Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

The Synthesis and Pharmacological Activity of Ursolic Acid Derivatives Modified at C-28 and C-3 Sites

Author(s): Jiawen Deng, Si Zhang, Yan Tan, Jing Zhou, Meiling Liu, Zehua Yang, Xu Yao*, Pengbing Mi* and Xing Zheng*

Volume 21, Issue 14, 2024

Published on: 04 October, 2023

Page: [2799 - 2810] Pages: 12

DOI: 10.2174/1570180820666230823093545

Price: $65

Abstract

Ursolic acid (UA) is a widely distributed triterpenoid in nature. Due to its easy availability and multiple pharmacological activities, ursolic acid has attracted much attention in the field of medicine and pharmacology. To overcome the disadvantages of bioavailability and poor water solubility during the ursolic acid application, we focused on the synthetic and medicinal properties of UA derivatives modified at C-3 and C-28 sites. This review presents the synthesis of UA derivatives with modification at C-3 and C-28 sites and their pharmacological activity, which may provide some important information for further research and development of UA-based drugs.

[1]
Hodon, J.; Borkova, L.; Pokorny, J.; Kazakova, A.; Urban, M. Design and synthesis of pentacyclic triterpene conjugates and their use in medicinal research. Eur. J. Med. Chem., 2019, Nov 15. 182, 111653.
[http://dx.doi.org/10.1016/j.ejmech.2019.111653] [PMID: 31499360]
[2]
Hill, R.A.; Connolly, J.D. Triterpenoids. Nat. Prod. Rep., 2020, 37(7), 962-998.
[http://dx.doi.org/10.1039/C9NP00067D] [PMID: 32055816]
[3]
Nguyen, H.N.; Ullevig, S.L.; Short, J.D.; Wang, L.; Ahn, Y.J.; Asmis, R. Ursolic acid and related analogues: Triterpenoids with broad health benefits. Antioxidants, 2021, 10(8), 1161.
[http://dx.doi.org/10.3390/antiox10081161] [PMID: 34439409]
[4]
Yang, H.; Kim, H.; Kim, Y.; Sung, S. Cytotoxic activities of naturally occurring oleanane-, ursane-, and lupane-type triterpenes on HepG2 and AGS cells. Pharmacogn. Mag., 2017, 13(49), 118-122.
[http://dx.doi.org/10.4103/0973-1296.196308] [PMID: 28216894]
[5]
Chattopadhyay, D.; Arunachalam, G.; Mandal, A.B.; Sur, T.K.; Mandal, S.C.; Bhattacharya, S.K. Antimicrobial and anti-inflammatory activity of folklore: Mallotus peltatus leaf extract. J. Ethnopharmacol., 2002, 82(2-3), 229-237.
[http://dx.doi.org/10.1016/S0378-8741(02)00165-4]
[6]
Singh, N.; Mishra, B.B.; Bajpai, S.; Singh, R.K.; Tiwari, V.K. Natural product based leads to fight against leishmaniasis. Bioorg. Med. Chem., 2014, 22(1), 18-45.
[http://dx.doi.org/10.1016/j.bmc.2013.11.048] [PMID: 24355247]
[7]
Jang, S.M.; Kim, M.J.; Choi, M.S.; Kwon, E.Y.; Lee, M.K. Inhibitory effects of ursolic acid on hepatic polyol pathway and glucose production in streptozotocin-induced diabetic mice. Metabolism, 2010, 59(4), 512-519.
[http://dx.doi.org/10.1016/j.metabol.2009.07.040] [PMID: 19846180]
[8]
Checker, R.; Sandur, S.K.; Sharma, D.; Patwardhan, R.S.; Jayakumar, S.; Kohli, V.; Sethi, G.; Aggarwal, B.B.; Sainis, K.B. Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-κB, AP-1 and NF-AT. PLoS One, 2012, 7(2), e31318.
[http://dx.doi.org/10.1371/journal.pone.0031318] [PMID: 22363615]
[9]
Chen, H.; Gao, Y.; Wang, A.; Zhou, X.; Zheng, Y.; Zhou, J. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents. Eur. J. Med. Chem., 2015, 92, 648-655.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.031] [PMID: 25617694]
[10]
Dewangan, J.; Srivastava, S.; Mishra, S.; Divakar, A.; Kumar, S.; Rath, S.K. Salinomycin inhibits breast cancer progression via targeting HIF-1α/VEGF mediated tumor angiogenesis in vitro and in vivo. Biochem. Pharmacol., 2019, 164, 326-335.
[http://dx.doi.org/10.1016/j.bcp.2019.04.026] [PMID: 31028743]
[11]
Shanmugam, M.K.; Dai, X.; Kumar, A.P.; Tan, B.K.H.; Sethi, G.; Bishayee, A. Ursolic acid in cancer prevention and treatment: Molecular targets, pharmacokinetics and clinical studies. Biochem. Pharmacol., 2013, 85(11), 1579-1587.
[http://dx.doi.org/10.1016/j.bcp.2013.03.006] [PMID: 23499879]
[12]
Baglin, I.; Poumaroux, A.; Nour, M.; Tan, K.; Mitaine-Offer, A.C.; Lacaille-Dubois, M.A.; Chauffert, B.; Cavé, C. New ursolic and betulinic derivatives as potential cytotoxic agents. J. Enzyme Inhib. Med. Chem., 2003, 18(2), 111-117.
[http://dx.doi.org/10.1080/1475636031000093543] [PMID: 12943194]
[13]
Ma, C.M.; Cai, S.Q.; Cui, J.R.; Wang, R.Q.; Tu, P.F.; Hattori, M.; Daneshtalab, M. The cytotoxic activity of ursolic acid derivatives. Eur. J. Med. Chem., 2005, 40(6), 582-589.
[http://dx.doi.org/10.1016/j.ejmech.2005.01.001] [PMID: 15922841]
[14]
Tu, H.Y.; Huang, A.M.; Wei, B.L.; Gan, K.H.; Hour, T.C.; Yang, S.C.; Pu, Y.S.; Lin, C.N. Ursolic acid derivatives induce cell cycle arrest and apoptosis in NTUB1 cells associated with reactive oxygen species. Bioorg. Med. Chem., 2009, 17(20), 7265-7274.
[http://dx.doi.org/10.1016/j.bmc.2009.08.046] [PMID: 19758808]
[15]
Meng, Y.Q.; Liu, D.; Cai, L.L.; Chen, H.; Cao, B.; Wang, Y.Z. The synthesis of ursolic acid derivatives with cytotoxic activity and the investigation of their preliminary mechanism of action. Bioorg. Med. Chem., 2009, 17(2), 848-854.
[http://dx.doi.org/10.1016/j.bmc.2008.11.036] [PMID: 19091579]
[16]
Meng, Y.; Song, Y.; Yan, Z.; Xia, Y. Synthesis and in vitro cytotoxicity of novel ursolic acid derivatives. Molecules, 2010, 15(6), 4033-4040.
[http://dx.doi.org/10.3390/molecules15064033] [PMID: 20657424]
[17]
Shao, J.W.; Dai, Y.C.; Xue, J.P.; Wang, J.C.; Lin, F.P.; Guo, Y.H. In vitro and in vivo anticancer activity evaluation of ursolic acid derivatives. Eur. J. Med. Chem., 2011, 46(7), 2652-2661.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.050] [PMID: 21514015]
[18]
Bai, K.K.; Yu, Z.; Chen, F.L.; Li, F.; Li, W.Y.; Guo, Y.H. Synthesis and evaluation of ursolic acid derivatives as potent cytotoxic agents. Bioorg. Med. Chem. Lett., 2012, 22(7), 2488-2493.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.009] [PMID: 22370266]
[19]
Thien, D.D.; Tam, N.T.; Thien, D.G.; Anh, N.T.H.; Sung, T.V. Zeitschrift Fur Naturforschung Section B-a. J. Chem. Sci., 2013, 68(2), 201-206.
[20]
Dong, H.; Yang, X.; Xie, J.; Xiang, L.; Li, Y.; Ou, M.; Chi, T.; Liu, Z.; Yu, S.; Gao, Y.; Chen, J.; Shao, J.; Jia, L. UP12, a novel ursolic acid derivative with potential for targeting multiple signaling pathways in hepatocellular carcinoma. Biochem. Pharmacol., 2015, 93(2), 151-162.
[http://dx.doi.org/10.1016/j.bcp.2014.11.014] [PMID: 25522955]
[21]
Hua, S.X.; Huang, R.Z.; Ye, M.Y.; Pan, Y.M.; Yao, G.Y.; Zhang, Y.; Wang, H.S. Design, synthesis and in vitro evaluation of novel ursolic acid derivatives as potential anticancer agents. Eur. J. Med. Chem., 2015, 95, 435-452.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.051] [PMID: 25841199]
[22]
Meng, Y.Q.; Zhang, L.F.; Liu, D.Y.; Liu, L.W.; Zhang, Y.; Zhao, M.J. Synthesis and antitumor activity evaluation of novel ursolic acid derivatives. J. Asian Nat. Prod. Res., 2016, 18(3), 280-288.
[http://dx.doi.org/10.1080/10286020.2015.1070830] [PMID: 26524942]
[23]
Chen, Y.; Hou, X.; Zhi, D.; Li, C.; Tian, T.; Sun, J.; Zhao, L.; Zhao, C. Synthesis, characterization and anticancer activity of oleanolic acid and ursolic acid derivatives. Youji Huaxue, 2016, 36(4), 795-802.
[http://dx.doi.org/10.6023/cjoc201509002]
[24]
Huang, R.Z.; Hua, S.X.; Liao, Z.X.; Huang, X.C.; Wang, H.S. Side chain-functionalized aniline-derived ursolic acid derivatives as multidrug resistance reversers that block the nuclear factor-kappa B (NF-κB) pathway and cell proliferation. MedChemComm, 2017, 8(7), 1421-1434.
[http://dx.doi.org/10.1039/C7MD00105C] [PMID: 30108853]
[25]
Tian, T.; Liu, X.; Lee, E.S.; Sun, J.; Feng, Z.; Zhao, L.; Zhao, C. Synthesis of novel oleanolic acid and ursolic acid in C-28 position derivatives as potential anticancer agents. Arch. Pharm. Res., 2017, 40(4), 458-468.
[http://dx.doi.org/10.1007/s12272-016-0868-8] [PMID: 28101738]
[26]
Spivak, A.; Khalitova, R.; Nedopekina, D.; Dzhemileva, L.; Yunusbaeva, M.; Odinokov, V.; D’yakonov, V.; Dzhemilev, U. Synthesis and evaluation of anticancer activities of novel c-28 guanidine-functionalized triterpene acid derivatives. Molecules, 2018, 23(11), 3000.
[http://dx.doi.org/10.3390/molecules23113000] [PMID: 30453551]
[27]
Fontana, G.; Bruno, M.; Notarbartolo, M.; Labbozzetta, M.; Poma, P.; Spinella, A.; Rosselli, S. Cytotoxicity of oleanolic and ursolic acid derivatives toward hepatocellular carcinoma and evaluation of NF-κB involvement. Bioorg. Chem., 2019, 90, 103054.
[http://dx.doi.org/10.1016/j.bioorg.2019.103054] [PMID: 31212180]
[28]
Popov, S.A.; Semenova, M.D.; Baev, D.S.; Frolova, T.S.; Shestopalov, M.A.; Wang, C.; Qi, Z.; Shults, E.E.; Turks, M. Synthesis and cytotoxicity of hybrids of 1,3,4- or 1,2,5-oxadiazoles tethered from ursane and lupane core with 1,2,3-triazole. Steroids, 2020, 162, 108698.
[http://dx.doi.org/10.1016/j.steroids.2020.108698] [PMID: 32687846]
[29]
Şenol, H.; Çokuludağ, K.; Sena Aktaş, A.; Atasoy, S.; Dağ, A.; Topçu, G. Synthesis of new fatty acid derivatives of oleanane and ursane triterpenoids and investigation of their in vitro cytotoxic effects on 3T3 fibroblast and PC3 prostate cancer cell linesLines. Organic Communications, 2020, 13(3), 114-126.
[http://dx.doi.org/10.25135/acg.oc.84.20.09.1792]
[30]
Feng, B.; Zhao, C.; Li, J.; Yu, J.; Zhang, Y.; Zhang, X.; Tian, T.; Zhao, L. The novel synthetic triterpene methyl 3β-<i>o</i>-[4-(2-aminoethylamino)-4-oxo-butyryl]olean-12-ene-28-oate inhibits breast tumor cell growth in vitro and in vivo. Chem. Pharm. Bull., 2020, 68(10), 962-970.
[http://dx.doi.org/10.1248/cpb.c20-00353] [PMID: 32999148]
[31]
da Silva, E.F.; de Vargas, A.S.; Willig, J.B.; de Oliveira, C.B.; Zimmer, A.R.; Pilger, D.A.; Buffon, A.; Gnoatto, S.C.B. Synthesis and antileukemic activity of an ursolic acid derivative: A potential co-drug in combination with imatinib. Chem. Biol. Interact., 2021, 344, 109535.
[http://dx.doi.org/10.1016/j.cbi.2021.109535] [PMID: 34051208]
[32]
Wu, P.; Tu, B.; Liang, J.; Guo, S.; Cao, N.; Chen, S.; Luo, Z.; Li, J.; Zheng, W.; Tang, X.; Li, D.; Xu, X.; Liu, W.; Zheng, X.; Sheng, Z.; Roberts, A.P.; Zhang, K.; Hong, W.D. Synthesis and biological evaluation of pentacyclic triterpenoid derivatives as potential novel antibacterial agents. Bioorg. Chem., 2021, 109, 104692.
[http://dx.doi.org/10.1016/j.bioorg.2021.104692] [PMID: 33626454]
[33]
Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med., 2006, 3(11), e442.
[http://dx.doi.org/10.1371/journal.pmed.0030442] [PMID: 17132052]
[34]
Jung, S.H.; Ha, Y.J.; Shim, E.K.; Choi, S.Y.; Jin, J.L.; Yun-Choi, H.S.; Lee, J.R. Insulin-mimetic and insulin-sensitizing activities of a pentacyclic triterpenoid insulin receptor activator. Biochem. J., 2007, 403(2), 243-250.
[http://dx.doi.org/10.1042/BJ20061123] [PMID: 17201692]
[35]
Zhang, W.; Hong, D.; Zhou, Y.; Zhang, Y.; Shen, Q.; Li, J.; Hu, L.; Li, J. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochim. Biophys. Acta, Gen. Subj., 2006, 1760(10), 1505-1512.
[http://dx.doi.org/10.1016/j.bbagen.2006.05.009] [PMID: 16828971]
[36]
Wu, P.; He, P.; Zhao, S.; Huang, T.; Lu, Y.; Zhang, K. Effects of ursolic acid derivatives on Caco-2 cells and their alleviating role in streptozocin-induced type 2 diabetic rats. Molecules, 2014, 19(8), 12559-12576.
[http://dx.doi.org/10.3390/molecules190812559] [PMID: 25153871]
[37]
Wu, P.; Zheng, J.; Huang, T.; Li, D.; Hu, Q.; Cheng, A.; Jiang, Z.; Jiao, L.; Zhao, S.; Zhang, K. Synthesis and evaluation of novel triterpene analogues of ursolic acid as potential antidiabetic agent. PLoS One, 2015, 10(9), e0138767.
[http://dx.doi.org/10.1371/journal.pone.0138767] [PMID: 26406581]
[38]
Huang, T.; Wu, P.; Cheng, A.; Qin, J.; Zhang, K.; Zhao, S. A hydrophilic conjugate approach toward the design and synthesis of ursolic acid derivatives as potential antidiabetic agent. RSC Advances, 2015, 5(55), 44234-44246.
[http://dx.doi.org/10.1039/C5RA05450H]
[39]
Wu, P.P.; Zhang, B.J.; Cui, X.P.; Yang, Y.; Jiang, Z.Y.; Zhou, Z.H.; Zhong, Y.Y.; Mai, Y.Y.; Ouyang, Z.; Chen, H.S.; Zheng, J.; Zhao, S.Q.; Zhang, K. Synthesis and biological evaluation of novel ursolic acid analogues as potential α-glucosidase inhibitors. Sci. Rep., 2017, 7(1), 45578.
[http://dx.doi.org/10.1038/srep45578] [PMID: 28358057]
[40]
Wang, C.M.; Chen, H.T.; Wu, Z.Y.; Jhan, Y.L.; Shyu, C.L.; Chou, C.H. Antibacterial and synergistic activity of pentacyclic triterpenoids isolated from alstonia scholaris. Molecules, 2016, 21(2), 139.
[http://dx.doi.org/10.3390/molecules21020139] [PMID: 26821000]
[41]
Cunha, W.R.; Crevelin, E.J.; Arantes, G.M.; Crotti, A.E.M.; Silva, M.L.A.; Furtado, N.A.J.C.; Albuquerque, S.; Ferreira, D.S. A study of the trypanocidal activity of triterpene acids isolated fromMiconia species. Phytother. Res., 2006, 20(6), 474-478.
[http://dx.doi.org/10.1002/ptr.1881] [PMID: 16619351]
[42]
Tanachatchairatana, T.; Bremner, J.B.; Chokchaisiri, R.; Suksamrarn, A. Antimycobacterial activity of cinnamate-based esters of the triterpenes betulinic, oleanolic and ursolic acids. Chem. Pharm. Bull., 2008, 56(2), 194-198.
[http://dx.doi.org/10.1248/cpb.56.194] [PMID: 18239308]
[43]
do Nascimento, P.; Lemos, T.; Bizerra, A.; Arriaga, Â.; Ferreira, D.; Santiago, G.; Braz-Filho, R.; Costa, J. Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules, 2014, 19(1), 1317-1327.
[http://dx.doi.org/10.3390/molecules19011317] [PMID: 24451251]
[44]
Silva, G.N.S.; Primon-Barros, M.; Macedo, A.J.; Gnoatto, S.C.B. Triterpene derivatives as relevant scaffold for new antibiofilm drugs. Biomolecules, 2019, 9(2), 58.
[http://dx.doi.org/10.3390/biom9020058] [PMID: 30754716]
[45]
Wu, J.; Ma, S.; Zhang, T.Y.; Wei, Z.Y.; Wang, H.M.; Guo, F.Y.; Zheng, C.J.; Piao, H.R. Synthesis and biological evaluation of ursolic acid derivatives containing an aminoguanidine moiety. Med. Chem. Res., 2019, 28(7), 959-973.
[http://dx.doi.org/10.1007/s00044-019-02349-x]
[46]
de Brum Vieira, P.; Giordani, R.B.; Macedo, A.J.; Tasca, T. Natural and synthetic compound anti-Trichomonas vaginalis: An update review. Parasitol. Res., 2015, 114(4), 1249-1261.
[http://dx.doi.org/10.1007/s00436-015-4340-3] [PMID: 25786392]
[47]
Peixoto, J.A.; Andrade e Silva, M.L.; Crotti, A.E.M.; Cassio Sola Veneziani, R.; Gimenez, V.M.M.; Januário, A.H.; Groppo, M.; Magalhães, L.G.; Dos Santos, F.F.; Albuquerque, S.; Da Silva Filho, A.A.; Cunha, W.R. Antileishmanial activity of the hydroalcoholic extract of Miconia langsdorffii, isolated compounds, and semi-synthetic derivatives. Molecules, 2011, 16(2), 1825-1833.
[http://dx.doi.org/10.3390/molecules16021825] [PMID: 21343887]
[48]
Innocente, A.; Silva, G.; Cruz, L.; Moraes, M.; Nakabashi, M.; Sonnet, P.; Gosmann, G.; Garcia, C.; Gnoatto, S. Synthesis and antiplasmodial activity of betulinic acid and ursolic acid analogues. Molecules, 2012, 17(10), 12003-12014.
[http://dx.doi.org/10.3390/molecules171012003] [PMID: 23085651]
[49]
da Silva, G.N.S.; Maria, N.R.G.; Schuck, D.C.; Cruz, L.N.; de Moraes, M.S.; Nakabashi, M.; Graebin, C.; Gosmann, G.; Garcia, C.R.S.; Gnoatto, S.C.B. Two series of new semisynthetic triterpene derivatives: differences in anti-malarial activity, cytotoxicity and mechanism of action. Malar. J., 2013, 12(1), 89.
[http://dx.doi.org/10.1186/1475-2875-12-89] [PMID: 23497003]
[50]
Bitencourt, F.G.; de Brum Vieira, P.; Meirelles, L.C.; Rigo, G.V.; da Silva, E.F.; Gnoatto, S.C.B.; Tasca, T. Anti-Trichomonas vaginalis activity of ursolic acid derivative: a promising alternative. Parasitol. Res., 2018, 117(5), 1573-1580.
[http://dx.doi.org/10.1007/s00436-018-5839-1] [PMID: 29572567]
[51]
Cargnin, S.T.; Staudt, A.F.; Medeiros, P.; de Medeiros Sol Sol, D.; de Azevedo dos Santos, A.P.; Zanchi, F.B.; Gosmann, G.; Puyet, A.; Garcia Teles, C.B.; Gnoatto, S.B. Semisynthesis, cytotoxicity, antimalarial evaluation and structure-activity relationship of two series of triterpene derivatives. Bioorg. Med. Chem. Lett., 2018, 28(3), 265-272.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.060] [PMID: 29326018]
[52]
Cargnin, S.T.; Staudt, A.F.; Menezes, C.; Azevedo, A.P.; Fialho, S.N.; Tasca, T.; Teles, C.B.G.; Gnoatto, S.B. Evaluation of triterpenes derivatives in the viability of leishmania amazonensis and trichomonas vaginalis. Braz. J. Pharm. Sci., 2019, 55, e17481.
[http://dx.doi.org/10.1590/s2175-97902019000317481]
[53]
Luan, T.; Jin, C.; Jin, C.M.; Gong, G.H.; Quan, Z.S. Synthesis and biological evaluation of ursolic acid derivatives bearing triazole moieties as potential anti- Toxoplasma gondii agents. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 761-772.
[http://dx.doi.org/10.1080/14756366.2019.1584622] [PMID: 30836795]
[54]
Suh, N.; Honda, T.; Finlay, H.J.; Barchowsky, A.; Williams, C.; Benoit, N.E.; Xie, Q.W.; Nathan, C.; Gribble, G.W.; Sporn, M.B. Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages. Cancer Res., 1998, 58(4), 717-723.
[PMID: 9485026]
[55]
Zerin, T.; Lee, M.; Jang, W.S.; Nam, K.W.; Song, H.Y. Anti-inflammatory potential of ursolic acid in Mycobacterium tuberculosis-sensitized and Concanavalin A-stimulated cells. Mol. Med. Rep., 2016, 13(3), 2736-2744.
[http://dx.doi.org/10.3892/mmr.2016.4840] [PMID: 26847129]
[56]
Wei, Z.Y.; Chi, K.Q.; Wang, K.S.; Wu, J.; Liu, L.P.; Piao, H.R. Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2018, 28(10), 1797-1803.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.021] [PMID: 29678461]
[57]
Li, C.; Chen, J.; Yuan, W.; Zhang, W.; Chen, H.; Tan, H. Preventive effect of ursolic acid derivative on particulate matter 2.5‐induced chronic obstructive pulmonary disease involves suppression of lung inflammation. IUBMB Life, 2020, 72(4), 632-640.
[http://dx.doi.org/10.1002/iub.2201] [PMID: 31840927]
[58]
Zhang, T.Y.; Li, C.S.; Cao, L.T.; Bai, X.Q.; Zhao, D.H.; Sun, S.M. New ursolic acid derivatives bearing 1,2,3-triazole moieties: Design, synthesis and anti-inflammatory activity in vitro and in vivo. Mol. Divers., 2022, 26(2), 1129-1139.
[http://dx.doi.org/10.1007/s11030-021-10236-0] [PMID: 34080112]
[59]
Deng, S.L.; Baglin, I.; Nour, M.; Flekhter, O.; Vita, C.; Cavé, C. Synthesis of ursolic phosphonate derivatives as potential anti-hiv agents. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182(5), 951-967.
[http://dx.doi.org/10.1080/10426500601088838]
[60]
Kazakova, O.B.; Giniyatullina, G.V.; Yamansarov, E.Y.; Tolstikov, G.A. Betulin and ursolic acid synthetic derivatives as inhibitors of Papilloma virus. Bioorg. Med. Chem. Lett., 2010, 20(14), 4088-4090.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.083] [PMID: 20558062]
[61]
da Silva, G.N.S.; Trindade, F.T.T.; dos Santos, F.; Gosmann, G.; e Silva, A.A.; Gnoatto, S.C.B. Larvicidal activity of natural and modified triterpenoids against Aedes aegypti (Diptera: Culicidae). Pest Manag. Sci., 2016, 72(10), 1883-1887.
[http://dx.doi.org/10.1002/ps.4221] [PMID: 27501778]
[62]
Zou, L.W.; Dou, T.Y.; Wang, P.; Lei, W.; Weng, Z.M.; Hou, J.; Wang, D.D.; Fan, Y.M.; Zhang, W.D.; Ge, G.B.; Yang, L. Structure-Activity Relationships of Pentacyclic Triterpenoids as Potent and Selective Inhibitors against Human Carboxylesterase 1. Front. Pharmacol., 2017, 8, 435.
[http://dx.doi.org/10.3389/fphar.2017.00435] [PMID: 28713276]

© 2025 Bentham Science Publishers | Privacy Policy