Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Mini-Review Article

Advancement in Nanobiotechnology for Human Health Care: Focus on Ocular Diseases and Future Prospects

Author(s): Ankit Srivastava*, Biswajita Pradhan, Bimal Prasad Jit, Kaushik Kumar Bharadwaj and Deeksha Rikhari

Volume 13, Issue 3, 2023

Published on: 31 August, 2023

Page: [147 - 158] Pages: 12

DOI: 10.2174/2468187313666230822101717

Price: $65

Abstract

Nanotechnology involves the study of different materials on the nanometer scale, typically less than 100 nm in size. Nanomedicine is the creation of nanotechnology, a new science and technology area. Similarly, various nanomaterials, such as nanostructure, nanotubes, and nanoparticles, were also found to have significant applications in the human biological system at the molecular level to achieve healthcare advantage. Nanotechnology is rapidly expanding in the field of medicine with a special emphasis on ophthalmology. Nanotechnology advancements need to be translated into a new and exciting platform for diagnosis, treatment, and therapeutics for ocular disease. The application of nanotechnology in ocular disease and cancer, such as nanoparticle-based drug delivery system, drug development, gene therapy, and tissue engineering, helps overcome many ocular problems. In particular, one of the most important applications of the emerging nanoscience system is used in ocular cancer diagnosis and therapy with the help of carbon nanotubes, nanocrystals, nanowires, etc. Several approaches have been developed for treatment and therapy for ocular disease. Moreover, these tremendous approaches have been safely used and effective for a broad range of applications. In this study, the focus is to discuss recent findings and various constraints and summarize the applications of nanotechnology-mediated systems for treating various ocular diseases.

Next »
Graphical Abstract

[1]
Bourges JL, Bloquel C, Thomas A, et al. Intraocular implants for extended drug delivery: Therapeutic applications. Adv Drug Deliv Rev 2006; 58(11): 1182-202.
[http://dx.doi.org/10.1016/j.addr.2006.07.026] [PMID: 17107737]
[2]
Feynman RP. There’s plenty of room at the bottom: An invitation to enter a new field of physics. Eng Sci 1960; 23: 22-36.
[3]
Murty BS, Shankar P, Raj B, Rath BB, Murday J. The big world of nanomaterials. In:Textbook of nanoscience and nanotechnology. Berlin, Heidelberg: Springer 2013.
[http://dx.doi.org/10.1007/978-3-642-28030-6_1]
[4]
Sarma MK, Ningthoujam R, Panda MK, et al. Translational healthcare system through bioinformatics. Translational Bioinformatics Applications in Healthcare 2021; p. 1.
[5]
Bhowmick TK, Suresh AK, Kane SG, Joshi AC, Bellare JR. Physicochemical characterization of an Indian traditional medicine, Jasada Bhasma: Detection of nanoparticles containing non-stoichiometric zinc oxide. J Nanopart Res 2009; 11(3): 655-64.
[http://dx.doi.org/10.1007/s11051-008-9414-z]
[6]
Kulkarni SS. Bhasma and nanomedicine. Int Res J Pharm 2016; 4(4): 10-6.
[http://dx.doi.org/10.7897/2230-8407.04402]
[7]
Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World J Pharmacol 2013; 2(2): 47-64.
[http://dx.doi.org/10.5497/wjp.v2.i2.47] [PMID: 25590022]
[8]
Bejjani RA, Behar-Cohen F, Benezra D, Gurny R, Delie F. Polymeric nanoparticles for drug delivery to the posterior segment of the eye. Chimia 2005; 59(6): 344-7.
[http://dx.doi.org/10.2533/000942905777676281]
[9]
Kannan RM, Xu Q, Kambhampati SP. Nanotechnology approaches for ocular drug delivery. Middle East Afr J Ophthalmol 2013; 20(1): 26-37.
[http://dx.doi.org/10.4103/0974-9233.106384] [PMID: 23580849]
[10]
Campochiaro PA, Nguyen QD, Shah SM, et al. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: Results of a phase I clinical trial. Hum Gene Ther 2006; 17(2): 167-76.
[http://dx.doi.org/10.1089/hum.2006.17.167] [PMID: 16454650]
[11]
Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28(1): 92-5.
[http://dx.doi.org/10.1038/ng0501-92] [PMID: 11326284]
[12]
Alqawlaq S, Huzil JT, Ivanova MV, Foldvari M. Challenges in neuroprotective nanomedicine development: Progress towards noninvasive gene therapy of glaucoma. Nanomedicine 2012; 7(7): 1067-83.
[http://dx.doi.org/10.2217/nnm.12.69] [PMID: 22846092]
[13]
Kokate A, Marasanapalle VP, Jasti BR, Li X. Physiological and biochemical barriers to drug delivery. In: Li X, Jasti BR, Eds. Design of Controlled Release Drug Delivery Systems. McGraw-Hill 2006; pp. 41-73.
[14]
Forrester JV, Dick AD, McMenamin PG, Roberts F, Pearlman E. The eye: Basic sciences in practice In:. Philadelphia: Elsevier Health Sciences 2015.
[15]
Janoria KG, Gunda S, Boddu SHS, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 2007; 4(4): 371-88.
[http://dx.doi.org/10.1517/17425247.4.4.371] [PMID: 17683251]
[16]
Chastain JE. General consideration in ocular drug delivery. In: Mitra AK, Ed. Ophthalmic drug delivery systems 2nd edtion. New York: Marcel Dekker 2003; pp. 59-108.
[http://dx.doi.org/10.1201/9780203912072.ch3]
[17]
Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: Impacts of membranes and barriers. Expert Opin Drug Deliv 2008; 5(5): 567-81.
[http://dx.doi.org/10.1517/17425247.5.5.567] [PMID: 18491982]
[18]
Gaudana R, Jwala J, Boddu SHS, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res 2009; 26(5): 1197-216.
[http://dx.doi.org/10.1007/s11095-008-9694-0] [PMID: 18758924]
[19]
Lang JC. Ocular drug delivery conventional ocular formulations. Adv Drug Deliv Rev 1995; 16(1): 39-43.
[http://dx.doi.org/10.1016/0169-409X(95)00012-V]
[20]
Finger PT, Kurli M, Reddy S, Tena LB, Pavlick AC. Whole body PET/CT for initial staging of choroidal melanoma. Br J Ophthalmol 2005; 89(10): 1270-4.
[http://dx.doi.org/10.1136/bjo.2005.069823] [PMID: 16170114]
[21]
Townsend KA, Wollstein G, Schuman JS. Clinical application of MRI in ophthalmology. NMR Biomed 2008; 21(9): 997-1002.
[http://dx.doi.org/10.1002/nbm.1247] [PMID: 18384176]
[22]
Srivastava A, Sharan S. Sebaceous gland carcinoma of ocular region in India: A brief literature review for disease management. Latin American Journal of Ophthalmology 2021; 4: 4.
[http://dx.doi.org/10.25259/LAJO_6_2021]
[23]
Srivastava A, Jit BP, Dash R, Panda MK. Bioactive lipid: A novel diagnostic approach for retinoblastoma in clinical management. International Journal of Molecular and Immuno Oncology 2021; 6(3): 136-9.
[http://dx.doi.org/10.25259/IJMIO_7_2021]
[24]
Bharadwaj KK, Rabha B, Pati S, et al. Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules 2021; 26(21): 6389.
[http://dx.doi.org/10.3390/molecules26216389] [PMID: 34770796]
[25]
Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 2006; 58(11): 1131-5.
[http://dx.doi.org/10.1016/j.addr.2006.07.027] [PMID: 17097758]
[26]
Pal Kaur I, Kanwar M. Ocular preparations: The formulation approach. Drug Dev Ind Pharm 2002; 28(5): 473-93.
[http://dx.doi.org/10.1081/DDC-120003445] [PMID: 12098838]
[27]
Bu HZ, Gukasyan H, Goulet L, Lou XJ, Xiang C, Koudriakova T. Ocular disposition, pharmacokinetics, efficacy and safety of nanoparticle-formulated ophthalmic drugs. Curr Drug Metab 2007; 8(2): 91-107.
[http://dx.doi.org/10.2174/138920007779815977] [PMID: 17305490]
[28]
Zhang C, Yin Y, Zhao J, et al. An update on novel ocular nanosystems with possible benefits in the treatment of corneal neovascularization. Int J Nanomedicine 2022; 17: 4911-31.
[http://dx.doi.org/10.2147/IJN.S375570] [PMID: 36267540]
[29]
Narayana S, Ahmed MG, Gowda BHJ, et al. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review. Future Journal of Pharmaceutical Sciences 2021; 7(1): 186.
[http://dx.doi.org/10.1186/s43094-021-00331-2]
[30]
Park SC, Su D, Tello C. Anti-VEGF therapy for the treatment of glaucoma: A focus on ranibizumab and bevacizumab. Expert Opin Biol Ther 2012; 12(12): 1641-7.
[http://dx.doi.org/10.1517/14712598.2012.721772] [PMID: 22963411]
[31]
Supe S, Upadhya A, Singh K. Role of small interfering RNA (siRNA) in targeting ocular neovascularization: A review. Exp Eye Res 2021; 202: 108329.
[http://dx.doi.org/10.1016/j.exer.2020.108329] [PMID: 33198953]
[32]
Formica ML, Awde Alfonso HG, Palma SD. Biological drug therapy for ocular angiogenesis: Anti‐VEGF agents and novel strategies based on nanotechnology. Pharmacol Res Perspect 2021; 9(2): e00723.
[http://dx.doi.org/10.1002/prp2.723] [PMID: 33694304]
[33]
Sultana Y, Jain R, Aqil M, Ali A. Review of ocular drug delivery. Curr Drug Deliv 2006; 3(2): 207-17.
[http://dx.doi.org/10.2174/156720106776359186] [PMID: 16611007]
[34]
Vandervoort J, Ludwig A. Ocular drug delivery: Nanomedicine applications. Nanomedicine 2007; 2(1): 11-21.
[http://dx.doi.org/10.2217/17435889.2.1.11] [PMID: 17716187]
[35]
Kim JH, Kim MH, Jo DH, Yu YS, Lee TG, Kim JH. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials 2011; 32(7): 1865-71.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.030] [PMID: 21145587]
[36]
Irache J, Merodio M, Arnedo A, Camapanero M, Mirshahi M, Espuelas S. Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini Rev Med Chem 2005; 5(3): 293-305.
[http://dx.doi.org/10.2174/1389557053175335] [PMID: 15777263]
[37]
Essa L, Laughton D, Wolffsohn JS. Can the optimum artificial tear treatment for dry eye disease be predicted from presenting signs and symptoms? Cont Lens Anterior Eye 2018; 41(1): 60-8.
[http://dx.doi.org/10.1016/j.clae.2017.07.007] [PMID: 28811095]
[38]
Xu J, Wang Y, Li Y. nhibitory efficacy of intravitreal dexamethasoneacetate-loaded PLGA nanoparticles on choroidal neovascularization in a laser induced rat model. J Ocul Pharmacol cv Ther 2007; 23(6): 527-40.
[39]
Vega E, Egea MA, Valls O, Espina M, García ML. Flurbiprofen loaded biodegradable nanoparticles for ophtalmic administration. J Pharm Sci 2006; 95(11): 2393-405.
[http://dx.doi.org/10.1002/jps.20685] [PMID: 16886193]
[40]
Mousa SA. Survey of Pro-angiogenesis Strategies. In: Mousa SA, Davis PJ, Eds. Angiogenesis Modulations in Health and Disease: Practical Applications of Pro- and Anti-angiogenesis Targets. Dordrecht: Springer Netherlands 2013; pp. 15-8.
[http://dx.doi.org/10.1007/978-94-007-6467-5_2]
[41]
Cholkar K, Patel A, Vadlapudi AD, Mitra AK. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed 2012; 2(2): 82-95.
[http://dx.doi.org/10.2174/1877912311202020082] [PMID: 25400717]
[42]
Milhem OM, Myles C, McKeown NB, Attwood D, D’Emanuele A. Polyamidoamine Starburst® dendrimers as solubility enhancers. Int J Pharm 2000; 197(1-2): 239-41.
[http://dx.doi.org/10.1016/S0378-5173(99)00463-9] [PMID: 10704811]
[43]
Parveen S, Sahoo SK. Evaluation of cytotoxicity and mechanism of apoptosis of doxorubicin using folate-decorated chitosan nanoparticles for targeted delivery to retinoblastoma. Cancer Nanotechnol 2010; 1(1-6): 47-62.
[http://dx.doi.org/10.1007/s12645-010-0006-0] [PMID: 26069479]
[44]
Liu H, Liu Y, Ma Z, Wang J, Zhang Q. A lipid nanoparticle system improves siRNA efficacy in RPE cells and a laser-induced murine CNV model. Invest Ophthalmol Vis Sci 2011; 52(7): 4789-94.
[http://dx.doi.org/10.1167/iovs.10-5891] [PMID: 21519028]
[45]
Rajala A, Wang Y, Zhu Y, et al. Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. Nano Lett 2014; 14(9): 5257-63.
[http://dx.doi.org/10.1021/nl502275s] [PMID: 25115433]
[46]
Takahashi Y, Chen Q, Rajala RVS, Ma J. MicroRNA-184 modulates canonical Wnt signaling through the regulation of frizzled-7 expression in the retina with ischemia-induced neovascularization. FEBS Lett 2015; 589(10): 1143-9.
[http://dx.doi.org/10.1016/j.febslet.2015.03.010] [PMID: 25796186]
[47]
Bakri SJ, Kaiser PK. Verteporfin ocular photodynamic therapy. Expert Opin Pharmacother 2004; 5(1): 195-203.
[http://dx.doi.org/10.1517/14656566.5.1.195] [PMID: 14680447]
[48]
Monge-Fuentes V, Muehlmann LA, de Azevedo RB. Perspectives on the application of nanotechnology in photodynamic therapy for the treatment of melanoma. Nano Rev 2014; 5(1): 24381.
[http://dx.doi.org/10.3402/nano.v5.24381] [PMID: 25317253]
[49]
Mitra M, Kandalam M, Rangasamy J, et al. Novel epithelial cell adhesion molecule antibody conjugated polyethyleneimine-capped gold nanoparticles for enhanced and targeted small interfering RNA delivery to retinoblastoma cells. Mol Vis 2013; 19: 1029-38.
[PMID: 23687439]
[50]
Wang Y, Liu CH, Ji T, et al. Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles. Nat Commun 2019; 10(1): 804.
[http://dx.doi.org/10.1038/s41467-019-08690-4] [PMID: 30778060]
[51]
World Health Organization Blindness and Vision Impairment Available From https://www.who.int/newsroom/fact-sheets/detail/blindness-and-visual-impairment
[52]
Rodrigues EB, Farah ME, Bottós JM, Aggio FB. Non steroidal anti-inflammatory drugs in the treatment of retinal diseases. In:Retinal Pharmacotherapeutics . 2016; pp. 212-0.
[53]
Yorio T, Clark A, Wax MB. Ocular therapeutics: Eye on new discoveries. Academic Press 2011.
[54]
Soni N, Soni N, Pandey H, Maheshwari R, Kesharwani P, Tekade RK. Augmented delivery of gemcitabine in lung cancer cells exploring mannose anchored solid lipid nanoparticles. J Colloid Interface Sci 2016; 481: 107-16.
[http://dx.doi.org/10.1016/j.jcis.2016.07.020] [PMID: 27459173]
[55]
Morsi N, Ibrahim M, Refai H, El Sorogy H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur J Pharm Sci 2017; 104: 302-14.
[http://dx.doi.org/10.1016/j.ejps.2017.04.013] [PMID: 28433750]
[56]
Gorain B, Choudhury H, Tekade RK, Karan S, Jaisankar P, Pal TK. Comparative biodistribution and safety profiling of olmesartan medoxomil oil-in-water oral nanoemulsion. Regul Toxicol Pharmacol 2016; 82: 20-31.
[http://dx.doi.org/10.1016/j.yrtph.2016.10.020] [PMID: 27815174]
[57]
Huang Y, Tao Q, Hou D, et al. A novel ion-exchange carrier based upon liposome-encapsulated montmorillonite for ophthalmic delivery of betaxolol hydrochloride. Int J Nanomedicine 2017; 12: 1731-45.
[http://dx.doi.org/10.2147/IJN.S122747] [PMID: 28280338]
[58]
Maheshwari RS, Thakur S, Singhal S, Patel R, Tekade M, Tekade R. Chitosan encrusted nonionic surfactant based vesicular formulation for topical administration of ofloxacin. Sci Adv Mater 2015; 7(6): 1163-76.
[http://dx.doi.org/10.1166/sam.2015.2245]
[59]
Huang J, Peng T, Li Y, et al. Ocular cubosome drug delivery system for timolol maleate: Preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech 2017; 18(8): 2919-26.
[http://dx.doi.org/10.1208/s12249-017-0763-8] [PMID: 28429294]
[60]
Al-mahallawi AM, Khowessah OM, Shoukri RA. Enhanced non invasive trans -tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: Fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int J Pharm 2017; 522(1-2): 157-64.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.005] [PMID: 28279741]
[61]
Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Control Release 2017; 248: 96-116.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.012] [PMID: 28087407]
[62]
Almeida H, Lobão P, Frigerio C, et al. Preparation, characterization and biocompatibility studies of thermoresponsive eyedrops based on the combination of nanostructured lipid carriers (NLC) and the polymer Pluronic F-127 for controlled delivery of ibuprofen. Pharm Dev Technol 2017; 22(3): 336-49.
[http://dx.doi.org/10.3109/10837450.2015.1125922] [PMID: 28240141]
[63]
Weijtens O, Schoemaker RC, Romijn FPHTM, Cohen AF, Lentjes EGWM, van Meurs JC. Intraocular penetration and systemic absorption after topical application of dexamethasone disodium phosphate. Ophthalmology 2002; 109(10): 1887-91.
[http://dx.doi.org/10.1016/S0161-6420(02)01176-4] [PMID: 12359610]
[64]
Clinica ltrials.gov. Available From: https://clinicaltrials.gov/ (Accessed 20 Apr 2020.)
[65]
Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B 2017; 7(3): 281-91.
[http://dx.doi.org/10.1016/j.apsb.2016.09.001] [PMID: 28540165]
[66]
Patel A, Dharamsi A. Voriconazole loaded lipidic nanoparticles for ophthalmic delivery: Development Using QbD Combined with Risk-based Approach. Curr Nanomed 2023; 13(1): 56-9.
[http://dx.doi.org/10.2174/2468187313666230420075952]
[67]
Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 2019; 4(1): 33.
[http://dx.doi.org/10.1038/s41392-019-0068-3] [PMID: 31637012]
[68]
Natarajan JV, Darwitan A, Barathi VA, et al. Sustained drug release in nanomedicine: A long-acting nanocarrier-based formulation for glaucoma. ACS Nano 2014; 8(1): 419-29.
[http://dx.doi.org/10.1021/nn4046024] [PMID: 24392729]
[69]
ElShaer A, Mustafa S, Kasar M, Thapa S, Ghatora B, Alany R. Nanoparticle-laden contact lens for controlled ocular delivery of prednisolone: Formulation optimization using statistical experimental design. Pharmaceutics 2016; 8(2): 14.
[http://dx.doi.org/10.3390/pharmaceutics8020014] [PMID: 27104555]
[70]
Hamcerencu M, Desbrieres J, Popa M, Riess G. Thermo-sensitive gellan maleate/N-isopropylacrylamide hydrogels: initial “in vitro” and “in vivo” evaluation as ocular inserts. Polym Bull 2020; 77(2): 741-55.
[http://dx.doi.org/10.1007/s00289-019-02772-5]
[71]
Gaikwad SS, Jadhav SV, Salunkhe KS. Nanogel development and its importance in ophthalmic drug delivery system. current Nanomedicine (Formerly: Recent Patents on Nanomedicine) 2022; 12(3): 204-16.
[http://dx.doi.org/10.2174/2468187312666220915150636]
[72]
Tayagi RV, Garg N, Shukla R, Singh Bisen P, Eds. Role of novel drug delivery vehicles in nanobiomedicine. Intech Open 2019.
[http://dx.doi.org/10.5772/intechopen.86601]
[73]
Meza-Rios A, Navarro-Partida J, Armendariz-Borunda J, Santos A. Therapies based on nanoparticles for eye drug delivery. Ophthalmol Ther 2020; 9(3): 1-14.
[http://dx.doi.org/10.1007/s40123-020-00257-7] [PMID: 32383107]
[74]
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: A review of FDAapprovedmaterials and clinical trials to date. Pharm Res 2016; 33(10): 2373-87.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[75]
Tekade RK, Maheshwari R, Tekade M. Biopolymer-based nanocompositesfor transdermal drug delivery, Biopolymer-Based Composites. Woodhead Publishing 2017; pp. 81-106.
[http://dx.doi.org/10.1016/B978-0-08-101914-6.00004-1]
[76]
Gonzalez-De la Rosa A, Navarro-Partida J, Altamirano-Vallejo JC, et al. Novel triamcinolone acetonide-loaded liposomes topical formulation for the treatment of cystoid macular edema after cataract surgery: A pilot study. J Ocul Pharmacol Ther 2019; 35(2): 106-15.
[http://dx.doi.org/10.1089/jop.2018.0101] [PMID: 30614750]
[77]
Gonzalez-De la Rosa A, Navarro-Partida J, Altamirano-Vallejo JC, et al. Novel triamcinolone acetonide-loaded liposomes topical formulation improves contrast sensitivity outcome after femto second laser-assisted cataract surgery. J Ocul Pharmacol Ther 2019; 35(9): 512-21.
[http://dx.doi.org/10.1089/jop.2019.0032] [PMID: 31486694]
[78]
Liu S, Jones L, Gu FX. Nanomaterials for ocular drug delivery. Macromol Biosci 2012; 12(5): 608-20.
[http://dx.doi.org/10.1002/mabi.201100419] [PMID: 22508445]
[79]
Gupta SK, Velpandian T, Dhingra N, Jaiswal J. Intravitreal pharmacokinetics of plain and liposome-entrapped fluconazole in rabbit eyes. J Ocul Pharmacol Ther 2000; 16(6): 511-8.
[http://dx.doi.org/10.1089/jop.2000.16.511] [PMID: 11132898]
[80]
Cannon JP, Fiscella R, Pattharachayakul S, et al. Comparative toxicity and concentrations of intravitreal amphotericin B formulations in a rabbit model. Invest Ophthalmol Vis Sci 2003; 44(5): 2112-7.
[http://dx.doi.org/10.1167/iovs.02-1020] [PMID: 12714650]
[81]
Altamirano-Vallejo JC, Navarro-Partida J, Gonzalez-De la Rosa A, et al. Characterization and pharmacokinetics of triamcinolone acetonide-loaded liposomes topical formulations for vitreoretinal drug delivery. J Ocul Pharmacol Ther 2018; 34(5): 416-25.
[http://dx.doi.org/10.1089/jop.2017.0099] [PMID: 29584529]
[82]
Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano Today 2012; 7(1): 53-65.
[http://dx.doi.org/10.1016/j.nantod.2012.01.002]
[83]
Xu X, Sun L, Zhou L, Cheng Y, Cao F. Functional chitosan oligosaccharide nanomicelles for topical ocular drug delivery of dexamethasone. Carbohydr Polym 2020; 227: 115356.
[http://dx.doi.org/10.1016/j.carbpol.2019.115356] [PMID: 31590850]
[84]
Yu A, Shi H, Liu H, et al. Mucoadhesive dexamethasone-glycol chitosan nanoparticles for ophthalmic drug delivery. Int J Pharm 2020; 575: 118943.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118943] [PMID: 31830575]
[85]
Song K, Xin M, Yu H, et al. Novel ultra-small micelles based on rebaudioside A: A potential nanoplatform for ocular drug delivery. Int J Pharm 2018; 552(1-2): 265-76.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.006] [PMID: 30291959]
[86]
Song K, Xin M, Zhang F, Xie W, Sun M, Wu X. Novel ultrasmall nanomicelles based on rebaudioside A: A potential nanoplatform for the ocular delivery of pterostilbene. Int J Pharm 2020; 577: 119035.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119035] [PMID: 31953080]
[87]
Göttel B, de Souza e Silva JM, Santos de Oliveira C, et al. Electrospun nanofibers: A promising solid in-situ gelling alternative for ocular drug delivery. Eur J Pharm Biopharm 2020; 146: 125-32.
[http://dx.doi.org/10.1016/j.ejpb.2019.11.012] [PMID: 31816391]
[88]
Zhang Z, Yu J, Zhou Y, et al. Supramolecular nanofibers of dexamethasone derivatives to form hydrogel for topical ocular drug delivery. Colloids Surf B Biointerfaces 2018; 164: 436-43.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.051] [PMID: 29438842]
[89]
Yu X, Zhang R, Lei L, Song Q, Li X. High drug payload nanoparticles formed from dexamethasone-peptide conjugates for the treatment of endotoxin-induced uveitis in rabbit. Int J Nanomedicine 2019; 14: 591-603.
[http://dx.doi.org/10.2147/IJN.S179118] [PMID: 30666116]
[90]
Sai N, Dong X, Huang P, et al. A novel gel-forming solution based on PEG-DSPE/Solutol HS 15 mixed micelles and gellan gum for ophthalmic delivery of curcumin. Molecules 2019; 25(1): 81.
[http://dx.doi.org/10.3390/molecules25010081] [PMID: 31878332]
[91]
Liu CH, Lee GW, Wu WC, Wang CC. Encapsulating curcumin in ethylene diamine-β-cyclodextrin nanoparticle improves topical cornea delivery. Colloids Surf B Biointerfaces 2020; 186: 110726.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110726] [PMID: 31862560]
[92]
Agarwal R, Rana D, Salave S, Benival D. Dexamethasone loaded electrospun nanocomposite ocular insert: In-vitro drug release and mechanical assessment. Current Nanomedicine (Formerly: Recent Patents on Nanomedicine) 2022; 12(2): 150-8.
[93]
Kompella UB, Amrite AC, Pacha Ravi R, Durazo SA. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 2013; 36: 172-98.
[http://dx.doi.org/10.1016/j.preteyeres.2013.04.001] [PMID: 23603534]
[94]
Bhattacharjee A, Das PJ, Adhikari P, et al. Novel drug delivery systems for ocular therapy: With special reference to liposomal ocular delivery. Eur J Ophthalmol 2019; 29(1): 113-26.
[http://dx.doi.org/10.1177/1120672118769776] [PMID: 29756507]
[95]
Lorenzo-Veiga B, Sigurdsson H, Loftsson T. Nepafenac-loaded cyclodextrin/polymer nanoaggregates: A new approach to eye drop formulation. Materials 2019; 12(2): 229.
[http://dx.doi.org/10.3390/ma12020229] [PMID: 30641887]
[96]
Mazet R, Choisnard L, Levilly D, Wouessidjewe D, Gèze A. Investigation of combined cyclodextrin and hydrogel formulation for ocular delivery of dexamethasone acetate by means of experimental designs. Pharmaceutics 2018; 10(4): 249.
[http://dx.doi.org/10.3390/pharmaceutics10040249] [PMID: 30513707]
[97]
Marmor MF, Negi A, Maurice DM. Kinetics of macromolecules injected into the subretinal space. Exp Eye Res 1985; 40(5): 687-96.
[http://dx.doi.org/10.1016/0014-4835(85)90138-1] [PMID: 2408910]
[98]
Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol 2010; 57(12): 1555-63.
[http://dx.doi.org/10.1211/jpp.57.12.0005] [PMID: 16354399]
[99]
Cheruvu NPS, Amrite AC, Kompella UB. Effect of eye pigmentation on transscleral drug delivery. Invest Ophthalmol Vis Sci 2008; 49(1): 333-41.
[http://dx.doi.org/10.1167/iovs.07-0214] [PMID: 18172110]
[100]
Araújo J, Gonzalez E, Egea MA, Garcia ML, Souto EB. Nanomedicines for ocular NSAIDs: Safety on drug delivery. Nanomedicine 2009; 5(4): 394-401.
[http://dx.doi.org/10.1016/j.nano.2009.02.003] [PMID: 19341814]
[101]
Srinivasarao DA, Lohiya G, Katti DS. Fundamentals, challenges, and nanomedicine-based solutions for ocular diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 1548.
[http://dx.doi.org/10.1002/wnan.1548] [PMID: 30506871]
[102]
Prow TW. Toxicity of nanomaterials to the eye. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2(4): 317-33.
[http://dx.doi.org/10.1002/wnan.65] [PMID: 20077524]
[103]
Lin H, Bu Q, Cen X, Zhao YL. Current methods and research progress in nanomaterials risk assessment. Curr Drug Metab 2012; 13(4): 354-63.
[http://dx.doi.org/10.2174/138920012800166535] [PMID: 22443532]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy