Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Chlorogenic Acid Derivatives: Structural Modifications, Drug Design, and Biological Activities: A Review

Author(s): Shima Joneidi, Seyedeh Roya Alizadeh* and Mohammad Ali Ebrahimzadeh*

Volume 24, Issue 7, 2024

Published on: 07 September, 2023

Page: [748 - 766] Pages: 19

DOI: 10.2174/1389557523666230822095959

Price: $65

Abstract

Background: Phenolic acids have recently gained considerable attention because of their numerous practical, biological, and pharmacological benefits. Various polyphenolic compounds are widely distributed in plant sources. Flavonoids and phenolic acids are the two main polyphenolic compounds that many plants contain abundant polyphenols. Chlorogenic acid, one of the most abundant phenolic acids, has various biological activities, but it is chemically unstable and degrades into other compounds or different enzymatic processes.

Methods: In this review, we have studied many publications about CA and its derivatives. CA derivatives were classified into three categories in terms of structure and determined each part’s effects on the body. The biological evaluations, structure-activity relationship, and mechanism of action of CA derivatives were investigated. The search databases for this review were ScienceDirect, Scopus, Pub- Med and google scholar.

Results: Many studies have reported that CA derivatives have demonstrated several biological effects, including anti-oxidant, anti-inflammatory, anti-microbes, anti-mutation, anti-carcinogenic, anti-viral, anti-hypercholesterolemia, anti-hypertensive, anti-bacterial, and hypoglycemic actions. The synthesis of new stable CA derivatives can enhance its metabolic stability and biological activity.

Conclusion: The present study represented different synthetic methods and biological activities of CA derivatives. These compounds showed high antioxidant activity across a wide range of biological effects. Our goal was to help other researchers design and develop stable analogs of CA for the improvement of its metabolic stability and the promotion of its biological activity.

Graphical Abstract

[1]
Yardım, Y. Electrochemical behavior of chlorogenic acid at a boron-doped diamond electrode and estimation of the antioxidant capacity in the coffee samples based on its oxidation peak. J. Food Sci., 2012, 77(4), C408-C413.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02609.x] [PMID: 22394181]
[2]
Gao, W.; Wang, C.; Yu, L.; Sheng, T.; Wu, Z.; Wang, X.; Zhang, D.; Lin, Y.; Gong, Y. Chlorogenic acid attenuates dextran sodium sulfate-induced ulcerative colitis in mice through MAPK/ERK/JNK pathway. BioMed Res. Int., 2019, 2019, 6769789.
[http://dx.doi.org/10.1155/2019/6769789] [PMID: 31139644]
[3]
Jiao, W.; Shu, C.; Li, X.; Cao, J.; Fan, X.; Jiang, W. Preparation of a chitosan-chlorogenic acid conjugate and its application as edible coating in postharvest preservation of peach fruit. Postharvest Biol. Technol., 2019, 154, 129-136.
[http://dx.doi.org/10.1016/j.postharvbio.2019.05.003]
[4]
Kim, S.M.; Shang, Y.F.; Um, B.H. Preparative separation of chlorogenic acid by centrifugal partition chromatography from highbush blueberry leaves (Vaccinium corymbosum L.). Phytochem. Anal., 2010, 21(5), 457-462.
[http://dx.doi.org/10.1002/pca.1218] [PMID: 20310076]
[5]
Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D. FangFang, X.; Modarresi-Ghazani, F.; WenHua, L.; XiaoHui, Z. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother., 2018, 97, 67-74.
[http://dx.doi.org/10.1016/j.biopha.2017.10.064] [PMID: 29080460]
[6]
Pimpley, V.; Patil, S.; Srinivasan, K.; Desai, N.; Murthy, P.S. The chemistry of chlorogenic acid from green coffee and its role in attenuation of obesity and diabetes. Prep. Biochem. Biotechnol., 2020, 50(10), 969-978.
[http://dx.doi.org/10.1080/10826068.2020.1786699] [PMID: 32633686]
[7]
Stalmach, A.; Steiling, H.; Williamson, G.; Crozier, A. Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy. Arch. Biochem. Biophys., 2010, 501(1), 98-105.
[http://dx.doi.org/10.1016/j.abb.2010.03.005] [PMID: 20226754]
[8]
Yang, J-S.; Liu, C-W.; Ma, Y-S.; Weng, S.W.; Tang, N.Y.; Wu, S.H.; Ji, B.C.; Ma, C.Y.; Ko, Y.C.; Funayama, S.; Kuo, C.L. Chlorogenic acid induces apoptotic cell death in U937 leukemia cells through caspase- and mitochondria-dependent pathways. In Vivo, 2012, 26(6), 971-978.
[PMID: 23160680]
[9]
Alarcón-Herrera, N.; Flores-Maya, S.; Bellido, B.; García-Bores, A.M.; Mendoza, E.; Ávila-Acevedo, G.; Hernández-Echeagaray, E. Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity. Food Chem. Toxicol., 2017, 109(Pt 2), 1018-1025.
[http://dx.doi.org/10.1016/j.fct.2017.04.048] [PMID: 28478101]
[10]
Limwachiranon, J.; Huang, H.; Li, L.; Lin, X.; Zou, L.; Liu, J.; Zou, Y.; Aalim, H.; Duan, Z.; Luo, Z. Enhancing stability and bioaccessibility of chlorogenic acid using complexation with amylopectin: A comprehensive evaluation of complex formation, properties, and charac-teristics. Food Chem., 2020, 311, 125879.
[http://dx.doi.org/10.1016/j.foodchem.2019.125879] [PMID: 31734012]
[11]
Yardım, Y.; Keskin, E.; Şentürk, Z. Voltammetric determination of mixtures of caffeine and chlorogenic acid in beverage samples using a boron-doped diamond electrode. Talanta, 2013, 116, 1010-1017.
[http://dx.doi.org/10.1016/j.talanta.2013.08.005] [PMID: 24148509]
[12]
Chen, X.; Sang, X.; Li, S.; Zhang, S.; Bai, L. Studies on a chlorogenic acid-producing endophytic fungi isolated from Eucommia ulmoides Oliver. J. Ind. Microbiol. Biotechnol., 2010, 37(5), 447-454.
[http://dx.doi.org/10.1007/s10295-010-0690-0] [PMID: 20127271]
[13]
Chen, Y.; Jimmy Yu, Q.; Li, X.; Luo, Y.; Liu, H. Extraction and HPLC characterization of chlorogenic acid from tobacco residuals. Sep. Sci. Technol., 2007, 42(15), 3481-3492.
[http://dx.doi.org/10.1080/01496390701626677]
[14]
Clé, C.; Hill, L.M.; Niggeweg, R.; Martin, C.R.; Guisez, Y.; Prinsen, E.; Jansen, M.A.K. Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry, 2008, 69(11), 2149-2156.
[http://dx.doi.org/10.1016/j.phytochem.2008.04.024] [PMID: 18513762]
[15]
Guan, R.; Guo, F.; Guo, R. Integrated metabolic profiling and transcriptome analysis of Lonicera Japonica flowers for chlorogenic acid, luteolin and endogenous hormone syntheses; Jianqiang, 2023, pp. 1-29.
[http://dx.doi.org/10.2139/ssrn.4342320]
[16]
Oliveira, R.B.; Chagas-Paula, D.A.; Secatto, A.; Gasparoto, T.H.; Faccioli, L.H.; Campanelli, A.P.; Da Costa, F.B. Topical anti-inflammatory activity of yacon leaf extracts. Rev. Bras. Farmacogn., 2013, 23(3), 497-505.
[http://dx.doi.org/10.1590/S0102-695X2013005000032]
[17]
Tan, Z.; Wang, C.; Yi, Y.; Wang, H.; Li, M.; Zhou, W.; Tan, S.; Li, F. Extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L. Gaud) leaf using an ethanol/salt aqueous two-phase system. Separ. Purif. Tech., 2014, 132, 396-400.
[http://dx.doi.org/10.1016/j.seppur.2014.05.048]
[18]
Wang, T.; Jiang, X.; Yang, L.; Wu, S. pH-gradient counter-current chromatography isolation of natural antioxidant chlorogenic acid from Lonicera japonica Thumb. using an upright coil planet centrifuge with three multi-layer coils connected in series. J. Chromatogr. A, 2008, 1180(1-2), 53-58.
[http://dx.doi.org/10.1016/j.chroma.2007.11.112] [PMID: 18160073]
[19]
Wang, Y.; Yang, F.; Xue, J.; Zhou, X.; Luo, L.; Ma, Q.; Chen, Y.F.; Zhang, J.; Zhang, S.L.; Zhao, L. Antischistosomiasis liver fibrosis effects of chlorogenic acid through IL-13/miR-21/Smad7 signaling interactions in vivo and in vitro. Antimicrob. Agents Chemother., 2017, 61(2), e01347-e16.
[http://dx.doi.org/10.1128/AAC.01347-16] [PMID: 27872076]
[20]
Wang, Z.; Li, X.; Zhen, S.; Li, X.; Wang, C.; Wang, Y. The important role of quinic acid in the formation of phenolic compounds from pyrolysis of chlorogenic acid. J. Therm. Anal. Calorim., 2013, 114(3), 1231-1238.
[http://dx.doi.org/10.1007/s10973-013-3142-z]
[21]
Valiñas, M.A.; Lanteri, M.L.; ten Have, A.; Andreu, A.B. Chlorogenic acid, anthocyanin and flavan-3-ol biosynthesis in flesh and skin of Andean potato tubers (Solanum tuberosum subsp. andigena). Food Chem., 2017, 229, 837-846.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.150] [PMID: 28372251]
[22]
Chen, X.; Cai, W.; Xia, J.; Yu, H.; Wang, Q.; Pang, F.; Zhao, M. Metabolomic and transcriptomic analyses reveal that blue light promotes chlorogenic acid synthesis in strawberry. J. Agric. Food Chem., 2020, 68(44), 12485-12492.
[http://dx.doi.org/10.1021/acs.jafc.0c05020] [PMID: 33084347]
[23]
Moglia, A.; Acquadro, A.; Eljounaidi, K.; Milani, A.M.; Cagliero, C.; Rubiolo, P.; Genre, A.; Cankar, K.; Beekwilder, J.; Comino, C. Genome-wide identification of BAHD acyltransferases and in vivo characterization of HQT-like enzymes involved in caffeoylquinic acid synthesis in globe artichoke. Front. Plant Sci., 2016, 7, 1424.
[http://dx.doi.org/10.3389/fpls.2016.01424] [PMID: 27721818]
[24]
Payyavula, R.S.; Shakya, R.; Sengoda, V.G.; Munyaneza, J.E.; Swamy, P.; Navarre, D.A. Synthesis and regulation of chlorogenic acid in potato: Rerouting phenylpropanoid flux in HQT -silenced lines. Plant Biotechnol. J., 2015, 13(4), 551-564.
[http://dx.doi.org/10.1111/pbi.12280] [PMID: 25421386]
[25]
Belay, A.; Libnedengel, E.; Kim, H.K.; Hwang, Y.H. Effects of solvent polarity on the absorption and fluorescence spectra of chlorogenic acid and caffeic acid compounds: Determination of the dipole moments. Luminescence, 2016, 31(1), 118-126.
[http://dx.doi.org/10.1002/bio.2932] [PMID: 25991491]
[26]
Caprioli, G.; Cortese, M.; Odello, L.; Ricciutelli, M.; Sagratini, G.; Tomassoni, G.; Torregiani, E.; Vittori, S. Importance of espresso coffee machine parameters on the extraction of chlorogenic acids in a certified Italian espresso by using SPE-HPLC-DAD. J. Food Res., 2013, 2(3), 55.
[http://dx.doi.org/10.5539/jfr.v2n3p55]
[27]
Meng, S.; Cao, J.; Feng, Q.; Peng, J.; Hu, Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evid.- based Complement. Altern. Med: eCAM 2013, 2013.
[http://dx.doi.org/10.1155/2013/801457]
[28]
Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules, 2017, 22(3), 358.
[http://dx.doi.org/10.3390/molecules22030358] [PMID: 28245635]
[29]
Tamayose, C.I.; Torres, P.B.; Roque, N.; Ferreira, M.J.P. HIV-1 reverse transcriptase inhibitory activity of flavones and chlorogenic acid derivatives from Moquiniastrum floribundum (Asteraceae). S. Afr. J. Bot., 2019, 123, 142-146.
[http://dx.doi.org/10.1016/j.sajb.2019.02.005]
[30]
Tošović, J.; Marković, S. Antioxidative activity of chlorogenic acid relative to trolox in aqueous solution – DFT study. Food Chem., 2019, 278, 469-475.
[http://dx.doi.org/10.1016/j.foodchem.2018.11.070] [PMID: 30583398]
[31]
Náthia-Neves, G.; Alonso, E. Valorization of sunflower by-product using microwave-assisted extraction to obtain a rich protein flour: Recovery of chlorogenic acid, phenolic content and antioxidant capacity. Food Bioprod. Process., 2021, 125, 57-67.
[http://dx.doi.org/10.1016/j.fbp.2020.10.008]
[32]
Wang, L.N.; Wang, W.; Hattori, M.; Daneshtalab, M.; Ma, C.M. Synthesis, anti-HCV, antioxidant and reduction of intracellular reactive oxygen species generation of a chlorogenic acid analogue with an amide bond replacing the ester bond. Molecules, 2016, 21(6), 737.
[http://dx.doi.org/10.3390/molecules21060737] [PMID: 27338318]
[33]
Pencreac’h, G.; Lorentz, C.; Ergan, F.; Soultani-Vigneron, S. Production and properties of chlorogenic acid lipophilic esters. Lipid Technol., 2012, 24(5), 108-110.
[http://dx.doi.org/10.1002/lite.201200191]
[34]
Masoomzadeh, F.; Ali Khan, B.; M Alshahrani, S. Alqahtani, A.; Ebrahimzadeh, M.A.; Khalili, M. Protective effects of rutin and chlorogenic acid against antihypoxic conditions in mice. Pak. J. Pharm. Sci., 2021, 34(5), 1679-1683.
[http://dx.doi.org/10.36721/PJPS.2021.34.5.REG.1679-1683.1] [PMID: 34803002]
[35]
Gamaleldin Elsadig Karar, M.; Matei, M.F.; Jaiswal, R.; Illenberger, S.; Kuhnert, N. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives: Potential antivirals from dietary sources. Food Funct., 2016, 7(4), 2052-2059.
[http://dx.doi.org/10.1039/C5FO01412C] [PMID: 27010419]
[36]
Morishita, H.; Ohnishi, M. Absorption, metabolism and biological activities of chlorogenic acids and related compounds. Studies Nat. Prod. Chem., 2001, 25, 919-953.
[http://dx.doi.org/10.1016/S1572-5995(01)80024-7]
[37]
Indy Tamayose, C.; dos Santos, E.A.; Roque, N.; Costa-Lotufo, L.V.; Pena Ferreira, M.J. Caffeoylquinic acids: Separation method, antiradical properties and cytotoxicity. Chem. Biodivers., 2019, 16(7), e1900093.
[http://dx.doi.org/10.1002/cbdv.201900093] [PMID: 31095892]
[38]
Liu, B.; Cao, L.; Zhang, L.; Yuan, X.; Zhao, B. Preparation, phytochemical investigation, and safety evaluation of chlorogenic acid products from Eupatorium adenophorum. Molecules, 2016, 22(1), 67.
[http://dx.doi.org/10.3390/molecules22010067] [PMID: 28042867]
[39]
Aguirre Santos, E.A.; Schieber, A.; Weber, F. Site-specific hydrolysis of chlorogenic acids by selected lactobacillus species. Food Res. Int., 2018, 109, 426-432.
[http://dx.doi.org/10.1016/j.foodres.2018.04.052] [PMID: 29803467]
[40]
Wu, W.; Qian, W.; Hao, H. kang, Y.; Wang, Y.; Deng, Y.; Ni, C.; Huang, J.; Weng, W. Determination of caffeoylquinic acid derivatives in Azolla imbricata by chitosan-based matrix solid-phase dispersion coupled with HPLC–PDA. J. Pharm. Biomed. Anal., 2019, 163, 197-203.
[http://dx.doi.org/10.1016/j.jpba.2018.10.008] [PMID: 30317076]
[41]
Kweon, M.H.; Hwang, H.J.; Sung, H.C. Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). J. Agric. Food Chem., 2001, 49(10), 4646-4655.
[http://dx.doi.org/10.1021/jf010514x] [PMID: 11600002]
[42]
Tian, Y.; Cao, X.X.; Shang, H.; Wu, C.M.; Zhang, X.; Guo, P.; Zhang, X.P.; Xu, X.D. Synthesis and in vitro evaluation of caffeoylquinic acid derivatives as potential hypolipidemic agents. Molecules, 2019, 24(5), 964.
[http://dx.doi.org/10.3390/molecules24050964] [PMID: 30857274]
[43]
Kataria, R.; Khatkar, A. In-silico design, synthesis, ADMET studies and biological evaluation of novel derivatives of Chlorogenic acid against Urease protein and H. Pylori bacterium. BMC Chem., 2019, 13(1), 41.
[http://dx.doi.org/10.1186/s13065-019-0556-0] [PMID: 31384789]
[44]
Cardullo, N.; Floresta, G.; Rescifina, A.; Muccilli, V.; Tringali, C. Synthesis and in vitro evaluation of chlorogenic acid amides as potential hypoglycemic agents and their synergistic effect with acarbose. Bioorg. Chem., 2021, 117, 105458.
[http://dx.doi.org/10.1016/j.bioorg.2021.105458] [PMID: 34736132]
[45]
Chen, J.; Mangelinckx, S.; Ma, L.; Wang, Z.; Li, W.; De Kimpe, N. Caffeoylquinic acid derivatives isolated from the aerial parts of Gynura divaricata and their yeast α-glucosidase and PTP1B inhibitory activity. Fitoterapia, 2014, 99, 1-6.
[http://dx.doi.org/10.1016/j.fitote.2014.08.015] [PMID: 25172103]
[46]
Mills, C.E.; Oruna-Concha, M.J.; Mottram, D.S.; Gibson, G.R.; Spencer, J.P.E. The effect of processing on chlorogenic acid content of commercially available coffee. Food Chem., 2013, 141(4), 3335-3340.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.014] [PMID: 23993490]
[47]
Bertrand, C.; Noirot, M.; Doulbeau, S.; de Kochko, A.; Hamon, S.; Campa, C. Chlorogenic acid content swap during fruit maturation in Coffea pseudozanguebariae. Plant Sci., 2003, 165(6), 1355-1361.
[http://dx.doi.org/10.1016/j.plantsci.2003.07.002]
[48]
Narita, Y.; Inouye, K. Inhibitory effects of chlorogenic acids from green coffee beans and cinnamate derivatives on the activity of porcine pancreas α-amylase isozyme I. Food Chem., 2011, 127(4), 1532-1539.
[http://dx.doi.org/10.1016/j.foodchem.2011.02.013]
[49]
Jaiswal, R.; Matei, M.F.; Subedi, P.; Kuhnert, N. Does roasted coffee contain chlorogenic acid lactones or/and cinnamoylshikimate esters? Food Res. Int., 2014, 61, 214-227.
[http://dx.doi.org/10.1016/j.foodres.2013.09.040]
[50]
Menéndez, C.A.; Verde, A.R.; Alarcón, L.M.; Appignanesi, G.A. Biophysical interactions of phenolic acids from yerba mate tea with lipid membranes. Biophys. Chem., 2022, 291, 106911.
[http://dx.doi.org/10.1016/j.bpc.2022.106911] [PMID: 36279740]
[51]
Xu, Y.; Zhang, J.; Pan, T.; Ren, F.; Luo, H.; Zhang, H. Synthesis, characterization and effect of alkyl chain unsaturation on the antioxidant activities of chlorogenic acid derivatives. Lebensm. Wiss. Technol., 2022, 162, 113325.
[http://dx.doi.org/10.1016/j.lwt.2022.113325]
[52]
Panzella, L.; Napolitano, A.; d’Ischia, M. Oxidative conjugation of chlorogenic acid with glutathione. Bioorg. Med. Chem., 2003, 11(22), 4797-4805.
[http://dx.doi.org/10.1016/S0968-0896(03)00460-7] [PMID: 14556796]
[53]
Takahama, U.; Tanaka, M.; Oniki, T.; Hirota, S.; Yamauchi, R. Formation of the thiocyanate conjugate of chlorogenic acid in coffee under acidic conditions in the presence of thiocyanate and nitrite: possible occurrence in the stomach. J. Agric. Food Chem., 2007, 55(10), 4169-4176.
[http://dx.doi.org/10.1021/jf0634606] [PMID: 17455951]
[54]
Jo, H.; Zhou, Y.; Viji, M.; Choi, M.; Lim, J.Y.; Sim, J.; Rhee, J.; Kim, Y.; Seo, S.Y.; Kim, W.J.; Hong, J.T.; Lee, H.; Lee, K.; Jung, J.K. Synthesis, biological evaluation, and metabolic stability of chlorogenic acid derivatives possessing thiazole as potent inhibitors of α-MSH-stimulated melanogenesis. Bioorg. Med. Chem. Lett., 2017, 27(21), 4854-4857.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.044] [PMID: 28964634]
[55]
Pressete, C.; Viegas, F.P.D.; Campos, T.G.; Caixeta, E.S.; Hanemann, J.A.C.; Ferreira-Silva, G.Á.; Zavan, B.; Aissa, A.F.; Miyazawa, M.; Viegas, C., Jr; Ionta, M. Piperine–chlorogenic acid hybrid inhibits the proliferation of the SK-MEL-147 melanoma cells by modulating mitotic kinases. Pharmaceuticals, 2023, 16(2), 145.
[http://dx.doi.org/10.3390/ph16020145] [PMID: 37259298]
[56]
Szewczyk, M.; Morawiak, M.; Narczyk, A.; Pakulski, Z.; Urbanczyk-Lipkowska, Z. Chlorogenic acids mimics-synthesis, structure and antioxidant activity. J. Chem., 2018, 6(1), 28-37.
[http://dx.doi.org/10.15640/jcb.v6n1a4]
[57]
Kraehenbuehl, K.; Page-Zoerkler, N.; Mauroux, O.; Gartenmann, K.; Blank, I.; Bel-Rhlid, R. Selective enzymatic hydrolysis of chlorogenic acid lactones in a model system and in a coffee extract. Application to reduction of coffee bitterness. Food Chem., 2017, 218, 9-14.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.055] [PMID: 27719962]
[58]
Farah, A.; de Paulis, T.; Trugo, L.C.; Martin, P.R. Effect of roasting on the formation of chlorogenic acid lactones in coffee. J. Agric. Food Chem., 2005, 53(5), 1505-1513.
[http://dx.doi.org/10.1021/jf048701t] [PMID: 15740032]
[59]
Perrone, D.; Farah, A.; Donangelo, C.M.; de Paulis, T.; Martin, P.R. Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars. Food Chem., 2008, 106(2), 859-867.
[http://dx.doi.org/10.1016/j.foodchem.2007.06.053]
[60]
Sinisi, V.; Stevaert, A.; Berti, F.; Forzato, C.; Benedetti, F.; Navarini, L.; Camps, A.; Persoons, L.; Vermeire, K. Chlorogenic compounds from coffee beans exert activity against respiratory viruses. Planta Med., 2016, 83(7), 615-623.
[http://dx.doi.org/10.1055/s-0042-119449] [PMID: 27806409]
[61]
Cao, X.; Wu, C.; Tian, Y.; Guo, P. The caffeic acid moiety plays an essential role in attenuating lipid accumulation by chlorogenic acid and its analogues. RSC Advances, 2019, 9(22), 12247-12254.
[http://dx.doi.org/10.1039/C8RA09395D] [PMID: 35515874]
[62]
Daneshtalab, M. Discovery of chlorogenic acid-based peptidomimetics as a novel class of antifungals. A success story in rational drug design. J. Pharm. Pharm. Sci., 2008, 11(2), 44.
[http://dx.doi.org/10.18433/J3H010] [PMID: 19203470]
[63]
Ma, C.M.; Kully, M.; Khan, J.K.; Hattori, M.; Daneshtalab, M. Synthesis of chlorogenic acid derivatives with promising antifungal activity. Bioorg. Med. Chem., 2007, 15(21), 6830-6833.
[http://dx.doi.org/10.1016/j.bmc.2007.07.038] [PMID: 17761420]
[64]
Gauthier, L.; Bonnin-Verdal, M.N.; Marchegay, G.; Pinson-Gadais, L.; Ducos, C.; Richard-Forget, F.; Atanasova-Penichon, V. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. Int. J. Food Microbiol., 2016, 221, 61-68.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.01.005] [PMID: 26812586]
[65]
Lu, H.; Tian, Z.; Cui, Y.; Liu, Z.; Ma, X. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr. Rev. Food Sci. Food Saf., 2020, 19(6), 3130-3158.
[http://dx.doi.org/10.1111/1541-4337.12620] [PMID: 33337063]
[66]
Choi, W.G.; Kim, J.H.; Kim, D.; Lee, Y.; Yoo, J.; Shin, D.; Lee, H. Simultaneous determination of chlorogenic acid isomers and metabolites in rat plasma using LC-MS/MS and its application to a pharmacokinetic study following oral administration of Stauntonia hexaphylla leaf extract (YRA-1909) to rats. Pharmaceutics, 2018, 10(3), 143.
[http://dx.doi.org/10.3390/pharmaceutics10030143] [PMID: 30200538]
[67]
Ong, K.W.; Hsu, A.; Tan, B.K.H. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem. Pharmacol., 2013, 85(9), 1341-1351.
[http://dx.doi.org/10.1016/j.bcp.2013.02.008] [PMID: 23416115]
[68]
Liang, N.; Dupuis, J.H.; Yada, R.Y.; Kitts, D.D. Chlorogenic acid isomers directly interact with Keap 1-Nrf2 signaling in Caco-2 cells. Mol. Cell. Biochem., 2019, 457(1-2), 105-118.
[http://dx.doi.org/10.1007/s11010-019-03516-9] [PMID: 30895499]
[69]
Bhandarkar, N.S.; Brown, L.; Panchal, S.K. Chlorogenic acid attenuates high-carbohydrate, high-fat diet–induced cardiovascular, liver, and metabolic changes in rats. Nutr. Res., 2019, 62, 78-88.
[http://dx.doi.org/10.1016/j.nutres.2018.11.002] [PMID: 30803509]
[70]
Cho, A.S.; Jeon, S.M.; Kim, M.J.; Yeo, J.; Seo, K.I.; Choi, M.S.; Lee, M.K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol., 2010, 48(3), 937-943.
[http://dx.doi.org/10.1016/j.fct.2010.01.003] [PMID: 20064576]
[71]
Han, X.; Zhang, Y.; Guo, J.; You, Y.; Zhan, J.; Huang, W. Chlorogenic acid stimulates the thermogenesis of brown adipocytes by promoting the uptake of glucose and the function of mitochondria. J. Food Sci., 2019, 84(12), 3815-3824.
[http://dx.doi.org/10.1111/1750-3841.14838] [PMID: 31750946]
[72]
AL-Megrin. W.A.; Metwally, D.M.; Habotta, O.A.; Amin, H.K.; Abdel Moneim, A.E.; El-khadragy, M. Nephroprotective effects of chlorogenic acid against sodium arsenite‐induced oxidative stress, inflammation, and apoptosis. J. Sci. Food Agric., 2020, 100(14), 5162-5170.
[http://dx.doi.org/10.1002/jsfa.10565] [PMID: 32519758]
[73]
Kumar, G.; Mukherjee, S.; Paliwal, P.; Singh, S.S.; Birla, H.; Singh, S.P.; Krishnamurthy, S.; Patnaik, R. Neuroprotective effect of chlorogenic acid in global cerebral ischemia-reperfusion rat model. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(10), 1293-1309.
[http://dx.doi.org/10.1007/s00210-019-01670-x] [PMID: 31190087]
[74]
Burgos-Morón, E.; Calderón-Montaño, J.M.; Orta, M.L.; Pastor, N.; Pérez-Guerrero, C.; Austin, C.; Mateos, S.; López-Lázaro, M. The coffee constituent chlorogenic acid induces cellular DNA damage and formation of topoisomerase I- and II-DNA complexes in cells. J. Agric. Food Chem., 2012, 60(30), 7384-7391.
[http://dx.doi.org/10.1021/jf300999e] [PMID: 22793503]
[75]
Cheng, D.; Wang, G.; Wang, X.; Tang, J.; Yu, Q.; Zhang, X.; Wang, S. Neuro-protection of chlorogenic acid against al-induced apoptosis in PC12 cells via modulation of Al metabolism and Akt/GSK-3β pathway. J. Funct. Foods, 2020, 70, 103984.
[http://dx.doi.org/10.1016/j.jff.2020.103984]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy