aromatic aldehydes to carboxylic acids using improved basic hydrogen peroxide. Synth. Commun., 2006, 36(5), 679-683.
[http://dx.doi.org/10.1080/00397910500408456]
[23]
Yamaura, M.; Suzuki, K.; Tsuruga, T.; Hiranuma, K. Synthesis of 7,8-Dihydroxy-5-hydroxymethyl-2-phenyl-chroman-4-one; the aglycon of actinoflavoside. Synlett, 2004, 1(1), 116-118.
[http://dx.doi.org/10.1055/s-2003-43365]
[24]
LibreTexts. Ashenhurst, J. Oxidation by PCC (pyridinium chlorochromate) 2020.https://chem.libretexts.org/@go/page/15407
[25]
Ozbak, H.A. A novel high-resolution melting analysis approach for rapid detection of vancomycin-resistant enterococci. Ann. Saudi Med., 2018, 38(3), 200-207.
[http://dx.doi.org/10.5144/0256-4947.2018.200] [PMID: 29848938]
[26]
Rasheed, J.K.; Anderson, G.J.; Yigit, H.; Queenan, A.M.; Doménech-Sánchez, A.; Swenson, J.M.; Biddle, J.W.; Ferraro, M.J.; Jacoby, G.A.; Tenover, F.C. Characterization of the extended-spectrum β-lactamase reference strain, Klebsiella pneumoniae K6 (ATCC 700603), which produces the novel enzyme SHV-18. Antimicrob. Agents Chemother., 2000, 44(9), 2382-2388.
[http://dx.doi.org/10.1128/AAC.44.9.2382-2388.2000] [PMID: 10952583]
[27]
Pachori, P.; Gothalwal, R.; Gandhi, P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis., 2019, 6(2), 109-119.
[http://dx.doi.org/10.1016/j.gendis.2019.04.001] [PMID: 31194018]
[28]
V T Nair, D.; Venkitanarayanan, K.; Kollanoor, J.A. Antibioticresistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods, 2018, 7(10), 167.
[http://dx.doi.org/10.3390/foods7100167] [PMID: 30314348]
[29]
Hamidian, M.; Blasco, L.; Tillman, L.N.; To, J.; Tomas, M.; Myers, G.S.A. Analysis of complete genome sequence of Acinetobacter baumannii strain ATCC 19606 reveals novel mobile Genetic elements and novel prophage. Microorganisms, 2020, 8(12), 1851.
[http://dx.doi.org/10.3390/microorganisms8121851] [PMID: 33255319]
[30]
Yigit, H.; Anderson, G.J.; Biddle, J.W.; Steward, C.D.; Rasheed, J.K.; Valera, L.L.; McGowan, J.E., Jr; Tenover, F.C. Carbapenem resistance in a clinical isolate of Enterobacter aerogenes is associated with decreased expression of OmpF and OmpC porin analogs. Antimicrob. Agents Chemother., 2002, 46(12), 3817-3822.
[http://dx.doi.org/10.1128/AAC.46.12.3817-3822.2002] [PMID: 12435682]
[31]
Mezger, A.; Gullberg, E.; Göransson, J.; Zorzet, A.; Herthnek, D.; Tano, E.; Nilsson, M.; Andersson, D.I. A general method for rapid determination of antibiotic susceptibility and species in bacterial infections. J. Clin. Microbiol., 2015, 53(2), 425-432.
[http://dx.doi.org/10.1128/JCM.02434-14] [PMID: 25411178]
[32]
Silva, A.A.; Santos, I.F.; Anjos, M.M.; Pascoli, I.C.; Ruiz, S.P.; Graton, M.J.M.; Machinski, M. Junior; Ueda N.T.; Nakamura, C.V.; Abreu F.B.A. Evaluation of the antibacterial and sporicidal activity of the essential oils of Copaifera multijuga and Thymus vulgaris against Alicyclobacillus acidoterrestris. Int. Food Res. J., 2019, 26(4), 1327-1337.
[33]
Mitra, I.; Mukherjee, S.; Reddy, B. V.P.; Dasgupta, S.; Bose K, J.C.; Mukherjee, S.; Linert, W.; Moi, S.C. Benzimidazole based Pt(II) complexes with better normal cell viability than cisplatin: synthesis, substitution behavior, cytotoxicity, DNA binding and DFT study. RSC Advances, 2016, 6(80), 76600-76613.
[http://dx.doi.org/10.1039/C6RA17788C]
[34]
Cell Biology Protocols. How to calculate IC50., https://www.sciencegateway.org/protocols/cellbio/drug/hcic50.htm
[35]
Medina, E.; Pieper, D.H. Tackling threats and future problems of multidrug-resistant bacteria. In: Curr Top Microbiol Immunol; , 2016; 398, pp. 3-33.
[http://dx.doi.org/10.1007/82_2016_492]
[36]
Otto Chemie pvt ltd.. 3,4,5-Trimethoxybenzyl alcohol, 98% https://www.ottokemi.com/alcohols-compounds/345-trimethoxybenzyl-alcohol-98.aspx
[37]
Longkumer, N.; Richa, K.; Karmaker, R.; Kuotsu, V.; Supong, A.; Jamir, L.; Bharali, P.; Bora, S.U. Green synthesis of bromo organic molecules and investigations on their antibacterial properties: An experimental and computational approach. Acta Chim. Slov., 2019, 66(2), 276-283.
[http://dx.doi.org/10.17344/acsi.2018.4580] [PMID: 33855504]
[38]
Ahmed, D.; Anwar, A.; Khan, A.K.; Ahmed, A.; Shah, M.R.; Khan, N.A. Size selectivity in antibiofilm activity of 3-(diphenylphosphino)propanoic acid coated gold nanomaterials against Gram-positive Staphylococcus aureus and Streptococcus mutans. AMB Express, 2017, 7(1), 210.
[http://dx.doi.org/10.1186/s13568-017-0515-x] [PMID: 29164404]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy