Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Graphene Oxide/Reduced Graphene Oxide Nanomaterials for Targeted Photothermal Cancer Therapy

Author(s): Shraban Kumar Sahoo and Fahima Dilnawaz*

Volume 27, Issue 10, 2023

Published on: 06 September, 2023

Page: [844 - 851] Pages: 8

DOI: 10.2174/1385272827666230821102638

Price: $65

Abstract

combination of cancer therapy (hyperthermia with other therapies) holds tremendous potential for therapeutic improvement. Conventional methods of inducing hyperthermia are incapable of limiting a high-temperature increase at the tumor location while also preserving unexposed healthy tissues. Different materials available are not suitable for the combined application of hyperthermia and photothermal therapy (PTT). The use of carbonbased nanomaterials for cancer therapy has increased rapidly due to their ability to transport various anticancer drugs and to function as a photothermal agent. In this regard, the graphene family of 2D carbon nanomaterial graphene oxide (GO) and reduced graphene oxide (rGO) has emerged as a promising candidate for cancer PTT due to its excellent photothermal conversion in the near-infrared range, large specific surface area for drug loading, and scope for functionalization with functional groups/ molecules such as photosensitizers, siRNA, ligands, and so on with no cumulative toxicity. The availability of functional groups such as hydroxyls, epoxides, and carbonyls on GO groups, renders flexible modification leading to biocompatibility, facilitating it for an ideal drug delivery vector. In the present review, recent advances in combinational PTT providing synergistic benefits of multiple modalities are discussed.

Graphical Abstract

[1]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[2]
Hoseini-Ghahfarokhi, M.; Mirkiani, S.; Mozaffari, N.; Abdolahi Sadatlu, M.A.; Ghasemi, A.; Abbaspour, S.; Akbarian, M.; Farjadain, F.; Karimi, M. Applications of graphene and graphene oxide in smart drug/gene delivery: Is the world still flat? Int. J. Nanomedicine, 2020, 15, 9469-9496.
[http://dx.doi.org/10.2147/IJN.S265876] [PMID: 33281443]
[3]
Geim, A.K. Graphene: Status and prospects. Science, 2009, 324(5934), 1530-1534.
[http://dx.doi.org/10.1126/science.1158877] [PMID: 19541989]
[4]
Farjadian, F.; Abbaspour, S.; Sadatlu, M.A.A.; Mirkiani, S.; Ghasemi, A.; Hoseini-Ghahfarokhi, M.; Mozaffari, N.; Karimi, M.; Hamblin, M.R. Recent developments in graphene and graphene oxide: Properties, synthesis, and modifications: A review. ChemistrySelect, 2020, 5(33), 10200-10219.
[http://dx.doi.org/10.1002/slct.202002501]
[5]
Yang, X.; Zhang, X.; Ma, Y.; Huang, Y.; Wang, Y.; Chen, Y. Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem., 2009, 19(18), 2710-2714.
[http://dx.doi.org/10.1039/b821416f]
[6]
Sahoo, S.K.; Hota, G.; Amine-functionalized, G.O. amine-functionalized GO decorated with ZnO-ZnFe2O4 nanomaterials for remediation of Cr(VI) from water. ACS Appl. Nano Mater., 2019, 2(2), 983-996.
[http://dx.doi.org/10.1021/acsanm.8b02286]
[7]
Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater., 2013, 9(12), 9243-9257.
[http://dx.doi.org/10.1016/j.actbio.2013.08.016] [PMID: 23958782]
[8]
Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res., 2008, 1(3), 203-212.
[http://dx.doi.org/10.1007/s12274-008-8021-8] [PMID: 20216934]
[9]
Campbell, E.; Hasan, M.T.; Pho, C.; Callaghan, K.; Akkaraju, G.R.; Naumov, A.V. Graphene oxide as a multifunctional platform for intracellular delivery, imaging, and cancer sensing. Sci. Rep., 2019, 9(1), 416.
[http://dx.doi.org/10.1038/s41598-018-36617-4] [PMID: 30674914]
[10]
Jiang, J.H.; Pi, J.; Jin, H.; Cai, J.Y. Functional graphene oxide as cancer-targeted drug delivery system to selectively induce oesophageal cancer cell apoptosis. Artif. Cells Nanomed. Biotechnol., 2018, 46(Sup3), 297-307.
[http://dx.doi.org/10.1080/21691401.2018.1492418] [PMID: 30183382]
[11]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[http://dx.doi.org/10.1021/ja803688x] [PMID: 18661992]
[12]
Muñoz, R.; Singh, D.P.; Kumar, R.; Matsuda, A. Graphene oxide for drug delivery and cancer therapy.Nanostructured Polymer Composites for Biomedical Applications; Elsevier, 2019, pp. 447-488.
[13]
Cui, G.; Wu, J.; Lin, J.; Liu, W.; Chen, P.; Yu, M.; Zhou, D.; Yao, G. Graphene-based nanomaterials for breast cancer treatment: Promising therapeutic strategies. J. Nanobiotechnology, 2021, 19(1), 211.
[http://dx.doi.org/10.1186/s12951-021-00902-8] [PMID: 34266419]
[14]
Dasari Shareena, T.P.; McShan, D.; Dasmahapatra, A.K.; Tchounwou, P.B. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett., 2018, 10(3), 53.
[http://dx.doi.org/10.1007/s40820-018-0206-4] [PMID: 30079344]
[15]
Aunkor, M.T.H.; Mahbubul, I.M.; Saidur, R.; Metselaar, H.S.C. The green reduction of graphene oxide. RSC Advances, 2016, 6(33), 27807-27828.
[http://dx.doi.org/10.1039/C6RA03189G]
[16]
Liu, X.; Ma, R.; Wang, X.; Ma, Y.; Yang, Y.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J.; Wang, X. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environ. Pollut., 2019, 252((Pt A)), 62-73.
[http://dx.doi.org/10.1016/j.envpol.2019.05.050] [PMID: 31146239]
[17]
Sahoo, S.K.; Panigrahi, G.K.; Sahoo, J.K.; Pradhan, A.K.; Purohit, A.K.; Dhal, J.P. Electrospun magnetic polyacrylonitrile-GO hybrid nanofibers for removing Cr(VI) from water. J. Mol. Liq., 2021, 326, 115364.
[http://dx.doi.org/10.1016/j.molliq.2021.115364]
[18]
Pei, S.; Cheng, H.M. The reduction of graphene oxide. Carbon, 2012, 50(9), 3210-3228.
[http://dx.doi.org/10.1016/j.carbon.2011.11.010]
[19]
Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci., 2019, 1(1), 31-47.
[http://dx.doi.org/10.1016/j.nanoms.2019.02.004]
[20]
Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.B.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7), 1558-1565.
[http://dx.doi.org/10.1016/j.carbon.2007.02.034]
[21]
De Silva, K.K.H.; Huang, H.H.; Joshi, R.K.; Yoshimura, M. Chemical reduction of graphene oxide using green reductants. Carbon, 2017, 119, 190-199.
[http://dx.doi.org/10.1016/j.carbon.2017.04.025]
[22]
Namvari, M.; Biswas, C.S.; Galluzzi, M.; Wang, Q.; Du, B.; Stadler, F.J. Reduced graphene oxide composites with water soluble copolymers having tailored lower critical solution temperatures and unique tube-like structure. Sci. Rep., 2017, 7(1), 44508.
[http://dx.doi.org/10.1038/srep44508] [PMID: 28291225]
[23]
Liu, L.; Ma, Q.; Cao, J.; Gao, Y.; Han, S.; Liang, Y.; Zhang, T.; Song, Y.; Sun, Y. Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. Cancer Nanotechnol., 2021, 12(1), 18.
[http://dx.doi.org/10.1186/s12645-021-00087-7] [PMID: 33456622]
[24]
Song, E.; Han, W.; Li, C.; Cheng, D.; Li, L.; Liu, L.; Zhu, G.; Song, Y.; Tan, W. Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for targeted and pH-responsive anticancer drug delivery. ACS Appl. Mater. Interfaces, 2014, 6(15), 11882-11890.
[http://dx.doi.org/10.1021/am502423r] [PMID: 25000539]
[25]
Hu, D.; Zhang, J.; Gao, G.; Sheng, Z.; Cui, H.; Cai, L. Indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics. Theranostics, 2016, 6(7), 1043-1052.
[http://dx.doi.org/10.7150/thno.14566] [PMID: 27217837]
[26]
Mun, S.G.; Choi, H.W.; Lee, J.M.; Lim, J.H.; Ha, J.H.; Kang, M.J.; Kim, E.J.; Kang, L.; Chung, B.G. rGO nanomaterial-mediated cancer targeting and photothermal therapy in a microfluidic co-culture platform. Nano Converg., 2020, 7(1), 10.
[http://dx.doi.org/10.1186/s40580-020-0220-3] [PMID: 32180051]
[27]
Liang, W. Huang, Y.; Lu, D.; Ma, X.; Gong, T.; Cui, X.; Yu, B.; Yang, C.; Dong, C.; Shuang, S. β-cyclodextrin–hyaluronic acid polymer functionalized magnetic graphene oxide nanocomposites for targeted photo-chemotherapy of tumor cells. Polymers., 2019, 11(1), 133.
[http://dx.doi.org/10.3390/polym11010133] [PMID: 30960117]
[28]
Hu, Y.; Sun, D.; Ding, J.; Chen, L.; Chen, X. Decorated reduced graphene oxide for photo-chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(5), 929-937.
[http://dx.doi.org/10.1039/C5TB02359A] [PMID: 32263166]
[29]
Wu, S-Y.; An, S.S.A.; Hulme, J. Current applications of graphene oxide in nanomedicine. Int. J. Nanomedicine, 2015, 10(Spec Iss), 9-24.
[PMID: 26345988]
[30]
Tadyszak, K.; Wychowaniec, J.; Litowczenko, J. Biomedical applications of graphene-based structures. Nanomaterials., 2018, 8(11), 944.
[http://dx.doi.org/10.3390/nano8110944] [PMID: 30453490]
[31]
Mousavi, S.M.; Low, F.W.; Hashemi, S.A.; Samsudin, N.A.; Shakeri, M.; Yusoff, Y.; Rahsepar, M.; Lai, C.W.; Babapoor, A.; Soroshnia, S.; Goh, S.M.; Tiong, S.K.; Amin, N. Development of hydrophobic reduced graphene oxide as a new efficient approach for photochemotherapy. RSC Advances, 2020, 10(22), 12851-12863.
[http://dx.doi.org/10.1039/D0RA00186D] [PMID: 35492106]
[32]
Dash, B.S.; Jose, G.; Lu, Y.J.; Chen, J.P. Functionalized reduced graphene oxide as a versatile tool for cancer therapy. Int. J. Mol. Sci., 2021, 22(6), 2989.
[http://dx.doi.org/10.3390/ijms22062989] [PMID: 33804239]
[33]
Magne, T.M.; de Oliveira Vieira, T.; Alencar, L.M.R.; Junior, F.F.M.; Gemini-Piperni, S.; Carneiro, S.V.; Fechine, L.M.U.D.; Freire, R.M.; Golokhvast, K.; Metrangolo, P.; Fechine, P.B.A.; Santos-Oliveira, R. Graphene and its derivatives: Understanding the main chemical and medicinal chemistry roles for biomedical applications. J. Nanostructure Chem., 2022, 12(5), 693-727.
[http://dx.doi.org/10.1007/s40097-021-00444-3] [PMID: 34512930]
[34]
Agarwal, V.; Zetterlund, P.B. Strategies for reduction of graphene oxide - A comprehensive review. Chem. Eng. J., 2021, 405, 127018.
[http://dx.doi.org/10.1016/j.cej.2020.127018]
[35]
Ismail, Z. Green reduction of graphene oxide by plant extracts: A short review. Ceram. Int., 2019, 45(18), 23857-23868.
[http://dx.doi.org/10.1016/j.ceramint.2019.08.114]
[36]
Lim, J.H.; Kim, D.E.; Kim, E.J.; Ahrberg, C.D.; Chung, B.G. Functional graphene oxide-based nanosheets for photothermal therapy. Macromol. Res., 2018, 26(6), 557-565.
[http://dx.doi.org/10.1007/s13233-018-6067-3]
[37]
Shafiee, A.; Iravani, S.; Varma, R.S. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. MedComm, 2022, 3(1), e118.
[http://dx.doi.org/10.1002/mco2.118] [PMID: 35281783]
[38]
Yang, K.; Feng, L.; Shi, X.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev., 2013, 42(2), 530-547.
[http://dx.doi.org/10.1039/C2CS35342C] [PMID: 23059655]
[39]
Ramezani Farani, M.; Khadiv-Parsi, P.; Riazi, G.H.; Shafiee Ardestani, M.; Saligheh Rad, H. PEGylation of graphene/iron oxide nanocomposite: Assessment of release of doxorubicin, magnetically targeted drug delivery and photothermal therapy. Appl. Nanosci., 2020, 10(4), 1205-1217.
[http://dx.doi.org/10.1007/s13204-020-01255-8]
[40]
Hu, Y.; He, L.; Ding, J.; Sun, D.; Chen, L.; Chen, X. One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy. Carbohydr. Polym., 2016, 144, 223-229.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.062] [PMID: 27083812]
[41]
Ma, W.; Hu, Y.; Yang, H.; Zhang, Y.; Ding, J.; Chen, L. Au-aided reduced graphene oxide-based nanohybrids for photo-chemotherapy. Mater. Sci. Eng. C, 2019, 95, 256-263.
[http://dx.doi.org/10.1016/j.msec.2018.10.072] [PMID: 30573248]
[42]
Gong, T.; Wang, X.; Ma, Q.; Li, J.; Li, M.; Huang, Y.; Liang, W.; Su, D.; Guo, R. Triformyl cholic acid and folic acid functionalized magnetic graphene oxide nanocomposites: Multiple-targeted dual-modal synergistic chemotherapy/photothermal therapy for liver cancer. J. Inorg. Biochem., 2021, 223, 111558.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111558] [PMID: 34329998]
[43]
Bellier, N.; Baipaywad, P.; Ryu, N.; Lee, J.Y.; Park, H. Recent biomedical advancements in graphene oxide- and reduced graphene oxide-based nanocomposite nanocarriers. Biomater. Res., 2022, 26(1), 65.
[http://dx.doi.org/10.1186/s40824-022-00313-2] [PMID: 36435846]
[44]
Park, J.; Kim, B.; Han, J.; Oh, J.; Park, S.; Ryu, S.; Jung, S.; Shin, J.Y.; Lee, B.S.; Hong, B.H.; Choi, D.; Kim, B.S. Graphene oxide flakes as a cellular adhesive: Prevention of reactive oxygen species mediated death of implanted cells for cardiac repair. ACS Nano, 2015, 9(5), 4987-4999.
[http://dx.doi.org/10.1021/nn507149w] [PMID: 25919434]
[45]
Siriviriyanun, A.; Popova, M.; Imae, T.; Kiew, L.V.; Looi, C.Y.; Wong, W.F.; Lee, H.B.; Chung, L.Y. Preparation of graphene oxide/dendrimer hybrid carriers for delivery of doxorubicin. Chem. Eng. J., 2015, 281, 771-781.
[http://dx.doi.org/10.1016/j.cej.2015.07.024]
[46]
Sima, L.E.; Chiritoiu, G.; Negut, I.; Grumezescu, V.; Orobeti, S.; Munteanu, C.V.A. Functionalized graphene oxide thin films for anti-tumor drug delivery to melanoma cells. Front Chem., 2020, 8(184)
[47]
Wang, F.; Sun, Q.; Feng, B.; Xu, Z.; Zhang, J.; Xu, J.; Lu, L.; Yu, H.; Wang, M.; Li, Y.; Zhang, W. Polydopamine-functionalized graphene oxide loaded with gold nanostars and doxorubicin for combined photothermal and chemotherapy of metastatic breast cancer. Adv. Healthc. Mater., 2016, 5(17), 2227-2236.
[http://dx.doi.org/10.1002/adhm.201600283] [PMID: 27377242]
[48]
Tanum, J.; Heo, J.; Hong, J. Spontaneous biomacromolecule absorption and long-term release by graphene oxide. ACS Omega, 2018, 3(5), 5903-5909.
[http://dx.doi.org/10.1021/acsomega.8b00537] [PMID: 30023929]
[49]
Karki, N.; Tiwari, H.; Pal, M.; Chaurasia, A.; Bal, R.; Joshi, P.; Sahoo, N.G. Functionalized graphene oxides for drug loading, release and delivery of poorly water soluble anticancer drug: A comparative study. Colloids Surf. B Biointerfaces, 2018, 169, 265-272.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.022] [PMID: 29783152]
[50]
Han, X.M.; Zheng, K.W.; Wang, R.L.; Yue, S.F.; Chen, J.; Zhao, Z.W.; Song, F.; Su, Y.; Ma, Q. Functionalization and optimization-strategy of graphene oxide-based nanomaterials for gene and drug delivery. Am. J. Transl. Res., 2020, 12(5), 1515-1534.
[PMID: 32509159]
[51]
Chen, M.; Jiang, S.; Zhang, F.; Li, L.; Hu, H.; Wang, H. Graphene oxide immobilized plga-polydopamine nanofibrous scaffolds for growth inhibition of colon cancer cells. Macromol. Biosci., 2018, 18(12), 1800321.
[http://dx.doi.org/10.1002/mabi.201800321] [PMID: 30408347]
[52]
Wang, Z.; Shen, H.; Song, S.; Zhang, L.; Chen, W.; Dai, J.; Zhang, Z. Graphene oxide incorporated plga nanofibrous scaffold for solid phase gene delivery into mesenchymal stem cells. J. Nanosci. Nanotechnol., 2018, 18(4), 2286-2293.
[http://dx.doi.org/10.1166/jnn.2018.14362] [PMID: 29442894]
[53]
Lan, M.Y.; Hsu, Y.B.; Lan, M.C.; Chen, J.P.; Lu, Y.J. Polyethylene glycol-coated graphene oxide loaded with erlotinib as an effective therapeutic agent for treating nasopharyngeal cancer cells. Int. J. Nanomedicine, 2020, 15, 7569-7582.
[http://dx.doi.org/10.2147/IJN.S265437] [PMID: 33116488]
[54]
Mahdavi, M.; Fattahi, A.; Tajkhorshid, E.; Nouranian, S. Molecular insights into the loading and dynamics of doxorubicin on pegylated graphene oxide nanocarriers. ACS Appl. Bio Mater., 2020, 3(3), 1354-1363.
[http://dx.doi.org/10.1021/acsabm.9b00956] [PMID: 33313482]
[55]
Shi, H.; Sadler, P.J. How promising is phototherapy for cancer? Br. J. Cancer, 2020, 123(6), 871-873.
[http://dx.doi.org/10.1038/s41416-020-0926-3] [PMID: 32587359]
[56]
Yang, G.; Xu, L.; Chao, Y.; Xu, J.; Sun, X.; Wu, Y.; Peng, R.; Liu, Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun., 2017, 8(1), 902.
[http://dx.doi.org/10.1038/s41467-017-01050-0] [PMID: 29026068]
[57]
Kalluru, P.; Vankayala, R.; Chiang, C.S.; Hwang, K.C. Nano-graphene oxide-mediated in vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials, 2016, 95, 1-10.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.006] [PMID: 27108401]
[58]
Wu, Y.; Liang, Y.; Liu, Y.; Hao, Y.; Tao, N.; Li, J.; Sun, X.; Zhou, M.; Liu, Y.N.A. Bi2S3-embedded gellan gum hydrogel for localized tumor photothermal/antiangiogenic therapy. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(14), 3224-3234.
[http://dx.doi.org/10.1039/D1TB00257K] [PMID: 33885626]
[59]
Dou, R.; Du, Z.; Bao, T.; Dong, X.; Zheng, X.; Yu, M.; Yin, W.; Dong, B.; Yan, L.; Gu, Z. The polyvinylpyrrolidone functionalized rGO/Bi2S3 nanocomposite as a near-infrared light-responsive nanovehicle for chemo-photothermal therapy of cancer. Nanoscale, 2016, 8(22), 11531-11542.
[http://dx.doi.org/10.1039/C6NR01543C] [PMID: 27203525]
[60]
Liu, X.; Wu, X.; Xing, Y.; Zhang, Y.; Zhang, X.; Pu, Q.; Wu, M.; Zhao, J.X. Reduced graphene oxide/mesoporous silica nanocarriers for pH-triggered drug release and photothermal therapy. ACS Appl. Bio Mater., 2020, 3(5), 2577-2587.
[http://dx.doi.org/10.1021/acsabm.9b01108] [PMID: 35025390]
[61]
Wang, Z.H.; Sun, X.; Huang, T.; Song, J.B.; Wang, Y.D.A. Sandwich nanostructure of gold nanoparticle coated reduced graphene oxide for photoacoustic imaging-guided photothermal therapy in the second NIR window. Front. Bioeng. Biotechnol., 2020, 8(665)
[http://dx.doi.org/10.3389/fbioe.2020.00655]
[62]
Sheng, Z.; Song, L.; Zheng, J.; Hu, D.; He, M.; Zheng, M.; Gao, G.; Gong, P.; Zhang, P.; Ma, Y.; Cai, L. Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials, 2013, 34(21), 5236-5243.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.090] [PMID: 23602365]
[63]
Das, P.; Mudigunda, S.V.; Darabdhara, G.; Boruah, P.K.; Ghar, S.; Rengan, A.K.; Das, M.R. Biocompatible functionalized AuPd bimetallic nanoparticles decorated on reduced graphene oxide sheets for photothermal therapy of targeted cancer cells. J. Photochem. Photobiol. B, 2020, 212, 112028.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.112028] [PMID: 33010550]
[64]
Cheng, H.L.; Guo, H.L.; Xie, A.J.; Shen, Y.H.; Zhu, M.Z. 4-in-1 Fe3O4/g-C3N4@PPy-DOX nanocomposites: Magnetic targeting guided trimode combinatorial chemotherapy/PDT/PTT for cancer. J. Inorg. Biochem., 2021, 215, 111329.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111329] [PMID: 33321394]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy