Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Review Article

Drug Polymorphism: An Important Pre-formulation Tool in the Formulation Development of a Dosage Form

Author(s): Prateek Singh, Shaweta Sharma*, Pramod Kumar Sharma and Aftab Alam

Volume 14, Issue 1, 2024

Published on: 08 September, 2023

Page: [2 - 19] Pages: 18

DOI: 10.2174/1877946813666230822113606

Price: $65

Abstract

Polymorphism permits solids to have two or multiple crystal structures with varying orientations or conformations, and polymorph drug dissolution and solubility vary. Polymorphism influences drug efficacy, bioavailability and toxicity. Various parameters can regulate polymorph crystallization, including supersaturation phase, temperature, stirring rate, solvent addition rate, seed crystal, additives and pH. To characterize and monitor polymorphs, various analytical approaches are available, including powder X-Ray diffraction / X-Ray diffraction (PXRD/XRD), also called as Gold Standard method, differential scanning calorimetry (DSC), Infrared spectroscopy (IR), and microscopical studies. To prevent polymorphic change during production, distribution, and storage, formulation with the most stable form in the marketed product is considered. In addition, by monitoring each phase of raw material processing, polymorphisms can be controlled during dosage form manufacturing. The objective of this review is to provide concise information on drug polymorphism, their characterization process, their effect on the stability of dosage forms, factors controlling polymorphism in the crystallization process, some case studies on polymorphs, control of polymorphism during the formulation of successful dosage forms and some of the regulatory considerations regarding polymorphs. Various databases like Pubmed/Medline, Google Scholar and Web of Science of all English language articles were searched, and relevant information was collected regarding the importance of polymorphism in formulation development. From a vast literature survey, it was found that polymorphism is a very important tool in a pre-formulation study that provides information about the fate of a drug molecule in its journey. From the present study, it was concluded that the polymorphism property of a drug should be taken into consideration at the pre-formulation stage since it is a very important tool for the formulation of a successful dosage form with stability and efficacy.

Graphical Abstract

[1]
Brittain, H.G. ., Ed.;Polymorphism in Pharmaceutical Solids, 2nd ed; Informa Healthcare: New York, 2009, pp. 183-226.
[2]
Haleblian, J.; McCrone, W. Pharmaceutical applications of polymorphism. J. Pharm. Sci., 1969, 58(8), 911-929.
[http://dx.doi.org/10.1002/jps.2600580802] [PMID: 4899118]
[3]
Haleblian, J.K. Characterization of habits and crystalline modification of solids and their pharmaceutical applications. J. Pharm. Sci., 1975, 64(8), 1269-1288.
[http://dx.doi.org/10.1002/jps.2600640805] [PMID: 1151699]
[4]
Lee, A.Y.; Erdemir, D.; Myerson, A.S. Crystal polymorphism in chemical process development. Annu. Rev. Chem. Biomol. Eng., 2011, 2(1), 259-280.
[http://dx.doi.org/10.1146/annurev-chembioeng-061010-114224] [PMID: 22432619]
[5]
Bernstein, J. Polymorphism in molecular crystals. In: Polymorphism in Molecular Crystals; ACS publication: New York, 2002; pp. 675-676.
[6]
Datta, S.; Grant, D.J.W. Crystal structures of drugs: Advances in determination, prediction and engineering. Nat. Rev. Drug Discov., 2004, 3(1), 42-57.
[http://dx.doi.org/10.1038/nrd1280] [PMID: 14708020]
[7]
Morissette, SL.; Almarsson, Ö.; Peterson, ML. High-throughput crystallization:Polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv. Drug Rev., 2004, 56(3), 275-300.
[http://dx.doi.org/10.1016/j.addr.2003.10.020]
[8]
Payne, R.S.; Rowe, R.C.; Roberts, R.J.; Charlton, M.H.; Docherty, R. Potential polymorphs of aspirin. J. Comput. Chem., 1999, 20(2), 262-273.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19990130)20:2<262:AID-JCC8>3.0.CO;2-8]
[9]
Schwartzman, G. Does aspirin exist in polymorphic states? J. Pharm. Pharmacol., 2011, 24(2), 169-170.
[http://dx.doi.org/10.1111/j.2042-7158.1972.tb08957.x] [PMID: 4401978]
[10]
Karpinski, P.H. Polymorphism of active pharmaceutical ingredients. Chem. Eng. Technol., 2006, 29(2), 233-237.
[http://dx.doi.org/10.1002/ceat.200500397]
[11]
Chawla, G.; Bansal, A.K. Challenges in polymorphism of pharmaceuticals. Crips., 2004, 5(1), 12-15.
[12]
Nangia, A.; Desiraju, G.R. Pseudopolymorphism: Occurrences of hydrogen bonding organic solvents in molecular crystals. Chem. Commun., 1999, (7), 605-606.
[http://dx.doi.org/10.1039/a809755k]
[13]
Pedireddi, V.R. PrakashaReddy, J. Supramolecular pseudopolymorphs: Double helix and planar structures with channels. Tetrahedron Lett., 2003, 44(35), 6679-6681.
[http://dx.doi.org/10.1016/S0040-4039(03)01638-1]
[14]
Morris, K.R. Polymorphs in Pharmaceutical Solids; Marcel Dekker: New York, 1999, pp. 125-181.
[15]
Khankari, R.K.; Grant, D.J.W. Pharmaceutical hydrates. Thermochim. Acta, 1995, 248, 61-79.
[http://dx.doi.org/10.1016/0040-6031(94)01952-D]
[16]
Bingham, A.L.; Hughes, D.S.; Hursthouse, M.B.; Lancaster, R.W.; Tavener, S.; Threlfall, T.L. Over One hundred solvates of Sulfathiazole Electronic supplementary information (ESI) available: Solvates and adducts of sulfathiazole. See http://www.rsc.org/suppdata/cc/b0/b009540kChem. Commun., 2001, 2001(7), 603-4.
[17]
Infantes, L.; Motherwell, S. Water clusters in organic molecular crystals. CrystEngComm, 2002, 4(75), 454-461.
[http://dx.doi.org/10.1039/b204934a]
[18]
Gillon, A.L.; Feeder, N.; Davey, R.J.; Storey, R. Hydration in molecular crystals a Cambridge Structural Database analysis. Cryst. Growth Des., 2003, 3(5), 663-673.
[http://dx.doi.org/10.1021/cg034088e]
[19]
Bechtloff, B.; Nordhoff, S.; Ulrich, J. Pseudopolymorphs in industrial use. Crystal Research and Technology. J. Experi. Ind. Crystallography., 2001, 36(12), 1315-1328.
[20]
Grant, D.W.J.; Higuchi, T. Solubility behavior of organic compounds; Wiley and Sons: NewYork, 1990.
[21]
Rodríguez-Spong, B.; Price, C.P.; Jayasankar, A.; Matzger, A.J.; Rodríguez-Hornedo, N. General principles of pharmaceutical solid polymorphism A supramolecular perspective. Adv. Drug Deliv. Rev., 2004, 56(3), 241-274.
[http://dx.doi.org/10.1016/j.addr.2003.10.005] [PMID: 14962581]
[22]
Bremer, D. Towards Better safety of drugs and pharmaceutical products. Proceedings of the 39th International Congress of pharmaceutical science of F.I.P., , 3-7.Sep UK 1979,
[23]
Giron, D.; Goldbronn, C.; Mutz, M.; Pfeffer, S.; Piechon, P.; Schwab, P. Solid state characterizations of pharmaceutical hydrates. J. Therm. Anal. Calorim., 2002, 68(2), 453-465.
[http://dx.doi.org/10.1023/A:1016031517430]
[24]
Morris, K.R.; Rodríguez-Hornedo, N. Encyclopedia of Pharmaceutical Technology; Swarbrick, J; Boylan, J.C., Ed.; Marcel Dekker: New York, 1993, pp. 393-440.
[25]
Florey, K. Fluphenazine hydrochloride. In: Analytical Profiles of Drug Substances; Academic Press: New York, 1973; pp. 263-294.
[26]
Sun, C.; Zhou, D.; Grant, D.J.W.; Young, V.G. Jr Theophylline monohydrate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2002, 58(4), o368-o370.
[http://dx.doi.org/10.1107/S1600536802002921]
[27]
Sugawara, Y.; Kamiya, N.; Iwasaki, H.; Ito, T.; Satow, Y. Humidity-controlled reversible structure transition of disodium adenosine 5′-triphosphate between dihydrate and trihydrate in a single crystal state. J. Am. Chem. Soc., 1991, 113(14), 5440-5445.
[http://dx.doi.org/10.1021/ja00014a041]
[28]
Dong, Z.; Chatterji, A.; Sandhu, H.; Choi, D.S.; Chokshi, H.; Shah, N. Evaluation of solid state properties of solid dispersions prepared by hot-melt extrusion and solvent co-precipitation. Int. J. Pharm., 2008, 355(1-2), 141-149.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.017] [PMID: 18243605]
[29]
Sheikhzadeh, M.; Rohani, S.; Jutan, A.; Manifar, T. Quantitative and molecular analysis of buspirone hydrochloride polymorphs. J. Pharm. Sci., 2007, 96(3), 569-583.
[http://dx.doi.org/10.1002/jps.20723] [PMID: 17094124]
[30]
Sheikhzadeh, M.; Rohani, S.; Jutan, A.; Manifar, T.; Murthy, K.; Horne, S. Solid-state characterization of buspirone hydrochloride polymorphs. Pharm. Res., 2006, 23(5), 1043-1050.
[http://dx.doi.org/10.1007/s11095-006-9779-6] [PMID: 16715396]
[31]
Vogt, F.G.; Brum, J.; Katrincic, L.M.; Flach, A.; Socha, J.M.; Goodman, R.M.; Haltiwanger, R.C. Physical, crystallographic, and spectroscopic characterization of a crystalline pharmaceutical hydrate: Understanding the role of water. Cryst. Growth Des., 2006, 6(10), 2333-2354.
[http://dx.doi.org/10.1021/cg060324k]
[32]
Gandhi, R.; Bogardus, J.B.; Bugay, D.E.; Perrone, R.K.; Kaplan, M.A. Pharmaceutical relationships of three solid state forms of stavudine. Int. J. Pharm., 2000, 201(2), 221-237.
[http://dx.doi.org/10.1016/S0378-5173(00)00419-1] [PMID: 10878328]
[33]
Brittain, H.G. , Ed.; Physical characterization of pharmaceutical solids, 1st ed; CRC press: Boca Raton, 1995, pp. 1-440.
[34]
Brügemann, L. Gerndt, EK Detectors for X-ray diffraction and scattering: A user’s overview. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip., 2004, 531(1-2), 292-301.
[35]
High pressure phenomena. Hemley, R.J.; Chiarotti, G.L.; Bernasconi, M.; Ulivi, L., Eds.; Proceedings of The International School of Physics, 3-13 JulTokyo, Washington DC 2002.
[36]
Harris, K.D. Modern applications of powder X-ray diffraction in pharmaceutical sciences. Am. Pharm. Rev., 2004, 7, 86-91.
[37]
Roe, R.J. Methods of X-ray and neutron scattering in polymer science. In: Topics in polymer science; Mark, J.E., Ed.; Oxford University Press on Demand: New York, 2000; pp. 4-329.
[38]
Chu, B.; Hsiao, B.S. Small-angle X-ray scattering of polymers. Chem. Rev., 2001, 101(6), 1727-1762.
[http://dx.doi.org/10.1021/cr9900376] [PMID: 11709997]
[39]
Wutz, C.; Bark, M.; Cronauer, J.; Döhrmann, R.; Zachmann, H.G. Simultaneous measurements of small angle x-ray scattering, wide angle x-ray scattering, and light scattering during phase transitions in polymers (invited). Rev. Sci. Instrum., 1995, 66(2), 1303-1307.
[http://dx.doi.org/10.1063/1.1145959]
[40]
Lehto, V.P.; Tenho, M.; Vähä-Heikkilä, K.; Harjunen, P.; Päällysaho, M.; Välisaari, J.; Niemelä, P.; Järvinen, K. The comparison of seven different methods to quantify the amorphous content of spray dried lactose. Powder Technol., 2006, 167(2), 85-93.
[http://dx.doi.org/10.1016/j.powtec.2006.05.019]
[41]
Craig, D.; Reading, M. Principles of differential scanning calorimetry. In: Thermal Analysis of Pharmaceuticals; Craig, D.Q.; Reading, M., Eds.; CRC Press; , 2006.
[http://dx.doi.org/10.1201/9781420014891.ch1]
[42]
Ford, J.L.; Timmins, P. Pharmaceutical thermal analysis: Techniques and applications; Ellis Horwood, 1989, p. 313.
[43]
Brittain, H.G. Spectroscopy of Pharmaceutical Solids, 1st ed; Taylor and Francis Group: NewYork, 2006.
[http://dx.doi.org/10.1201/9780849361333]
[44]
Forster, A.; Gordon, K.; Schmierer, D.; Soper, N.; Wu, V.; Rades, T. Characterisation of two polymorphic forms of Ranitidine–HCl. Internet J. Vib. Spectrosc., 1998, 2, 12.
[45]
Bugay, D.E. Characterization of the solid-state: Spectroscopic techniques. Adv. Drug Deliv. Rev., 2001, 48(1), 43-65.
[http://dx.doi.org/10.1016/S0169-409X(01)00101-6] [PMID: 11325476]
[46]
Seefeldt, K.; Miller, J.; Alvarez-Núñez, F.; Rodríguez-Hornedo, N. Crystallization pathways and kinetics of carbamazepine-nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy, and calorimetry studies. J. Pharm. Sci., 2007, 96(5), 1147-1158.
[http://dx.doi.org/10.1002/jps.20945] [PMID: 17455346]
[47]
Price, R.; Young, P.M. Visualization of the crystallization of lactose from the amorphous state. J. Pharm. Sci., 2004, 93(1), 155-164.
[http://dx.doi.org/10.1002/jps.10513] [PMID: 14648645]
[48]
Lu, J.; Rohani, S. Preparation and characterization of theophylline- nicotinamide cocrystal. Org. Process Res. Dev., 2009, 13(6), 1269-1275.
[http://dx.doi.org/10.1021/op900047r]
[49]
Liu, J. Physical characterization of pharmaceutical formulations in frozen and freeze-dried solid states: Techniques and applications in freeze-drying development. Pharm. Dev. Technol., 2006, 11(1), 3-28.
[http://dx.doi.org/10.1080/10837450500463729] [PMID: 16544906]
[50]
Bell, S.E. Quantitative analysis of solid dosage formulations by Raman spectroscopy. In: Pharmaceutical applications of Raman spectroscopy; Šašić, S., Ed; John Wiley and Sons Inc.: New Jersey, 2007; pp. 29-64.
[http://dx.doi.org/10.1002/9780470225882.ch2]
[51]
Eberhardt, K.; Stiebing, C.; Matthäus, C.; Schmitt, M.; Popp, J. Advantages and limitations of Raman spectroscopy for molecular diagnostics: An update. Expert Rev. Mol. Diagn., 2015, 15(6), 773-787.
[http://dx.doi.org/10.1586/14737159.2015.1036744] [PMID: 25872466]
[52]
Small, G.W. Chemometrics and near-infrared spectroscopy: Avoiding the pitfalls. Trends Analyt. Chem., 2006, 25(11), 1057-1066.
[http://dx.doi.org/10.1016/j.trac.2006.09.004]
[53]
Räsänen, E.; Sandler, N. Near infrared spectroscopy in the development of solid dosage forms. J. Pharm. Pharmacol., 2010, 59(2), 147-159.
[http://dx.doi.org/10.1211/jpp.59.2.0002] [PMID: 17270069]
[54]
Reich, G. Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications. Adv. Drug Deliv. Rev., 2005, 57(8), 1109-1143.
[http://dx.doi.org/10.1016/j.addr.2005.01.020] [PMID: 15899537]
[55]
Elizarova, T.E.; Shtyleva, S.V.; Pleteneva, T.V. Using near-infrared spectrophotometry for the identification of pharmaceuticals and drugs. Pharm. Chem. J., 2008, 42, 432-434.
[http://dx.doi.org/10.1007/s11094-008-0146-2]
[56]
Tishmack, P.A.; Bugay, D.E.; Byrn, S.R. Solid-state nuclear magnetic resonance spectroscopy--pharmaceutical applications. J. Pharm. Sci., 2003, 92(3), 441-474.
[http://dx.doi.org/10.1002/jps.10307] [PMID: 12587108]
[57]
Offerdahl, T.J. Solid-state NMR spectroscopy for pharmaceutical analysis. Pharm. Technol., 2004, 54-68.
[58]
Berendt, R.T.; Sperger, D.M.; Munson, E.J.; Isbester, P.K. Solid-state NMR spectroscopy in pharmaceutical research and analysis. Trends Analyt. Chem., 2006, 25(10), 977-984.
[http://dx.doi.org/10.1016/j.trac.2006.07.006]
[59]
Han, J.; Suryanarayanan, R. A method for the rapid evaluation of the physical stability of pharmaceutical hydrates. Thermochim. Acta, 1999, 329(2), 163-170.
[http://dx.doi.org/10.1016/S0040-6031(99)00054-4]
[60]
Galwey, A.K.; Craig, D.Q. Thermogravimetric analysis: Basic principles. In: Thermal analysis of pharmaceuticals; CRC: New York, 2007; pp. 139-191.
[61]
Specifications: Test procedures and acceptance criteria for new drug substances and new drug products: Chemical substances. 1999. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-6-test-procedures-acceptance-criteria-new-drug-substances-new-drug-products-chemical_en.pdf
[62]
Stahly, G.P. Diversity in single-and multiple-component crystals. The search for and prevalence of polymorphs and cocrystals. Cryst. Growth Des., 2007, 7(6), 1007-1026.
[http://dx.doi.org/10.1021/cg060838j]
[63]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[64]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[65]
Morissette, S.L.; Soukasene, S.; Levinson, D.; Cima, M.J.; Almarsson, Ö. Elucidation of crystal form diversity of the HIV protease inhibitor ritonavir by high-throughput crystallization. Proc. Natl. Acad. Sci., 2003, 100(5), 2180-2184.
[http://dx.doi.org/10.1073/pnas.0437744100] [PMID: 12604798]
[66]
Peterson, M.L.; Morissette, S.L.; McNulty, C.; Goldsweig, A.; Shaw, P.; LeQuesne, M.; Monagle, J.; Encina, N.; Marchionna, J.; Johnson, A.; Gonzalez-Zugasti, J.; Lemmo, A.V.; Ellis, S.J.; Cima, M.J.; Almarsson, Ö. Iterative high-throughput polymorphism studies on acetaminophen and an experimentally derived structure for form III. J. Am. Chem. Soc., 2002, 124(37), 10958-10959.
[http://dx.doi.org/10.1021/ja020751w] [PMID: 12224925]
[67]
Almarsson, Ö.; Hickey, M.B.; Peterson, M.L.; Morissette, S.L.; Soukasene, S.; McNulty, C.; Tawa, M.; MacPhee, J.M.; Remenar, J.F. High-throughput surveys of crystal form diversity of highly polymorphic pharmaceutical compounds. Cryst. Growth Des., 2003, 3(6), 927-933.
[http://dx.doi.org/10.1021/cg034058b]
[68]
Kojima, T.; Tsutsumi, S.; Yamamoto, K.; Ikeda, Y.; Moriwaki, T. High-throughput cocrystal slurry screening by use of in situ Raman microscopy and multi-well plate. Int. J. Pharm., 2010, 399(1-2), 52-59.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.055] [PMID: 20696223]
[69]
MacCrone WC Polymorphism in Physics and Chemistry of the Organic Solid-State. , 725-67.
[70]
Buerger, M.J.; Bloom, M.C. Crystal Polymorphism. Z. Kristallogr. Cryst. Mater., 1937, 96(1-6), 182-200.
[http://dx.doi.org/10.1524/zkri.1937.96.1.182]
[71]
Swanepoel, E.; Liebenberg, W.; de Villiers, M.M. Quality evaluation of generic drugs by dissolution test: Changing the USP dissolution medium to distinguish between active and non-active mebendazole polymorphs. Eur. J. Pharm. Biopharm., 2003, 55(3), 345-349.
[http://dx.doi.org/10.1016/S0939-6411(03)00004-3] [PMID: 12754010]
[72]
Michael, L. , Ed.;Pharmaceutical process scale-up; Mercel Dekker: New York, 2000, pp. 151-170.
[73]
Wadke, D.A.; Serajuddin, A.T.M.; Jacobson, H. Preformulation testing. In: Pharmaceutical Dosage Forms: Tablets, 2nd ed; Lieberman, H.A.; Lachman, L.; Schwartz, J.B., Eds. Marcel Dekker Inc.: New York, 1989; Vol. 1, pp. 1-69.
[74]
Guidance for Industry ANDAs. Centre for drug research Evaluation and Research; CDER, 2007.
[75]
Bauer, JF. Polymorphism-A critical consideration in pharmaceutical development, manufacturing, and stability. J. Valid. Technol, 2008, 14(5), 15-24.
[76]
Hancock, B.C.; Zografi, G. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci., 1997, 86(1), 1-12.
[http://dx.doi.org/10.1021/js9601896] [PMID: 9002452]
[77]
Babcock, W.C.; Friesen, D.T.; Nightingale, J.A.; Shanker, R.M. Pharmaceutical solid dispersions. European Patent EP-1027886A2, 2000.
[78]
Singhal, D.; Curatolo, W. Drug polymorphism and dosage form design: A practical perspective. Adv. Drug Deliv. Rev., 2004, 56(3), 335-347.
[http://dx.doi.org/10.1016/j.addr.2003.10.008] [PMID: 14962585]
[79]
Llinàs, A.; Goodman, J.M. Polymorph control: Past, present and future. Drug Discov. Today, 2008, 13(5-6), 198-210.
[http://dx.doi.org/10.1016/j.drudis.2007.11.006] [PMID: 18342795]
[80]
Hilfiker, R.; Blatter, F.; Raumer, M.V. Relevance of solid-state properties for pharmaceutical products. In: Polymorphism: In the pharmaceutical industry; Hilfiker, R., Ed.; Wiley-VCH Verlag GmbH & Co., 2006; pp. 1-9.
[http://dx.doi.org/10.1002/3527607889.ch1]
[81]
Rodríguez-Hornedo, N.; Lechuga-Ballesteros, D. Hsiu-Jean Wu, Phase transition and heterogeneous/epitaxial nucleation of hydrated and anhydrous theophylline crystals. Int. J. Pharm., 1992, 85(1-3), 149-162.
[http://dx.doi.org/10.1016/0378-5173(92)90144-Q]
[82]
Shefter, E.; Higuchi, T. Dissolution behavior of crystalline solvated and non-solvated forms of some pharmaceuticals. J. Pharm. Sci., 1963, 52(8), 781-791.
[http://dx.doi.org/10.1002/jps.2600520815] [PMID: 14057898]
[83]
Wong, M.W.Y.; Mitchell, A.G. Physicochemical characterization of a phase change produced during the wet granulation of chlorpromazine hydrochloride and its effects on tableting. Int. J. Pharm., 1992, 88(1-3), 261-273.
[http://dx.doi.org/10.1016/0378-5173(92)90324-U]
[84]
Shan, N.; Zaworotko, M.J. Polymorphic crystal forms and cocrystals in drug delivery (crystal engineering). In: Burger’s Medicinal Chemistry and Drug Discovery; John Wiley & Sons, 2003; pp. 1-32.
[85]
Kitamura, M. Crystal Growth Handbook; Japanese Association for Crystal Growth, Kyoritsu- Shuppan, 1995.
[86]
Kitamura, M. Polymorphism in the crystallization of L-glutamic acid. J. Cryst. Growth, 1989, 96(3), 541-546.
[http://dx.doi.org/10.1016/0022-0248(89)90049-3]
[87]
Beckmann, W. Seeding the desired polymorph: Background, possibilities, limitations, and case studies. Org. Process Res. Dev., 2000, 4(5), 372-383.
[http://dx.doi.org/10.1021/op0000778]
[88]
Davey, R.J.; Blagden, N.; Potts, G.D.; Docherty, R. Polymorphism in molecular crystals: Stabilization of a metastable form by conformational mimicry. J. Am. Chem. Soc., 1997, 119(7), 1767-1772.
[http://dx.doi.org/10.1021/ja9626345]
[89]
Yu, L.; Reutzel-Edens, S.M.; Mitchell, C.A. Crystallization and polymorphism of conformationally flexible molecules: Problems, patterns, and strategies. Org. Process Res. Dev., 2000, 4(5), 396-402.
[http://dx.doi.org/10.1021/op000028v]
[90]
Kitamura, M.; Ishizu, T. Kinetic effect of L-phenylalanine on growth process of L-glutamic acid polymorph. J. Cryst. Growth, 1998, 192(1-2), 225-235.
[http://dx.doi.org/10.1016/S0022-0248(98)00405-9]
[91]
Blagden, N.; Davey, R.J.; Lieberman, H.F.; Williams, L.; Payne, R.; Roberts, R.; Rowe, R.; Docherty, R. Crystal chemistry and solvent effects in polymorphic systems Sulfathiazole. J. Chem. Soc., Faraday Trans., 1998, 94(8), 1035-1044.
[http://dx.doi.org/10.1039/a706669d]
[92]
Kitamura, M.; Furukawa, H.; Asaeda, M. Solvent effect of ethanol on crystallization and growth process of L-histidine polymorphs. J. Crystal Growth, 1994, 141(1-2), 193-199.
[93]
Threlfall, T. Crystallisation of polymorphs: Thermodynamic insight into the role of solvent. Org. Process Res. Dev., 2000, 4(5), 384-390.
[http://dx.doi.org/10.1021/op000058y]
[94]
Addadi, L.; Berkovitch-Yellin, Z.; Weissbuch, I.; van Mil, J.; Shimon, L.J.W.; Lahav, M.; Leiserowitz, L. Growth and dissolution of organic crystals with “Tailor-Made” inhibitors—implications in stereochemistry and materials science. Angew. Chem. Int. Ed. Engl., 1985, 24(6), 466-485.
[http://dx.doi.org/10.1002/anie.198504661]
[95]
Chen, B.D.; Cilliers, J.J.; Davey, R.J.; Garside, J.; Woodburn, E.T. Templated nucleation in a dynamic environment: Crystallization in foam lamellae. J. Am. Chem. Soc., 1998, 120(7), 1625-1626.
[http://dx.doi.org/10.1021/ja973069o]
[96]
Parsons, A.R.; Black, S.N.; Colling, R. Automated measurement of metastable zones for pharmaceutical compounds. Chem. Eng. Res. Des., 2003, 81(6), 700-704.
[http://dx.doi.org/10.1205/026387603322150552]
[97]
Muller, F.L.; Fielding, M.; Black, S. A practical approach for using solubility to design cooling crystallisations. Org. Process Res. Dev., 2009, 13(6), 1315-1321.
[http://dx.doi.org/10.1021/op9001438]
[98]
Kitamura, M. Controlling factors and mechanism of polymorphic crystallization. Cryst. Growth Des., 2004, 4(6), 1153-1159.
[http://dx.doi.org/10.1021/cg0497795]
[99]
Edgerton, W.H. Chloramphenicol esters and method for obtaining same. United States patent US 2,662,906, 1953.
[100]
Borka, L.; Backe-Hansen, K. IR spectroscopy of chloramphenicol palmitate. Polymorph alteration caused by the KBr disc technique. Acta Pharm. Suec., 1968, 5(4), 271-278.
[PMID: 5724369]
[101]
Kaneniwa, N.; Otsuka, M. Effect of grinding on the transformations of polymorphs of chloramphenicol palmitate. Chem. Pharm. Bull., 1985, 33(4), 1660-1668.
[http://dx.doi.org/10.1248/cpb.33.1660] [PMID: 4042241]
[102]
Burger, A. Neue untersuchungergebnisse von chloramphenicolpalmitat. Sci. Pharm., 1977, 45, 269-281.
[103]
Gamberini, M.C.; Baraldi, C.; Tinti, A.; Rustichelli, C.; Ferioli, V.; Gamberini, G. Solid state characterization of chloramphenicol palmitate. Raman spectroscopy applied to pharmaceutical polymorphs. J. Mol. Struct., 2006, 785(1-3), 216-224.
[http://dx.doi.org/10.1016/j.molstruc.2005.10.012]
[104]
Mishra, R.; Srivastava, A.; Sharma, A.; Tandon, P.; Baraldi, C.; Gamberini, M.C. Structural, electronic, thermodynamical and charge transfer properties of Chloramphenicol Palmitate using vibrational spectroscopy and DFT calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 101, 335-342.
[http://dx.doi.org/10.1016/j.saa.2012.09.092] [PMID: 23123240]
[105]
Eguchi, Y.; Iitaka, Y. The β-form of chloramphenicol palmitate. Acta Crystallogr. B, 1974, 30(11), 2781-2783.
[http://dx.doi.org/10.1107/S0567740874008119]
[106]
Szulzewsky, K.; Kulpe, S.; Schulz, B.; Kunath, D. The structure of the β modification of chloramphenicol palmitate – a redetermination. Acta Crystallogr. B, 1981, 37(9), 1673-1676.
[http://dx.doi.org/10.1107/S0567740881006869]
[107]
Aguiar, A.J.; Krc, J., Jr; Kinkel, A.W.; Samyn, J.C. Effect of polymorphism on the absorption of chloramphenicol from chloramphenicol palmitate. J. Pharm. Sci., 1967, 56(7), 847-853.
[http://dx.doi.org/10.1002/jps.2600560712] [PMID: 6034828]
[108]
Aguiar, A.J.; Zelmer, J.E. Dissolution behavior of polymorphs of chloramphenicol palmitate and mefenamic acid. J. Pharm. Sci., 1969, 58(8), 983-987.
[http://dx.doi.org/10.1002/jps.2600580817] [PMID: 5344535]
[109]
Glazko, A.J.; Edgerton, W.H.; Dill, W.A.; Lenz, W.R. Chloromycetin palmitate; a synthetic ester of chloromycetin. Antibiot. Chemother. (Northfield Ill.), 1952, 2(5), 234-242.
[PMID: 24541898]
[110]
Maeda, T.; Takenaka, H.; Yamahira, Y.; Noguchi, T. Use of rabbits for absorption studies on polymorphs of chloramphenicol palmitate. Chem. Pharm. Bull., 1980, 28(2), 431-436.
[http://dx.doi.org/10.1248/cpb.28.431] [PMID: 7389018]
[111]
Reboul, J.P.; Cristau, B.; Soyfer, J.C.; Astier, J.P. 5H-5-benzyl[b,f]azepinecarboxamide (Carbamazepine). Acta Crystallogr. Sect. B Struct. Commun., 1981, 37, 1844-1848.
[112]
Himes, V.L.; Mighell, A.D.; De Camp, W.H. Structure of carbamazepine: 5H-dibenz[b,f]azepine-5-carboxamide. Acta Crystallogr. B, 1981, 37(12), 2242-2245.
[http://dx.doi.org/10.1107/S0567740881008522]
[113]
Chang, C.H.; Yang, D.S.; Yoo, C.S.; Wang, B.L.; Pletcher, J.; Sax, M. The crystal structures of (S) and (R) Baclofen and carbamazepine. Acta Crystallogr. A, 1981, 37, C71.
[114]
Reck, G.; Dietz, G. The order-disorder structure of carbamazepine dihydrate: 5 H-Dibenz [b, f] azepine-5-carboxamide dihydrate, C15H12N2O · 2 H2O. Cryst. Res. Technol., 1986, 21(11), 1463-1468.
[http://dx.doi.org/10.1002/crat.2170211118]
[115]
Lowes, M.M.J.; Caira, M.R.; Lötter, A.P.; Van Der Watt, J.G. Physicochemical properties and X-ray structural studies of the trigonal polymorph of carbamazepine. J. Pharm. Sci., 1987, 76(9), 744-752.
[http://dx.doi.org/10.1002/jps.2600760914] [PMID: 11002813]
[116]
Lisgarten, J.N.; Palmer, R.A.; Saldanha, J.W. Crystal and molecular structure of 5-Carbamyl-5H- dibenzo [b, f] azepine. J. Crystallogr. Spectrosc. Res., 1989, 19(4), 641-649.
[117]
Ceolin, R.; Toscani, S.; Gardette, M.F.; Agafonov, V.N.; Dzyabchenko, A.V.; Bachet, B. X-ray characterization of the triclinic polymorph of carbamazepine. J. Pharm. Sci., 1997, 86(9), 1062-1065.
[http://dx.doi.org/10.1021/js960338k] [PMID: 9294823]
[118]
Rustichelli, C.; Gamberini, G.; Ferioli, V.; Gamberini, M.C.; Ficarra, R.; Tommasini, S. Solid-state study of polymorphic drugs. Carbamazepine. J. Pharm. Biomed. Anal., 2000, 23(1), 41-54.
[http://dx.doi.org/10.1016/S0731-7085(00)00262-4] [PMID: 10898153]
[119]
Lang, M.; Kampf, J.W.; Matzger, A.J. Form IV of Carbamazepine. J. Pharm. Sci., 2002, 91(4), 1186-1190.
[http://dx.doi.org/10.1002/jps.10093] [PMID: 11948557]
[120]
Lang, M.; Grzesiak, A.L.; Matzger, A.J. The use of polymer heteronuclei for crystalline polymorph selection. J. Am. Chem. Soc., 2002, 124(50), 14834-14835.
[http://dx.doi.org/10.1021/ja0286526] [PMID: 12475310]
[121]
Grzesiak, A.L.; Lang, M.; Kim, K.; Matzger, A.J. Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I**supplementary material: X-ray crystallographic information file (CIF) of triclinic CBZ (form I) is available. J. Pharm. Sci., 2003, 92(11), 2260-2271.
[http://dx.doi.org/10.1002/jps.10455] [PMID: 14603511]
[122]
Fleischman, S.G.; Kuduva, S.S.; McMahon, J.A.; Moulton, B.; Bailey Walsh, R.D.; Rodríguez-Hornedo, N.; Zaworotko, M.J. Crystal engineering of the composition of pharmaceutical phases: Multiple-component crystalline solids involving carbamazepine. Cryst. Growth Des., 2003, 3(6), 909-919.
[http://dx.doi.org/10.1021/cg034035x]
[123]
Young, W.W.L.; Suryanarayanan, R. Kinetics of transition of anhydrous carbamazepine to carbamazepine dihydrate in aqueous suspensions. J. Pharm. Sci., 1991, 80(5), 496-500.
[http://dx.doi.org/10.1002/jps.2600800519] [PMID: 1880732]
[124]
Brice, G.W.; Hammer, H.F. Therapeutic nonequivalence of oxytetracycline capsules. JAMA, 1969, 208(7), 1189-1190.
[http://dx.doi.org/10.1001/jama.1969.03160070067022] [PMID: 5818724]
[125]
Kahela, P.; Aaltonen, R.; Lewing, E.; Anttila, M.; Kristoffersson, E. Pharmacokinetics and dissolution of two crystalline forms of carbamazepine. Int. J. Pharm., 1983, 14(1), 103-112.
[http://dx.doi.org/10.1016/0378-5173(83)90118-7]
[126]
Jumao-as, A.; Bella, I.; Craig, B.; Lowe, J.; Dasheiff, R.M. Comparison of steady-state blood levels of two carbamazepine formulations. Epilepsia, 1989, 30(1), 67-70.
[http://dx.doi.org/10.1111/j.1528-1157.1989.tb05283.x] [PMID: 2912719]
[127]
Koch, G.; Allen, J.P.; Joynt, R.J. Untoward effects of generic carbamazepine therapy. Arch. Neurol., 1987, 44(6), 578-579.
[http://dx.doi.org/10.1001/archneur.1987.00520180004003] [PMID: 3579673]
[128]
Sachdeo, R.C. Risk of switching from brand name to generic drug in seizure disorder. Epilepsia, 1987, 28, 581.
[129]
Meyer, M.C.; Straughn, A.B.; Jarvi, E.J.; Wood, G.C.; Pelsor, F.R.; Shah, V.P. The bioinequivalence of carbamazepine tablets with a history of clinical failures. Pharm. Res., 1992, 9(12), 1612-1616.
[http://dx.doi.org/10.1023/A:1015872626887] [PMID: 1488405]
[130]
Kobayashi, Y.; Ito, S.; Itai, S.; Yamamoto, K. Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate. Int. J. Pharm., 2000, 193(2), 137-146.
[http://dx.doi.org/10.1016/S0378-5173(99)00315-4] [PMID: 10606776]
[131]
Bauer, J.; Spanton, S.; Henry, R.; Quick, J.; Dziki, W.; Porter, W.; Morris, J. Ritonavir: An extraordinary example of conformational polymorphism. Pharm. Res., 2001, 18(6), 859-866.
[http://dx.doi.org/10.1023/A:1011052932607] [PMID: 11474792]
[132]
Dubbini, A.; Censi, R.; Martena, V.; Hoti, E.; Ricciutelli, M.; Malaj, L.; Di Martino, P. Influence of pH and method of crystallization on the solid physical form of indomethacin. Int. J. Pharm., 2014, 473(1-2), 536-544.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.030] [PMID: 25064728]
[133]
Chekal, B.P.; Campeta, A.M.; Abramov, Y.A.; Feeder, N.; Glynn, P.P.; McLaughlin, R.W.; Meenan, P.A.; Singer, R.A. The challenges of developing an API crystallization process for a complex polymorphic and highly solvating system. Part I. Org. Process Res. Dev., 2009, 13(6), 1327-1337.
[http://dx.doi.org/10.1021/op9001559]
[134]
Campeta, A.M.; Chekal, B.P.; Abramov, Y.A.; Meenan, P.A.; Henson, M.J.; Shi, B.; Singer, R.A.; Horspool, K.R. Development of a targeted polymorph screening approach for a complex polymorphic and highly solvating API. J. Pharm. Sci., 2010, 99(9), 3874-3886.
[http://dx.doi.org/10.1002/jps.22230] [PMID: 20575000]
[135]
Abramov, Y.A. QTAIM application in drug development: Prediction of relative stability of drug polymorphs from experimental crystal structures. J. Phys. Chem. A, 2011, 115(45), 12809-12817.
[http://dx.doi.org/10.1021/jp2039515] [PMID: 21939257]
[136]
Vasileiadis, M.; Pantelides, C.C.; Adjiman, C.S. Prediction of the crystal structures of axitinib, a polymorphic pharmaceutical molecule. Chem. Eng. Sci., 2015, 121, 60-76.
[http://dx.doi.org/10.1016/j.ces.2014.08.058]
[137]
Matsunaga, J.; Nambu, N.; Nagai, T. Polymorphism of phenylbutazone. Chem. Pharm. Bull., 1976, 24(6), 1169-1172.
[http://dx.doi.org/10.1248/cpb.24.1169] [PMID: 1021282]
[138]
Ibrahim, H.G.; Pisano, F.; Bruno, A. Polymorphism of phenylbutazone: Properties and compressional behavior of crystals. J. Pharm. Sci., 1977, 66(5), 669-673.
[http://dx.doi.org/10.1002/jps.2600660515] [PMID: 874748]
[139]
Matsuda, Y.; Kawaguchi, S.; Kobayashi, H.; Nishijo, J. Physicochemical characterization of spray-dried phenylbutazone polymorphs. J. Pharm. Sci., 1984, 73(2), 173-179.
[http://dx.doi.org/10.1002/jps.2600730209] [PMID: 6707878]
[140]
Hosokawa, T.; Datta, S.; Sheth, A.R.; Grant, D.J.W. Relationships between crystal structures and thermodynamic properties of phenylbutazone solvates. CrystEngComm, 2004, 6(44), 243-249.
[http://dx.doi.org/10.1039/b405547k]
[141]
Pandit, J.K.; Gupta, S.K.; Gode, K.D.; Mishra, B. Effect of crystal form on the oral absorption of phenylbutazone. Int. J. Pharm., 1984, 21(1), 129-132.
[http://dx.doi.org/10.1016/0378-5173(84)90210-2]
[142]
Marchi, E.; Mascellani, G.; Montecchi, L.; Venturini, A.P.; Brufani, M.; Cellai, L. 4-Deoxypyrido[1′,2′:1,2]imidazo[5,4-c]rifamycin SV derivatives. A new series of semisynthetic rifamycins with high antibacterial activity and low gastroenteric absorption. J. Med. Chem., 1985, 28(7), 960-963.
[http://dx.doi.org/10.1021/jm00145a020] [PMID: 4009619]
[143]
Jiang, Z.D.; DuPont, H.L. Rifaximin: in vitro and in vivo antibacterial activity--a review. Chemotherapy, 2005, 51(Suppl. 1), 67-72.
[http://dx.doi.org/10.1159/000081991] [PMID: 15855749]
[144]
Adachi, J.A.; DuPont, H.L. Rifaximin: A novel nonabsorbed rifamycin for gastrointestinal disorders. Clin. Infect. Dis., 2006, 42(4), 541-547.
[http://dx.doi.org/10.1086/499950] [PMID: 16421799]
[145]
European Pharmacopoeia. 2011. Available from: http://www.edqm.eu/en/european-pharmacopoeia-8th-edition- 1563.html
[146]
Viscomi, G.C.; Campana, M.; Barbanti, M.; Grepioni, F.; Polito, M.; Confortini, D.; Rosini, G.; Righi, P.; Cannata, V.; Braga, D. Crystal forms of rifaximin and their effect on pharmaceutical properties. CrystEngComm, 2008, 10(8), 1074-1081.
[http://dx.doi.org/10.1039/b717887e]
[147]
Blandizzi, C.; Viscomi, G.C.; Scarpignato, C. Impact of crystal polymorphism on the systemic bioavailability of rifaximin, an antibiotic acting locally in the gastrointestinal tract, in healthy volunteers. Drug Des. Devel. Ther., 2014, 9, 1-11.
[PMID: 25565769]
[148]
Mirza, S.; Miroshnyk, I.; Heinämäki, J.; Antikainen, O.; Rantanen, J.; Vuorela, P.; Vuorela, H.; Yliruusi, J. Crystal morphology engineering of pharmaceutical solids: Tabletting performance enhancement. AAPS PharmSciTech, 2009, 10(1), 113-119.
[http://dx.doi.org/10.1208/s12249-009-9187-4] [PMID: 19184449]
[149]
Hall, N. In:Predicting Polymorphism. In: Pharmaceutical Formulation and Quality 2000.
[150]
Morris, K.R.; Griesser, U.J.; Eckhardt, C.J.; Stowell, J.G. Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes. Adv. Drug Deliv. Rev., 2001, 48(1), 91-114.
[http://dx.doi.org/10.1016/S0169-409X(01)00100-4] [PMID: 11325478]
[151]
Phadnis, N.V.; Suryanarayanan, R. Polymorphism in anhydrous theophylline--implications on the dissolution rate of theophylline tablets. J. Pharm. Sci., 1997, 86(11), 1256-1263.
[http://dx.doi.org/10.1021/js9701418] [PMID: 9383736]
[152]
Zhang, G.; Law, D.; Schmitt, E.A.; Qiu, Y. Phase transformation considerations during process development and manufacture of solid oral dosage forms. Adv. Drug Deliv. Rev., 2004, 56(3), 371-390.
[http://dx.doi.org/10.1016/j.addr.2003.10.009] [PMID: 14962587]
[153]
Shiraki, K.; Takata, N.; Takano, R.; Hayashi, Y.; Terada, K. Dissolution improvement and the mechanism of the improvement from cocrystallization of poorly water-soluble compounds. Pharm. Res., 2008, 25(11), 2581-2592.
[http://dx.doi.org/10.1007/s11095-008-9676-2] [PMID: 18651208]
[154]
Yadav, A.V.; Shete, A.S.; Dabke, A.P.; Kulkarni, P.V.; Sakhare, S.S. Co-crystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm. Sci., 2009, 71(4), 359-370.
[http://dx.doi.org/10.4103/0250-474X.57283] [PMID: 20502540]
[155]
Guidance for Industry. Regulatory Classification of Pharmaceutical Co-Crystals. U.S. Department of Health and Human Services, Food and Drug Administration Center for Drug Evaluation and Research., 2013. Available from: https://www.fda.gov/files/drugs/published/Regulatory-Classification-of-Pharmaceutical-Co-Crystals.pdf
[156]
Chawla, G.; Bansal, A.K. Regulatory issues related to polymorphism. Express Pharma. Pulse, 2003, 10, 8-20.
[157]
57th. Federal Register., , 17958-17959.(April 28, 1992)
[158]
Trask, A.V. An overview of pharmaceutical cocrystals as intellectual property. Mol. Pharm., 2007, 4(3), 301-309.
[http://dx.doi.org/10.1021/mp070001z] [PMID: 17477544]
[159]
Guidance for Industry. ANDAs: Pharmaceutical Solid Polymorphism. Food and drug administration center for drug evaluation and research; draft guidance., 2004. Available from: https://www.federalregister.gov/documents/2004/12/20/04-27736/draft-guidance-for-industry-on-andas-pharmaceutical-solid-polymorphism-chemistry-manufacturing-and
[160]
Food and Drug Administration Code of Federal Regulations. 21 CFR Part 320.Bioavailability and Bioequivalence Requirements.. Available from: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-D/part-320
[161]
Bernstein, J. Polymorphism in Molecular Crystals, 2nd ed; Oxford University Press: United Kingdom, 2002, pp. 297-307.
[162]
Foraita, H.G. Patent aspects of drug salt formation. In: Handbook of Pharmaceutical Salts: Properties, Selection and Use; Stahl, P.H.; Wermuth, C.G., Eds.; Wiley-VCH: Zurich, 2008; pp. 221-235.
[163]
Hilfiker, R.; Von Raumer, M. , Eds.; Polymorphism in the Pharmaceutical Industry: Solid Form and Drug Development; John Wiley & Sons, 2019.
[164]
Allen, T. Polymorphism in pharmaceutical solids. In: Aulton’s Pharmaceutics: The Design and Manufacture of Medicines, 5th ed.; Aulton, M.E.; Taylor, K.M., Eds.; Elsevier; , 2017; pp. 332-354.
[165]
Parent, S.D.; Smith, P.A.; Purcell, D.K.; Smith, D.T.; Bogdanowich-Knipp, S.J.; Bhavsar, A.S.; Chan, L.R.; Croom, J.M.; Bauser, H.C.; McCalip, A.; Byrn, S.R. Ritonavir form III: A coincidental concurrent discovery. Cryst. Growth Des., 2022, 1, 320-325.
[166]
Furushima, Y.; Schick, C.; Toda, A. Crystallization, recrystallization, and melting of polymer crystals on heating and cooling examined with fast scanning calorimetry. Polym. Cryst., 2018, 1(2), e10005.
[http://dx.doi.org/10.1002/pcr2.10005]
[167]
Gataullina, K.V.; Buzyurov, A.V.; Ziganshin, M.A.; Padnya, P.L.; Stoikov, I.I.; Schick, C.; Gorbatchuk, V.V. Using fast scanning calorimetry to detect guest-induced polymorphism by irreversible phase transitions in the nanogram scale. CrystEngComm, 2019, 21(6), 1034-1041.
[http://dx.doi.org/10.1039/C8CE01865K]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy