Abstract
International attention has been directed toward superhydrophobic nanocomposite coatings for a great variety of industrial applications. Nowadays, graphene-based self-cleaning coatings represent the most important examination arenas. This study reviews the superhydrophobicity fundamentals, graphene-based nanocomposite fabrication and applications for self-cleaning surfaces. These efforts have stimulated the modeling of recently structured surfaces via a micro-nano binary system. The controlled preparation of nanoscale orientation, configuration, arrangement, and direction along the architectural composite building blocks would result in air-entrapping capacity along the surface grooves. Polymer/graphene nanocomposites with novel and intriguing designs have offered efficient self-cleaning surfaces. These nano-surfaces have a rough structure, low surface free energy, and are hydrophobic materials. To improve the self-cleaning ability, several graphene/ inorganic nanofiller hybrids are dispersed in polymeric resins. The review covered the creation of graphene compounds, interactions with polymers, and uses of the resulting nanocomposites. It highlights the efficacy of controlling the nanostructured design mechanisms for self-cleaning applications. The applications of superhydrophobic materials developed using graphene-related nanocomposites for self-cleaning marine antifouling surfaces are the focus of this study. Stability, as well as long-standing durability, represents vital advantages for developing eco-friendly superhydrophobic alternatives. This review concludes with a discussion of the field's current and future advancements. It is expected to serve as a cutting-edge research hub for the creation of a durable and sustainable self-cleaning coating.
Graphical Abstract
[http://dx.doi.org/10.1016/j.progsolidstchem.2017.02.001]
[http://dx.doi.org/10.1016/j.jcis.2017.07.021] [PMID: 28728752]
[http://dx.doi.org/10.1016/j.arabjc.2014.03.006]
[http://dx.doi.org/10.1016/j.cocis.2006.06.002]
[http://dx.doi.org/10.1021/nl051435t] [PMID: 16218745]
[http://dx.doi.org/10.1021/la950418o]
[http://dx.doi.org/10.1039/C7RA01343D]
[http://dx.doi.org/10.1016/j.pmatsci.2017.02.001]
[http://dx.doi.org/10.1016/j.jmatprotec.2011.02.007]
[http://dx.doi.org/10.1021/la991068z]
[http://dx.doi.org/10.1021/ma0511189]
[http://dx.doi.org/10.1016/j.talanta.2019.120655] [PMID: 32070568];
(b) Selim, M.S.; Fatthallah, N.A.; Higazy, S.A.; Hao, Z.; Jing, Mo P. A comparative study between two novel silicone/graphene-based nanostructured surfaces for maritime antifouling. J. Colloid Interface Sci., 2022, 606(Pt 1), 367-383.
[http://dx.doi.org/10.1016/j.jcis.2021.08.026] [PMID: 34392032]
[http://dx.doi.org/10.1016/j.colsurfa.2020.125793];
b) Selim, M.S.; El-Safty, S.A.; Shenashen, M.A.; El-Sockary, M.A.; Elenien, O.M.A. EL-Saeed, A.M. Robust alkyd/exfoliated graphene oxide nanocomposite as a surface coating. Prog. Org. Coat., 2019, 126, 106-118.
[http://dx.doi.org/10.1016/j.porgcoat.2018.09.032]
[http://dx.doi.org/10.1016/j.jiec.2014.03.022]
[http://dx.doi.org/10.3390/nano11092186] [PMID: 34578502]
[http://dx.doi.org/10.1166/jnn.2003.231] [PMID: 15002123]
[http://dx.doi.org/10.3390/jcs6120379]
[http://dx.doi.org/10.1021/nn305400n] [PMID: 23249127]
[http://dx.doi.org/10.1002/smll.201201176] [PMID: 22911509]
[http://dx.doi.org/10.1016/j.carbon.2011.07.032]
[http://dx.doi.org/10.3762/bjnano.2.19] [PMID: 21977427]
[http://dx.doi.org/10.1039/C9TB02119A] [PMID: 32141469]
[http://dx.doi.org/10.1016/S1672-6529(14)60047-0]
[http://dx.doi.org/10.1006/anbo.1997.0400];
b) Otten, A.; Herminghaus, S. How plants keep dry: A physicist’s point of view. Langmuir, 2004, 20(6), 2405-2408.
[http://dx.doi.org/10.1021/la034961d] [PMID: 15835702]
[http://dx.doi.org/10.1038/432036a] [PMID: 15525973];
b) Bechert, D.W.; Bruse, M.; Hage, W. Experiments with three-dimensional riblets as an idealized model of shark skin. Exp. Fluids, 2000, 28(5), 403-412.
[http://dx.doi.org/10.1007/s003480050400]
[http://dx.doi.org/10.1021/la703821h] [PMID: 18312016]
[http://dx.doi.org/10.1016/j.pmatsci.2010.04.003]
[http://dx.doi.org/10.1016/j.cocis.2009.05.004]
[http://dx.doi.org/10.1021/la048629t] [PMID: 15350093]
[http://dx.doi.org/10.1021/ie50320a024]
[http://dx.doi.org/10.1039/tf9444000546]
[http://dx.doi.org/10.1021/j150474a015]
[http://dx.doi.org/10.1088/0957-4484/17/19/033]
[http://dx.doi.org/10.1007/978-3-642-23681-5_2]
[http://dx.doi.org/10.1016/0008-6223(77)90072-0]
[http://dx.doi.org/10.1016/j.ejpe.2015.12.004]
[http://dx.doi.org/10.1126/science.1125925] [PMID: 16614173]
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[http://dx.doi.org/10.1021/nl071254m] [PMID: 17655269]
[http://dx.doi.org/10.1038/nature07719] [PMID: 19145232]
[http://dx.doi.org/10.1002/adma.200800757]
[http://dx.doi.org/10.1038/nphys245]
[http://dx.doi.org/10.1103/PhysRevLett.100.125504] [PMID: 18517883]
[http://dx.doi.org/10.37256/nat.112020121.26-37];
(b) Selim, M.S.; Yang, H.; El-Safty, S.A.; Fatthallah, N.A.; Shenashen, M.A.; Wang, F.Q.; Huang, Y. Superhydrophobic coating of silicone/β–MnO2 nanorod composite for marine antifouling. Colloids Surf. A Physicochem. Eng. Asp., 2019, 570, 518-530.
[http://dx.doi.org/10.1016/j.colsurfa.2019.03.026];
c) Selim, M.S.; Yang, H.; Wang, F.Q.; Fatthallah, N.A.; Li, X.; Li, Y.; Huang, Y. Superhydrophobic silicone/SiC nanowire composite as a fouling release coating material. J. Coat. Technol. Res., 2019, 16(4), 1165-1180.
[http://dx.doi.org/10.1007/s11998-019-00192-8]
[http://dx.doi.org/10.1007/s10853-008-2755-2]
[http://dx.doi.org/10.1002/adma.200400133]
[http://dx.doi.org/10.1088/0957-4484/18/4/044026]
[http://dx.doi.org/10.1038/nnano.2008.96] [PMID: 18654541]
[http://dx.doi.org/10.1088/0957-4484/20/12/125705] [PMID: 19420482]
[http://dx.doi.org/10.1021/jp071761s]
[http://dx.doi.org/10.1016/j.carbon.2008.10.018]
[http://dx.doi.org/10.1016/j.compositesb.2011.05.008]
[http://dx.doi.org/10.1016/j.compositesb.2012.01.023]
[http://dx.doi.org/10.1016/j.apsusc.2015.08.078]
[http://dx.doi.org/10.1039/C4CP05020G] [PMID: 25523639]
[http://dx.doi.org/10.1021/acs.iecr.6b01237]
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.49.215]
[http://dx.doi.org/10.1103/PhysRevLett.96.256802] [PMID: 16907333]
[http://dx.doi.org/10.1021/la102619n] [PMID: 20857962]
[http://dx.doi.org/10.1021/jz3005877] [PMID: 26285716]
[http://dx.doi.org/10.1002/adma.201302804] [PMID: 24089354]
[http://dx.doi.org/10.1103/PhysRevB.79.235440]
[http://dx.doi.org/10.1021/nn204661d] [PMID: 22356158]
[http://dx.doi.org/10.1039/c2cc35844a] [PMID: 23001335]
[http://dx.doi.org/10.1021/la100231u] [PMID: 20158275]
[http://dx.doi.org/10.1016/B978-0-12-816671-0.00006-0]
[http://dx.doi.org/10.1016/j.flatc.2021.100326]
[http://dx.doi.org/10.1016/j.porgcoat.2022.107208]
[http://dx.doi.org/10.1016/j.cis.2021.102397]
[http://dx.doi.org/10.1039/b919078c]
[http://dx.doi.org/10.1021/la200982n] [PMID: 21657267]
[http://dx.doi.org/10.1039/C1JM13213J]
[http://dx.doi.org/10.1016/j.matdes.2017.04.033]
[http://dx.doi.org/10.1016/j.jcis.2013.02.054] [PMID: 23622684]
[http://dx.doi.org/10.3390/polym7081444]
[http://dx.doi.org/10.1021/jp207818b]
[http://dx.doi.org/10.1002/anie.200353381] [PMID: 15065288]
[http://dx.doi.org/10.1016/j.apsusc.2014.05.186]
[http://dx.doi.org/10.1002/marc.200700447]
[http://dx.doi.org/10.1021/jp200425u]
[http://dx.doi.org/10.1002/anie.200604596] [PMID: 17226889]
[http://dx.doi.org/10.1039/C7NJ01265A]
[http://dx.doi.org/10.1016/j.tsf.2007.04.086]
[http://dx.doi.org/10.1016/j.cej.2017.11.054]
[http://dx.doi.org/10.1007/s10570-013-9873-y]
[http://dx.doi.org/10.1016/j.apsusc.2017.12.268]
[http://dx.doi.org/10.1016/j.jhazmat.2018.10.040] [PMID: 30368062]
[http://dx.doi.org/10.1016/j.corsci.2018.10.034]
[http://dx.doi.org/10.1016/j.cej.2016.11.145]
[http://dx.doi.org/10.1016/j.porgcoat.2017.05.009]
[http://dx.doi.org/10.1021/nn300082k] [PMID: 22303866]
[http://dx.doi.org/10.1039/c2ra20593a]
[http://dx.doi.org/10.1016/j.surfcoat.2011.03.128]
[http://dx.doi.org/10.1016/j.porgcoat.2019.105512]
[http://dx.doi.org/10.1038/41233]
[http://dx.doi.org/10.1021/acsami.5b09611] [PMID: 26632960]
[http://dx.doi.org/10.1016/j.surfcoat.2011.04.073]
[http://dx.doi.org/10.1016/j.msec.2017.04.054] [PMID: 28575992]
[http://dx.doi.org/10.1016/j.petrol.2020.107513]
[http://dx.doi.org/10.1016/j.porgcoat.2021.106451]
[http://dx.doi.org/10.1016/j.surfcoat.2015.12.087]
[http://dx.doi.org/10.1016/j.porgcoat.2021.106215]
[http://dx.doi.org/10.1016/j.matpr.2019.06.359]
[http://dx.doi.org/10.1021/la103661c] [PMID: 21171580]
[http://dx.doi.org/10.1016/j.carbon.2013.12.091]
[http://dx.doi.org/10.1016/j.cej.2017.02.030]
[http://dx.doi.org/10.1039/C2TA00344A]
[http://dx.doi.org/10.1021/am501649w] [PMID: 24846501]
[http://dx.doi.org/10.1002/adma.200903696] [PMID: 20564251]
[http://dx.doi.org/10.1021/am200527j] [PMID: 21714511]
[http://dx.doi.org/10.1039/c3ta14725h]
[http://dx.doi.org/10.1016/j.cej.2021.129700]
[http://dx.doi.org/10.1039/c3ta11434a]
[http://dx.doi.org/10.1016/j.nantod.2009.12.009]
[http://dx.doi.org/10.1002/adom.201300401]
[http://dx.doi.org/10.1002/adfm.201400296]
[http://dx.doi.org/10.1039/C5NR00719D] [PMID: 25829140]
[http://dx.doi.org/10.1016/j.colsurfa.2020.125395]
[http://dx.doi.org/10.1016/j.vacuum.2022.111136]
[http://dx.doi.org/10.1016/j.jiec.2020.08.008]
[http://dx.doi.org/10.1038/nmat3542] [PMID: 23334002]
[http://dx.doi.org/10.1246/cl.130987]
[http://dx.doi.org/10.1007/s10853-005-5910-z]
[http://dx.doi.org/10.1016/j.polymer.2006.08.019]
[http://dx.doi.org/10.1016/j.carbon.2015.08.055]
[http://dx.doi.org/10.1002/adfm.200801776]
[http://dx.doi.org/10.1016/j.polymer.2011.09.033]
[http://dx.doi.org/10.1016/j.memsci.2013.10.070]
[http://dx.doi.org/10.1039/C4CS00015C] [PMID: 24926965]
[http://dx.doi.org/10.1039/b923596e] [PMID: 20589275]
[http://dx.doi.org/10.1016/j.colsurfa.2016.11.002]
[http://dx.doi.org/10.1016/j.stam.2005.03.003]
[http://dx.doi.org/10.1016/j.colsurfa.2020.125057]
[http://dx.doi.org/10.1016/j.porgcoat.2018.04.002];
b) Askar, A.A.; Selim, M.S.; El-Safty, S.A.; Hashem, A.I.; Selim, M.M.; Shenashen, M.A. Antimicrobial and immunomodulatory poten-tial of nanoscale hierarchical one-dimensional zinc oxide and silicon carbide materials. Mater. Chem. Phys., 2021, 263, 124376.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124376];
c) Selim, M.S.; Hamouda, H.; Hao, Z.; Shabana, S.; Chen, X. Design of γ-AlOOH, γ-MnOOH, and α-Mn2O3 nanorods as advanced anti-bacterial active agents. Dalton Trans., 2020, 49(25), 8601-8613.
[http://dx.doi.org/10.1039/D0DT01689F] [PMID: 32543624];
d) Fatthallah, N.A.; Selim, M.S.; El Safty, S.A.; Selim, M.M.; Shenashen, M.A. Engineering nanoscale hierarchical morphologies and ge-ometrical shapes for microbial inactivation in aqueous solution. Mater. Sci. Eng. C, 2021, 122, 111844.
[http://dx.doi.org/10.1016/j.msec.2020.111844] [PMID: 33641886];
(e) Selim, M.S.; Elseman, A.M.; Hao, Z. ZnO nanorods: An advanced cathode buffer layer for inverted Perovskite solar cells. ACS Appl. Energy Mater., 2020, 3(12), 11781-11791.
[http://dx.doi.org/10.1021/acsaem.0c01945]
[http://dx.doi.org/10.1021/am300912w] [PMID: 22931043]
b) Yilgör, E.; Yilgör, I. Silicone containing copolymers: Synthesis, properties and applications. Prog. Polym. Sci., 2014, 39(6), 1165-1195.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.11.003]
[http://dx.doi.org/10.1016/j.apsusc.2011.05.016]
[http://dx.doi.org/10.1002/adem.201180037]
[http://dx.doi.org/10.1016/j.porgcoat.2017.12.008];
b) Selim, M.S.; Yang, H.; Wang, F.Q.; Li, X.; Huang, Y.; Fatthallah, N.A. Silicone/Ag@SiO2 core–shell nanocomposite as a self-cleaning antifouling coating material. RSC Advances, 2018, 8(18), 9910-9921.
[http://dx.doi.org/10.1039/C8RA00351C] [PMID: 35540804]
[http://dx.doi.org/10.1021/nn203507y] [PMID: 22299572]
[http://dx.doi.org/10.1016/j.apsusc.2011.02.057]
[http://dx.doi.org/10.1080/08927010600980223] [PMID: 17110357]
[http://dx.doi.org/10.1039/c1jm12513c]
[http://dx.doi.org/10.1088/1468-6996/9/3/035008] [PMID: 27878005]
[http://dx.doi.org/10.1039/C5RA07400B]
[http://dx.doi.org/10.1016/j.matdes.2016.03.124]
[http://dx.doi.org/10.1016/j.dib.2016.08.010] [PMID: 27579341]
[http://dx.doi.org/10.1016/j.cej.2017.03.067];
b) Selim, M.S.; El-Safty, S.A.; El-Sockary, M.A.; Hashem, A.I.; Abo Elenien, O.M. EL-Saeed, A.M.; Fatthallah, N.A. Tailored design of Cu2O nanocube/silicone composites as efficient foul-release coatings. RSC Advances, 2015, 5(26), 19933-19943.
[http://dx.doi.org/10.1039/C5RA01597A]
[http://dx.doi.org/10.1016/j.porgcoat.2018.04.021]