Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Pyrazoline and Analogs: Substrate-based Synthetic Strategies

Author(s): Himanshu Singh*, Rajnish Kumar and Avijit Mazumder

Volume 21, Issue 7, 2024

Published on: 07 September, 2023

Page: [823 - 836] Pages: 14

DOI: 10.2174/1570179421666230822100043

Price: $65

Abstract

Among the many reports published on strategies applicable to synthesizing pyrazolines and its analogs, The 1,3-dipolar cycloaddition offers a remarkably wide range of utility. Many 1,3-dipolar cycloaddition reactions used for the synthesis of pyrazolines provide better selectivity, eco-friendly, and less expensive chemical processes. In the presented study, we have reviewed various recently adopted strategies for the synthesis of pyrazoline, which followed the 1,3-dipolar cycloaddition reactions mechanism and classified them based on starting materials such as nitrile imines, diazo compounds, different zwitter ions, chalcones, and isoprene units. The manuscript also focused on the synthesis of pyrazolines starting from Seyferth−Gilbert reagents (SGR) and Psilostachyin (PSH) reagents. We hope this work will help those engaged or have plans to research pyrazoline or its analogs, as synthetic protocols based on starting material are rarely available for pyrazolines. Thus, this article holds a valuable complement to the development of newer pyrazoline and its derivatives.

Next »
Graphical Abstract

[1]
Delaittre, G.; Guimard, N.K.; Barner-Kowollik, C. Cycloadditions in modern polymer chemistry. Acc. Chem. Res., 2015, 48(5), 1296-1307.
[http://dx.doi.org/10.1021/acs.accounts.5b00075] [PMID: 25871918]
[2]
Huisgen, R. Cycloadditions—definition, classification, and characterization. Angew. Chem. Int. Ed. Engl., 1968, 7(5), 321-328.
[http://dx.doi.org/10.1002/anie.196803211]
[3]
Burés, J.; Larrosa, I. Organic reaction mechanism classification using machine learning. Nature, 2023, 613(7945), 689-695.
[http://dx.doi.org/10.1038/s41586-022-05639-4] [PMID: 36697863]
[4]
Nájera, C.; Sansano, J.M.; Yus, M. 1,3-Dipolar cycloadditions of azomethine imines. Org. Biomol. Chem., 2015, 13(32), 8596-8636.
[http://dx.doi.org/10.1039/C5OB01086A] [PMID: 26140443]
[5]
Ríos-Gutiérrez, M.; Domingo, L.R. Unravelling the mysteries of the [3+ 2] cycloaddition reactions. Eur. J. Org. Chem., 2019, 2019(2-3), 267-282.
[http://dx.doi.org/10.1002/ejoc.201800916]
[6]
Nair, V.; Suja, T.D. Intramolecular 1,3-dipolar cycloaddition reactions in targeted syntheses. Tetrahedron, 2007, 63(50), 12247-12275.
[http://dx.doi.org/10.1016/j.tet.2007.09.065]
[7]
Saliyeva, L.M.; Dyachenko, I.V.; Danyliuk, I.Y.; Vovk, M.V. Di-, tetra-, and perhydropyrrolo[1, 2-a] imidazoles: The methods of synthesis and some aspects of application. Chem. Heterocycl., 2023, 12, 1-20.
[http://dx.doi.org/10.1007/s10593-023-03142-w] [PMID: 36687505]
[8]
Markitanov, Y.N.; Timoshenko, V.M. Synthesis of five-membered heterocycles by [3+2] cycloaddition reactions of sulfur-containing 3,3,3-trifluoropropene derivatives. Chem. Heterocycl. Compd., 2021, 57(12), 1149-1154.
[http://dx.doi.org/10.1007/s10593-021-03035-w]
[9]
Molteni, G.; Silvani, A. Spiro‐2‐oxindoles via 1,3‐dipolar cycloadditions. A decade update. Eur. J. Org. Chem., 2021, 2021(11), 1653-1675.
[http://dx.doi.org/10.1002/ejoc.202100121]
[10]
Varghese, B.; Al-Busafi, S.N.; Suliman, F.O.; Al-Kindy, S.M.Z. Unveiling a versatile heterocycle: Pyrazoline: A review. RSC Advances, 2017, 7(74), 46999-47016.
[http://dx.doi.org/10.1039/C7RA08939B]
[11]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem., 2011, 7(1), 442-495.
[http://dx.doi.org/10.3762/bjoc.7.57] [PMID: 21647262]
[12]
Parveen, A.; Misra, S.K.; Kapoor, A.; Narayan, Y.; Verma, S.K.; Chauhan, P.; Kumar, A. Synthetic approaches and biological activities of heterocyclic pyrazoline. Acta Scientific Pharmaceutical Sciences, 2021, 5(11), 59-69.
[http://dx.doi.org/10.31080/ASPS.2021.05.0811]
[13]
Marella, A.; Rahmat Ali, M.; Tauquir Alam, M.; Saha, R.; Tanwar, O.; Akhter, M.; Shaquiquzzaman, M.; Mumtaz Alam, M. Pyrazolines: A biological review. Mini Rev. Med. Chem., 2013, 13(6), 921-931.
[http://dx.doi.org/10.2174/1389557511313060012] [PMID: 23544604]
[14]
Revanasiddappa, B.C.; Jisha, M.S.; Kumar, M.V.; Kumar, H. Synthesis, antibacterial and antifungal evlaution of novel pyrazoline derivatives. Dhaka University Journal of Pharmaceutical Sciences, 2018, 17(2), 221-226.
[http://dx.doi.org/10.3329/dujps.v17i2.39179]
[15]
Swathi, V.; Sudev, S.; Dhanya, K.; Jose, A. Sreelakshmi. A review on the CNS activity of pyrazolines. J. Med. Sci. Clin. Res., 2019, 7(11), 612-618.
[http://dx.doi.org/10.1007/978-981-19-0832-3_12]
[16]
Rangarajan, T.M.; Mathew, B. Recent updates on pyrazoline derivatives as promising candidates for neuropsychiatric and neurodegenerative disorders. Curr. Top. Med. Chem., 2021, 21(30), 2695-2714.
[http://dx.doi.org/10.2174/1568026621999210902123132] [PMID: 34477522]
[17]
Shaw, A.T.; Kim, D.W.; Nakagawa, K.; Seto, T.; Crinó, L.; Ahn, M.J.; De Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F.; Wu, Y.L.; Thomas, M.; O’Byrne, K.J.; Moro-Sibilot, D.; Camidge, D.R.; Mok, T.; Hirsh, V.; Riely, G.J.; Iyer, S.; Tassell, V.; Polli, A.; Wilner, K.D.; Jänne, P.A. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med., 2013, 368(25), 2385-2394.
[http://dx.doi.org/10.1056/NEJMoa1214886] [PMID: 23724913]
[18]
Shaw, A.T.; Yasothan, U.; Kirkpatrick, P. Crizotinib. Nat. Rev. Drug Discov., 2011, 10(12), 897-898.
[http://dx.doi.org/10.1038/nrd3600] [PMID: 22129984]
[19]
Sugimoto, M.; Fukami, S.; Kayakiri, H.; Yamazaki, S.; Matsuoka, N.; Uchida, I.; Mashimo, T. The β -lactam antibiotics, penicillin-G and cefoselis have different mechanisms and sites of action at GABA A receptors. Br. J. Pharmacol., 2002, 135(2), 427-432.
[http://dx.doi.org/10.1038/sj.bjp.0704496] [PMID: 11815378]
[20]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.; Al-aizari, F.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 2018, 23(1), 134.
[http://dx.doi.org/10.3390/molecules23010134] [PMID: 29329257]
[21]
Ganapathy, M.E.; Huang, W.; Rajan, D.P.; Carter, A.L.; Sugawara, M.; Iseki, K.; Leibach, F.H.; Ganapathy, V. β-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J. Biol. Chem., 2000, 275(3), 1699-1707.
[http://dx.doi.org/10.1074/jbc.275.3.1699] [PMID: 10636865]
[22]
Bennani, F.E.; Doudach, L.; Cherrah, Y.; Ramli, Y.; Karrouchi, K.; Ansar, M.; Faouzi, M.E.A. Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorg. Chem., 2020, 97, 103470.
[http://dx.doi.org/10.1016/j.bioorg.2019.103470] [PMID: 32120072]
[23]
Burch, J.; McKenna, C.; Palmer, S.; Norman, G.; Glanville, J.; Sculpher, M.; Woolacott, N. Rimonabant for the treatment of overweight and obese people. Health Technol. Assess., 2009, 13(3)(Suppl. 3), 13-22.
[http://dx.doi.org/10.3310/hta13suppl3-03] [PMID: 19846024]
[24]
Henness, S.; Robinson, D.M.; Lyseng-Williamson, K.A. Rimonabant. Drugs, 2006, 66(16), 2109-2119.
[http://dx.doi.org/10.2165/00003495-200666160-00006] [PMID: 17112304]
[25]
Steinbach, G.; Lynch, P.M.; Phillips, R.K.S.; Wallace, M.H.; Hawk, E.; Gordon, G.B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; Su, L.K.; Levin, B.; Godio, L.; Patterson, S.; Rodriguez-Bigas, M.A.; Jester, S.L.; King, K.L.; Schumacher, M.; Abbruzzese, J.; DuBois, R.N.; Hittelman, W.N.; Zimmerman, S.; Sherman, J.W.; Kelloff, G. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med., 2000, 342(26), 1946-1952.
[http://dx.doi.org/10.1056/NEJM200006293422603] [PMID: 10874062]
[26]
Hughes, M.F.; Mason, R.P.; Eling, T.E. Prostaglandin hydroperoxidase-dependent oxidation of phenylbutazone: Relationship to inhibition of prostaglandin cyclooxygenase. Mol. Pharmacol., 1988, 34(2), 186-193.
[PMID: 2842654]
[27]
Beretta, C.; Garavaglia, G.; Cavalli, M. COX-1 and COX-2 inhibition in horse blood by phenylbutazone, flunixin, carprofen and meloxicam: An in vitro analysis. Pharmacol. Res., 2005, 52(4), 302-306.
[http://dx.doi.org/10.1016/j.phrs.2005.04.004] [PMID: 15939622]
[28]
Dowling, G.; Malone, E. Analytical strategy for the confirmatory analysis of the non-steroidal anti-inflammatory drugs firocoxib, propyphenazone, ramifenazone and piroxicam in bovine plasma by liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal., 2011, 56(2), 359-365.
[http://dx.doi.org/10.1016/j.jpba.2011.05.029] [PMID: 21684706]
[29]
Grima, M.; Michel, B.; Barthelmebs, M.; Imbs, J.L. Mechanism of action of the diuretic effect of muzolimine. Arch. Mal. Coeur Vaiss., 1990, 83(8), 1205-1208.
[PMID: 2124457]
[30]
Shallcross, J.; Hámor, P.; Bechard, A.R.; Romano, M.; Knackstedt, L.; Schwendt, M. The divergent effects of CDPPB and Cannabidiol on fear extinction and anxiety in a predator scent stress model of PTSD in rats. Front. Behav. Neurosci., 2019, 13, 91.
[http://dx.doi.org/10.3389/fnbeh.2019.00091] [PMID: 31133832]
[31]
Spitz, I.M.; Novis, B.H.; Ebert, R.; Trestian, S.; LeRoith, D.; Creutzfeldt, W. Betazole-induced GIP secretion is not mediated by gastric HCl. Metabolism, 1982, 31(4), 380-382.
[http://dx.doi.org/10.1016/0026-0495(82)90114-7] [PMID: 7078422]
[32]
Romero-Fernandez, M.; Paradisi, F. Biocatalytic access to betazole using a one-pot multienzymatic system in continuous flow. Green Chem., 2021, 23(12), 4594-4603.
[http://dx.doi.org/10.1039/D1GC01095F] [PMID: 34220333 ]
[33]
Ahsan, M.J.; Ali, A.; Ali, A.; Thiriveedhi, A.; Bakht, M.A.; Yusuf, M. Salahuddin; Afzal, O.; Altamimi, A.S.A. Pyrazoline containing compounds as therapeutic targets for neurodegenerative disorders. ACS Omega, 2022, 7(43), 38207-38245.
[http://dx.doi.org/10.1021/acsomega.2c05339] [PMID: 36340076]
[34]
Ardiansah, B. Pharmaceutical importance of pyrazoline derivatives: A mini review. J. Pharm. Sci. Res., 2017, 9(10), 1958-1960.
[35]
Jain, S.K.; Singhal, R. A review on pyrazoline derivatives as antimicrobial Agent. Int. J. Pharm. Sci., 2020.
[36]
Sharma, K.; Kumar, A.; Prakash, R.; Tripathi, A.; Singh, R.; Bajpai, R.; Sahasrabuddhe, A.A.; Singh, D.; Narender, T. Pyrazoline analogues: Design, synthesis, and evaluation of anti-osteoporosis activity. Bioorg. Med. Chem. Lett., 2022, 60, 128585.
[http://dx.doi.org/10.1016/j.bmcl.2022.128585] [PMID: 35085723]
[37]
Shaaban, M.R.; Mayhoub, A.S.; Farag, A.M. Recent advances in the therapeutic applications of pyrazolines. Expert Opin. Ther. Pat., 2012, 22(3), 253-291.
[http://dx.doi.org/10.1517/13543776.2012.667403] [PMID: 22397588]
[38]
Kar Mahapatra, D.; Asati, V.; Bharti, S.K. An updated patent review of therapeutic applications of chalcone derivatives (2014-present). Expert Opin. Ther. Pat., 2019, 29(5), 385-406.
[http://dx.doi.org/10.1080/13543776.2019.1613374] [PMID: 31030616]
[39]
Mathew, A.T.; Chandran, M.; Elias, G. A Review on heteroaryl substituted pyrazolines with their pharmacological activity and SAR studies. Int. j. inf. res. rev., 2021, 8(10), 174-183.
[http://dx.doi.org/10.52403/ijrr.20211022]
[40]
Haider, K.; Shafeeque, M.; Yahya, S.; Yar, M.S. A comprehensive review on pyrazoline based heterocyclic hybrids as potent anticancer agents. Eur. J. Med. Chem. Rep., 2022, 5, 100042.
[http://dx.doi.org/10.1016/j.ejmcr.2022.100042]
[41]
Dash, B.; Karim, S. Pyrazoline heterocyclic: A review. Int. J. Pharm. Sci. Res., 2021, 12(5), 2570-2588.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.12(5).2570-88]
[42]
Evans, N.A.; Waters, P.J. 2‐Pyrazoline dyes for wool and nylon. J. Soc. Dyers Colour., 1978, 94(6), 252-255.
[http://dx.doi.org/10.1111/j.1478-4408.1978.tb03416.x]
[43]
Ameen, I.; Tripathi, A.K.; Siddiqui, A.; Kapil, G.; Pandey, S.S.; Tripathi, U.N. Synthesis, characterizations and photo-physical properties of novel lanthanum(III) complexes. J. Taibah Univ. Sci., 2018, 12(6), 796-808.
[http://dx.doi.org/10.1080/16583655.2018.1516028]
[44]
Yusuf, M.; Jain, P. Synthetic and biological studies of pyrazolines and related heterocyclic compounds. Arab. J. Chem., 2014, 7(5), 553-596.
[http://dx.doi.org/10.1016/j.arabjc.2011.09.013]
[47]
Firestone, R.A. Mechanism of 1,3-dipolar cycloadditions. J. Org. Chem., 1968, 33(6), 2285-2290.
[http://dx.doi.org/10.1021/jo01270a023]
[48]
Huisgen, R. Kinetics and mechanism of 1,3‐dipolar cycloadditions. Angew. Chem. Int. Ed. Engl., 1963, 2(11), 633-645.
[http://dx.doi.org/10.1002/anie.196306331]
[49]
Huisgen, R. Mechanism of 1,3-dipolar cycloadditions- Reply. J. Org. Chem., 1968, 33(6), 2291-2297.
[http://dx.doi.org/10.1021/jo01270a024]
[50]
Firestone, R.A. The diradical mechanism for 1,3-dipolar cycloadditions and related thermal pericyclic reactions. Tetrahedron, 1977, 33(23), 3009-3039.
[http://dx.doi.org/10.1016/0040-4020(77)80448-1]
[51]
Padmavathi, V.; Radhalakshmi, T.; Mahesh, K.; Mohan, A.V.N. Synthesis of novel bis heterocycles: Bis pyrroles, pyrrolyl pyrazolines and pyrrolyl isoxazolines. Indian J. Chem., 2008, 47B, 1707.
[52]
Conti, P.; Pinto, A.; Tamborini, L.; Rizzo, V.; De Micheli, C. A regioselective route to 5-substituted pyrazole- and pyrazoline-3-phosphonic acids and esters. Tetrahedron, 2007, 63(25), 5554-5560.
[http://dx.doi.org/10.1016/j.tet.2007.04.027]
[53]
Tanaka, K.; Maeno, S.; Mitsuhashi, K. Cycloadditions of N -Aryl- C -(trifluoromethyl)nitrilimines with dimethyl fumarate and maleate. J. Heterocycl. Chem., 1985, 22(2), 565-568.
[http://dx.doi.org/10.1002/jhet.5570220271]
[54]
Wang, G.; Liu, X.; Huang, T.; Kuang, Y.; Lin, L.; Feng, X. Asymmetric catalytic 1,3-dipolar cycloaddition reaction of nitrile imines for the synthesis of chiral spiro-pyrazoline-oxindoles. Org. Lett., 2013, 15(1), 76-79.
[http://dx.doi.org/10.1021/ol303097j] [PMID: 23228061]
[55]
Liu, H.; Jia, H.; Wang, B.; Xiao, Y.; Guo, H. Synthesis of spirobidihydropyrazole through double 1, 3-dipolar cycloaddition of nitrilimines with allenoates. Org. Lett., 2017, 19(18), 4714-4717.
[http://dx.doi.org/10.1021/acs.orglett.7b01961] [PMID: 28858517]
[56]
Pla, D.; Tan, D.S.; Gin, D.Y. 5-(Methylthio)tetrazoles as versatile synthons in the stereoselective synthesis of polycyclic pyrazolines via photoinduced intramolecular nitrile imine–alkene 1,3-dipolar cycloaddition. Chem. Sci. (Camb.), 2014, 5(6), 2407-2415.
[http://dx.doi.org/10.1039/C4SC00107A] [PMID: 25114776]
[57]
Jayashankara, B.; Rai, K.M.L. Synthesis and antimicrobial studies of new series of pyrazoline bearing bis-heterocycles via 1, 3-dipolar cycloaddition reactions. E-J. Chem., 2008, 5(2), 309-315.
[http://dx.doi.org/10.1155/2008/570569]
[58]
Saber, A.; Driowya, M.; Alaoui, S.; Marzag, H.; Demange, L.; Álvarez, E.; Benhida, R.; Bougrin, K. Solvent-free regioselective synthesis of novel isoxazoline and pyrazoline N-substituted saccharin derivatives under microwave irradiation. Chem. Heterocycl. Compd., 2016, 52(1), 31-40.
[http://dx.doi.org/10.1007/s10593-016-1828-4]
[59]
Dadiboyena, S.; Valente, E.J.; Hamme, A.T. II A novel synthesis of 1,3,5-trisubstituted pyrazoles through a spiro-pyrazoline intermediate via a tandem 1,3-dipolar cycloaddition/elimination. Tetrahedron Lett., 2009, 50(3), 291-294.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.145] [PMID: 20098488]
[60]
Umesha, K.B.; Rai, K.M.; Kumar, K.A. A new approach for the synthesis of pyrazoles via 1, 3-dipolar cycloaddition of nitrile imines to acetyl acetone; NISCAIR-CSIR, 2002, pp. 1450-1453.
[61]
Wang, Y.; Rivera Vera, C.I.; Lin, Q. Convenient synthesis of highly functionalized pyrazolines via mild, photoactivated 1,3-dipolar cycloaddition. Org. Lett., 2007, 9(21), 4155-4158.
[http://dx.doi.org/10.1021/ol7017328] [PMID: 17867694]
[62]
Phansavath, P.; Ratovelomanana-Vidal, V.; Westermeyer, A.; Llopis, Q.; Guillamot, G. Highly regioselective synthesis of 3,5-substituted pyrazoles from bromovinyl acetals and n-tosylhydrazones. Synlett, 2020, 31(12), 1172-1176.
[http://dx.doi.org/10.1055/s-0039-1690885]
[63]
Wang, Q.; He, L.; Li, K.K.; Tsui, G.C. Copper-mediated domino cyclization/trifluoromethylation/deprotection with TMSCF3: Synthesis of 4-(Trifluoromethyl) pyrazoles. Org. Lett., 2017, 19(3), 658-661.
[http://dx.doi.org/10.1021/acs.orglett.6b03822] [PMID: 28080073]
[64]
Harigae, R.; Moriyama, K.; Togo, H. Preparation of 3,5-disubstituted pyrazoles and isoxazoles from terminal alkynes, aldehydes, hydrazines, and hydroxylamine. J. Org. Chem., 2014, 79(5), 2049-2058.
[http://dx.doi.org/10.1021/jo4027116] [PMID: 24512630]
[65]
Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Zinc-catalyzed synthesis of pyrazolines and pyrazoles via hydrohydrazination. Org. Lett., 2008, 10(12), 2377-2379.
[http://dx.doi.org/10.1021/ol800592s] [PMID: 18503279]
[66]
Yang, C.; Liu, W.; He, Z.; He, Z. Divergent reactivity of nitrocyclopropanes with huisgen zwitterions and facile syntheses of 3-alkoxy pyrazolines and pyrazoles. Org. Lett., 2016, 18(19), 4936-4939.
[http://dx.doi.org/10.1021/acs.orglett.6b02415] [PMID: 27608855 ]
[67]
Yamazaki, S.; Maenaka, Y.; Fujinami, K.; Mikata, Y. Triphenylphosphine-mediated reaction of dialkyl azodicarboxylate with activated alkenes leading to pyrazolines. RSC Advances, 2012, 2(21), 8095-8103.
[http://dx.doi.org/10.1039/c2ra21249h]
[68]
Behbehani, H.; Ibrahim, H.M.; Dawood, K.M. Ultrasound-assisted regio and stereoselective synthesis of bis-[1′,4′-diaryl-1-oxo-spiro-benzosuberane-2,5′-pyrazoline] derivatives via 1,3-dipolar cycloaddition. RSC Advances, 2015, 5(33), 25642-25649.
[http://dx.doi.org/10.1039/C5RA02972D]
[69]
Du, T.; Du, F.; Ning, Y.; Peng, Y. Organocatalytic enantioselective 1,3-dipolar cycloadditions between Seyferth-Gilbert reagent and isatylidene malononitriles: synthesis of chiral spiro-phosphonylpyrazoline-oxindoles. Org. Lett., 2015, 17(5), 1308-1311.
[http://dx.doi.org/10.1021/acs.orglett.5b00311] [PMID: 25710384]
[70]
Salah, M.; Belghiti, M.E.; Aitouna, A.O.; Zeroual, A.; Jorio, S.; El Alaoui Abdellaoui, H.; El Hadki, H.; Marakchi, K.; Komiha, N. MEDT study of the 1,3-DC reaction of diazomethane with Psilostachyin and investigation about the interactions of some pyrazoline derivatives with protease (Mpro) of nCoV-2. J. Mol. Graph. Model., 2021, 102, 107763.
[http://dx.doi.org/10.1016/j.jmgm.2020.107763] [PMID: 33069124]
[71]
Bano, S.; Alam, M.S.; Javed, K.; Dudeja, M.; Das, A.K.; Dhulap, A. Synthesis, biological evaluation and molecular docking of some substituted pyrazolines and isoxazolines as potential antimicrobial agents. Eur. J. Med. Chem., 2015, 95, 96-103.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.031] [PMID: 25800645]
[72]
Bhat, A.R.; Athar, F.; Azam, A. Bis-pyrazolines: Synthesis, characterization and antiamoebic activity as inhibitors of growth of Entamoeba histolytica. Eur. J. Med. Chem., 2009, 44(1), 426-431.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.005] [PMID: 18187238]
[73]
Zhang, X.; Ng, R.; Lanter, J.; Sui, Z. Synthesis of novel pyrazolines via 1,3‐dipolar cycloadditions of heterocyclic isopropenes. Synth. Commun., 2007, 37(9), 1437-1444.
[http://dx.doi.org/10.1080/00397910701226590]
[74]
Sibi, M.P.; Stanley, L.M.; Soeta, T. Enantioselective 1,3-dipolar cycloadditions of diazoacetates with electron-deficient olefins. Org. Lett., 2007, 9(8), 1553-1556.
[http://dx.doi.org/10.1021/ol070364x] [PMID: 17367154]
[75]
Kano, T.; Hashimoto, T.; Maruoka, K. Enantioselective 1,3-dipolar cycloaddition reaction between diazoacetates and α-substituted acroleins: total synthesis of manzacidin A. J. Am. Chem. Soc., 2006, 128(7), 2174-2175.
[http://dx.doi.org/10.1021/ja056851u] [PMID: 16478146]
[76]
Krishna, P.R.; Sekhar, E.R.; Mongin, F. Lewis acid- and/or Lewis base-catalyzed [3+2] cycloaddition reaction: Synthesis of pyrazoles and pyrazolines. Tetrahedron Lett., 2008, 49(48), 6768-6772.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.037]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy