Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Recent Advances in Transition Metal Catalyzed Synthesis of C3-Substitution-free 2-Oxindole Derivatives

Author(s): Partha Pratim Das and Debapratim Das*

Volume 21, Issue 6, 2024

Published on: 06 September, 2023

Page: [599 - 608] Pages: 10

DOI: 10.2174/1570193X20666230821102422

Price: $65

Abstract

2-Oxindole unit is one of the most important scaffolds found in several alkaloids, natural products, antitumor agents, pharmaceutically important compounds, etc. Molecules containing the 2- oxindole moiety were first isolated from the cat claw plant, widely distributed in the Amazon jungle. It has now been demonstrated that these molecules are present in a wide range of chemicals derived from plant sources. The capacity of 2-oxindole to be altered by various chemical groups to provide unique biological activities can be attributed to its function as a chemical framework for creating and developing biological medications. Since the development of its first synthetic methodology, several research groups have developed protocols for producing 2-oxindole core and its bioactive derivatives. These include the traditional method and the transition/non-transition metal-catalyzed pathway for the synthesis of C3-non-substituted/C3-mono-substituted/C3-di-substituted core. Among those, C3-substitution-free 2-oxindole core synthesis is quite a challenging task, as C3-centre is very reactive. Syntheses of C3-substitution-free 2-oxindole cores have been less explored compared to other substituted 2-oxindole derivatives. In this review article, we have mainly focused on showcasing the transition metal-catalyzed synthetic methodology for the synthesis of 2-oxindoles with no substitution at C3-centre.

Graphical Abstract

[1]
(a) Cerchiaro, G.; Ferreira, A.M.C. Oxindoles and copper complexes with oxindole-derivatives as potential pharmacological agents. J. Braz. Chem. Soc., 2006, 17(8), 1473-1485.
[http://dx.doi.org/10.1590/S0103-50532006000800003];
(b) Rudrangi, S.R.S.; Bontha, V.K.; Manda, V.R.; Bethi, S. Oxindoles, and their pharmaceutical significance- an overview. Asian J. Res. Chem, 2011, 4, 335.
[2]
(a) Vaca, J.; Salazar, F.; Ortiz, A.; Sansinenea, E. Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study. J. Antibiot., 2020, 73(11), 798-802.
[http://dx.doi.org/10.1038/s41429-020-0333-2] [PMID: 32483303];
(b) Guo, H. Isatin derivatives and their anti-bacterial activities. Eur. J. Med. Chem., 2019, 164, 678-688.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.017] [PMID: 30654239];
(c) Tripathy, R.; Reiboldt, A.; Messina, P.A.; Iqbal, M.; Singh, J.; Bacon, E.R.; Angeles, T.S.; Yang, S.X.; Albom, M.S.; Robinson, C.; Chang, H.; Ruggeri, B.A.; Mallamo, J.P. Structure-guided identification of novel VEGFR-2 kinase inhibitors via solution phase parallel synthesis. Bioorg. Med. Chem. Lett., 2006, 16(8), 2158-2162.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.063] [PMID: 16460933];
(d) He, Y. Design, synthesis, and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett., 2016, 16, 2158.;
(e) Bal, T.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and evaluation of anti-HIV activity of isatin beta-thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2005, 15, 4451.
[3]
Khetmalis, Y.M.; Shivani, M.; Murugesan, S.; Chandra Sekhar, K.V.G. Oxindole and its derivatives: A review on recent progress in biological activities. Biomed. Pharmacother., 2021, 141, 111842.
[http://dx.doi.org/10.1016/j.biopha.2021.111842] [PMID: 34174506]
[4]
(a) Kaur, M.; Singh, M.; Chadha, N.; Silakari, O. Oxindole: A chemical prism carrying plethora of therapeutic benefits. Eur. J. Med. Chem., 2016, 123, 858-894.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.011] [PMID: 27543880];
(b) Dreifuss, A.A.; Bastos-Pereira, A.L.; Ávila, T.V.; Soley, B.S.; Rivero, A.J.; Aguilar, J.L.; Acco, A. Antitumoral and antioxidant effects of a hydroalcoholic extract of cat’s claw (Uncaria tomentosa) (Willd. Ex Roem. & Schult) in an in vivo carcinosarcoma model. J. Ethnopharmacol., 2010, 130(1), 127-133.
[http://dx.doi.org/10.1016/j.jep.2010.04.029] [PMID: 20435132]
[5]
(a) Roskoski, R. Jr Sunitinib: A VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem. Biophys. Res. Commun., 2007, 356(2), 323-328.
[http://dx.doi.org/10.1016/j.bbrc.2007.02.156] [PMID: 17367763];
(b) AboulMagd A.M.; Hassan, H.M.; Sayed, A.M.; Abdelmohsen, U.R.; Abdel-Rahman, H.M. Saccharomonosporine A inspiration; synthesis of potent analogues as potential PIM kinase inhibitors. RSC Adv. , 2020, 10(12), 6752-6762.
[http://dx.doi.org/10.1039/C9RA10216G] [PMID: 35493904];
(c) Lozinskaya, N.A.; Babkov, D.A.; Zaryanova, E.V.; Bezsonova, E.N.; Efremov, A.M.; Tsymlyakov, M.D.; Anikina, L.V.; Zakharyascheva, O.Y.; Borisov, A.V.; Perfilova, V.N.; Tyurenkov, I.N.; Proskurnina, M.V.; Spasov, A.A. Synthesis and biological evaluation of 3-substituted 2-oxindole derivatives as new glycogen synthase kinase 3β inhibitors. Bioorg. Med. Chem., 2019, 27(9), 1804-1817.
[http://dx.doi.org/10.1016/j.bmc.2019.03.028] [PMID: 30902399]
[6]
Xu, R.; Zhan, M.; Peng, L.; Pang, X.; Yang, J.; Zhang, T.; Jiang, H.; Zhao, L.; Chen, Y. Design, synthesis and biological evaluation of deuterated nintedanib for improving pharmacokinetic properties. J. Labelled Comp. Radiopharm., 2015, 58(7), 308-312.
[http://dx.doi.org/10.1002/jlcr.3299] [PMID: 26011584]
[7]
(a) Song, Z.; Chen, C.P.; Liu, J.; Wen, X.; Sun, H.; Yuan, H. Design, synthesis, and biological evaluation of (2E)-(2-oxo-1, 2-dihydro-3 H -indol-3-ylidene)acetate derivatives as anti-proliferative agents through ROS-induced cell apoptosis. Eur. J. Med. Chem., 2016, 124, 809-819.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.005] [PMID: 27643639];
(b) Millemaggi, A.; Taylor, R.J.K. 3‐alkenyl‐oxindoles: Natural products, pharmaceuticals, and recent synthetic advances in tandem/telescoped approaches. Eur. J. Org. Chem., 2010, 2010(24), 4527-4547.
[http://dx.doi.org/10.1002/ejoc.201000643];
(c) Kaur, M.; Singh, M.; Silakari, O. Oxindole-based SYK and JAK3 dual inhibitors for Rheumatoid Arthritis: Designing, synthesis and biological evaluation. Future Med. Chem., 2017, 9(11), 1193-1211.
[http://dx.doi.org/10.4155/fmc-2017-0037] [PMID: 28722479];
(d) Girgis, A.S.; Panda, S.S.; Srour, A.M.; Abdelnaser, A.; Nasr, S.; Moatasim, Y.; Kutkat, O.; El Taweel, A.; Kandeil, A.; Mostafa, A.; Ali, M.A.; Fawzy, N.G.; Bekheit, M.S.; Shalaby, E.M.; Gigli, L.; Fayad, W.; Soliman, A.A.F. 3-Alkenyl-2-oxindoles: Synthesis, antiproliferative and antiviral properties against SARS-CoV-2. Bioorg. Chem., 2021, 114, 105131.
[http://dx.doi.org/10.1016/j.bioorg.2021.105131] [PMID: 34243074]
[8]
(a) Peddibhotla, S. 3-Substituted-3-hydroxy-2-oxindole, an emerging new scaffold for drug discovery with potential anti-cancer and other biological activities. Curr. Bioact. Compd., 2009, 5(1), 20-38.
[http://dx.doi.org/10.2174/157340709787580900];
(b) Chander, S.; Tang, C.R.; Penta, A.; Wang, P.; Bhagwat, D.P.; Vanthuyne, N.; Albalat, M.; Patel, P.; Sankpal, S.; Zheng, Y.T.; Sankaranarayanan, M. Hit optimization studies of 3-hydroxy-indolin-2-one analogs as potential anti-HIV-1 agents. Bioorg. Chem., 2018, 79, 212-222.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.027] [PMID: 29775947]
[9]
(a) Galliford, C.V.; Scheidt, K.A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed., 2007, 46(46), 8748-8758.
[http://dx.doi.org/10.1002/anie.200701342] [PMID: 17943924];
(b) Marti, C.; Carreira, E.M. Construction of spiro[pyrrolidine-3,3′-oxindoles]- recent applications to the synthesis of oxindole alkaloids. Eur. J. Org. Chem., 2003, 2003(12), 2209-2219.
[http://dx.doi.org/10.1002/ejoc.200300050]
[10]
(a) Abo-Salem, H.M.; Nassrallah, A.; Soliman, A.A.F.; Ebied, M.S.; Elawady, M.E.; Abdelhamid, S.A.; El-Sawy, E.R.; Al-Sheikh, Y.A.; Aboul-Soud, M.A.M. Synthesis and bioactivity assessment of novel spiro pyrazole-oxindole congeners exhibiting potent and selective in vitro anticancer effects. Molecules, 2020, 25(5), 1124.
[http://dx.doi.org/10.3390/molecules25051124] [PMID: 32138244];
(b) Terada, K.; Murata, A.; Toki, E.; Goto, S.; Yamakawa, H.; Setoguchi, S.; Watase, D.; Koga, M.; Takata, J.; Matsunaga, K.; Karube, Y. A typical antipsychotic drug ziprasidone protects against rotenone-induced neurotoxicity: An in vitro study. Molecules, 2020, 25(18), 4206.
[http://dx.doi.org/10.3390/molecules25184206] [PMID: 32937854];
(c) Dudhipala, N.; Gorre, T. Neuroprotective effect of ropinirole lipid nanoparticles enriched hydrogel for parkinson’s disease: In vitro, ex vivo, pharmacokinetic and pharmacodynamic evaluation. Pharmaceutics, 2020, 12(5), 448.
[http://dx.doi.org/10.3390/pharmaceutics12050448] [PMID: 32414195]
[11]
Sumpter, W.C. The chemistry of oxindole. Chem. Rev., 1945, 37(3), 443-479.
[http://dx.doi.org/10.1021/cr60118a003] [PMID: 21013427]
[12]
Baeyer, A.; Knop, C.A. Untersuchuiigen iiber die gruppe des indigblau’s. Ann. Chem. Pharm., 1866, 140, 1.
[http://dx.doi.org/10.1002/jlac.18661400102]
[13]
Marschalk, C. Überführung des oxindols in isocumaranon. Ber. Dtsch. Chem. Ges., 1912, 45(1), 582-585.
[http://dx.doi.org/10.1002/cber.19120450186]
[14]
Curtius, T.; Thun, K. Einwirkung von hydrazinhydrat auf isatin und auf phenole. J. Prakt. Chem., 1891, 44(1), 187-191.
[http://dx.doi.org/10.1002/prac.18910440122]
[15]
Wolfe, J.F.; Sleevi, M.C.; Goehring, R.R. Photoinduced cyclization of mono- and dianions of N-acyl-o-chloranilines. A general oxindole synthesis. J. Am. Chem. Soc., 1980, 102(10), 3646-3647.
[http://dx.doi.org/10.1021/ja00530a066]
[16]
Gassman, P.G.; Van Bergen, T.J. General method for the synthesis of oxindoles. J. Am. Chem. Soc., 1973, 95(8), 2718-2719.
[http://dx.doi.org/10.1021/ja00789a070]
[17]
(a) Stollé, R.; Merkle, M. Zur konstitution der isatyde. J. Prakt. Chem., 1934, 139(10-12), 329-337.
[http://dx.doi.org/10.1002/prac.19341391008];
(b) Stollé, R.; Hecht, H.; Becker, W. On derivatives of N-substituted oxindoles and isatins. J. Prakt. Chem., 1932, 135(11-12), 345-360.
[http://dx.doi.org/10.1002/prac.19321351104]
[18]
Brunner, K. Über Indolinone. Monatsh. Chem., 1897, 18(1), 95-122.
[http://dx.doi.org/10.1007/BF01518237]
[19]
Baeyer, A. Synthese des Isatins und des indigblaus. Ber. Dtsch. Chem. Ges., 1878, 11(1), 1228-1229.
[http://dx.doi.org/10.1002/cber.187801101337]
[20]
Suida, W. Ueber das Isatin und seine derivate. Ber. Dtsch. Chem. Ges., 1879, 11, 584.
[http://dx.doi.org/10.1002/cber.18790120224]
[21]
Beckwith, A.L.J.; Storey, J.M.D. Tandem radical translocation and homolytic aromatic substitution: A convenient and efficient route to oxindoles. J. Chem. Soc., 1995, 9, 977.
[22]
(a) Beyer, A.; Buendia, J.; Bolm, C. Transition-metal-free synthesis of oxindoles by potassium tert-butoxide-promoted intramolecular α-arylation. Org. Lett., 2012, 14(15), 3948-3951.
[http://dx.doi.org/10.1021/ol301704z] [PMID: 22794114];
(b) Wu, S.; Zhao, Q.; Wu, C.; Wang, C.; Lei, H. Transition-metal-free oxindole synthesis: Quinone–K2CO3 catalyzed intramolecular radical cyclization. Org. Chem. Front., 2022, 9(10), 2593-2599.
[http://dx.doi.org/10.1039/D2QO00205A];
(c) Couto, J.L.; Hornink, M.M.; Nascimento, V.R.; Andrade, L.H. Fast transition metal‐free synthesis of functionalized oxindoles and dihydroquinoline‐2‐ones under microwave irradiation. Eur. J. Chem., 2022, 44, 49.
[23]
(a) Marchese, A.D.; Larin, E.M.; Mirabi, B.; Lautens, M. Metal-catalyzed approaches toward the oxindole core. Acc. Chem. Res., 2020, 53(8), 1605-1619.
[http://dx.doi.org/10.1021/acs.accounts.0c00297] [PMID: 32706589];
(b) Kumar, N.; Ghosh, S.; Bhunia, S.; Bisai, A. Synthesis of 2-oxindoles via ‘transition-metal-free’ intramolecular dehydrogenative coupling (IDC) of sp2 C–H and sp3 C–H bonds. Beilstein J. Org. Chem., 2016, 12, 1153-1169.
[http://dx.doi.org/10.3762/bjoc.12.111] [PMID: 27559367];
(c) Wasa, M.; Yu, J.Q. Synthesis of β-, γ-, and δ-lactams via Pd(II)-catalyzed C-H activation reactions. J. Am. Chem. Soc., 2008, 130(43), 14058-14059.
[http://dx.doi.org/10.1021/ja807129e] [PMID: 18834119];
(d) Miura, T.; Ito, Y.; Murakami, M. Synthesis of oxindoles by palladium-catalyzed C–H bond amidation. Chem. Lett., 2009, 38(4), 328-329.
[http://dx.doi.org/10.1246/cl.2009.328];
(e) Cao, Z.Y.; Zhou, J. Catalytic asymmetric synthesis of polysubstituted spirocyclopropyl oxindoles: Organocatalysis versus transition metal catalysis. Org. Chem. Front., 2015, 2(7), 849-858.
[http://dx.doi.org/10.1039/C5QO00092K];
(f) Saranya, P.V.; Neetha, M.; Aneeja, T.; Anilkumar, G. Transition metal-catalyzed synthesis of spirooxindoles. RSC Advances, 2021, 11(13), 7146-7179.
[http://dx.doi.org/10.1039/D1RA00139F] [PMID: 35423236];
(g) Shrestha, M.; Wu, X.; Huang, W.; Qu, J.; Chen, Y. Recent advances in transition metal-catalyzed reactions of carbamoyl chlorides. Org. Chem. Front., 2021, 8(14), 4024-4045.
[http://dx.doi.org/10.1039/D0QO01648A]
[24]
Hennessy, E.J.; Buchwald, S.L. Synthesis of substituted oxindoles from α-chloroacetanilides via palladium-catalyzed C[bond]H functionalization. J. Am. Chem. Soc., 2003, 125(40), 12084-12085.
[http://dx.doi.org/10.1021/ja037546g] [PMID: 14518981]
[25]
(a) Boele, M.D.K.; van Strijdonck, G.P.F.; de Vries, A.H.M.; Kamer, P.C.J.; de Vries, J.G.; van Leeuwen, P.W.N.M. Selective Pd-catalyzed oxidative coupling of anilides with olefins through C-H bond activation at room temperature. J. Am. Chem. Soc., 2002, 124(8), 1586-1587.
[http://dx.doi.org/10.1021/ja0176907] [PMID: 11853427];
(b) Shue, R.S. Isotope effects in the arylation of olefins with palladium(II) acetate. Mechanism of olefin arylation. J. Am. Chem. Soc., 1971, 93(25), 7116-7117.
[http://dx.doi.org/10.1021/ja00754a088];
(c) Albéniz, A.C.; Catalina, N.M.; Espinet, P.; Redón, R. Bonding modes in palladium(II) enolates: Consequences for dynamic behavior and reactivity. Organometallics, 1999, 18(26), 5571-5576.
[http://dx.doi.org/10.1021/om990613o];
(d) Veya, P.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Terminal and bridging bonding modes of the acetophenone enolate to palladium(II): The structural evidence and the insertion of isocyanides. Organometallics, 1993, 12(12), 4899-4907.
[http://dx.doi.org/10.1021/om00036a033];
(e) Cohen, T.; McMullen, C.H.; Smith, K. Competition between bond rotations and intramolecular hydrogen atom transfer as studied by the use of isotope effects. J. Am. Chem. Soc., 1968, 90(24), 6866-6867.
[http://dx.doi.org/10.1021/ja01026a067];
(f) Echavarren, A.M.; Gómez-Lor, B.; González, J.J.; de Frutos, Ó. Palladium- catalyzed intramolecular arylation reaction: Mechanism and application for the synthesis of polyarenes. Synlett, 2003, (5), 0585-0597.
[http://dx.doi.org/10.1055/s-2003-38382];
(g) Sezen, B.; Sames, D. Selective C-arylation of free (NH)-heteroarenes via catalytic C-H bond functionalization. J. Am. Chem. Soc., 2003, 125(18), 5274-5275.
[http://dx.doi.org/10.1021/ja034848+] [PMID: 12720429];
(h) Glover, B.; Harvey, K.A.; Liu, B.; Sharp, M.J.; Tymoschenko, M.F. Regioselective palladium-catalyzed arylation of 3-carboalkoxy furan and thiophene. Org. Lett., 2003, 5(3), 301-304.
[http://dx.doi.org/10.1021/ol027266q] [PMID: 12556177];
(i) Toyota, M.; Ilangovan, A.; Okamoto, R.; Masaki, T.; Arakawa, M.; Ihara, M. Simple construction of bicyclo[4.3.0]nonane, bicyclo [3.3.0]octane, and related benzo derivatives by palladium-catalyzed cycloalkenylation. Org. Lett., 2002, 4(24), 4293-4296.
[http://dx.doi.org/10.1021/ol020187u] [PMID: 12443081];
(j) Hughes, C.C.; Trauner, D. Concise total synthesis of (-)-frondosin B using a novel palladium-catalyzed cyclization Angew. Chem. Int. Ed., 2002, 41(9), 1569-1572.
[http://dx.doi.org/ 10.1002/1521-3773(20020503)41:91569::AIDANIE15693.0.CO;2-8] [PMID: 19750668];
(k) Ca’mpora, J.; Gutie’rrez-Puebla, E.; Lo’pez, J.A.; Monge, A.; Palma, P.; del Rı ´o, D.; Carmona, E. Cleavage of the Calkyl−Caryl bond of [Pd−CH2CMe2Ph] complexes. Angew. Chem. Int. Ed., 2001, 40, 3641.;
(l) Cámpora, J; López, J.A.; Palma, P.; Valerga, P.; Spillner, E.; Carmona, E. Cleavage of palladium metallacycles by acids: A probe for the study of the cyclometalation reaction. Angew. Chem. Int. Ed, 1999, 38((1-2)), 147-151.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2147::AID-ANIE1473.0.CO;2-I]
[26]
Yang, L.Q.; Wang, K.B.; Li, C.Y. Synthesis of oxindoles through the gold-catalyzed oxidation of N-arylynamides. Eur. J. Org. Chem., 2013, 2013(14), 2775-2779.
[http://dx.doi.org/10.1002/ejoc.201300162]
[27]
Hashmi, A.S.K. Homogeneous gold catalysis beyond assumptions and proposals-characterized intermediates. Angew. Chem. Int. Ed., 2010, 49(31), 5232-5241.
[http://dx.doi.org/10.1002/anie.200907078] [PMID: 20572216]
[28]
Cheng, C-H.; Gandeepan, P.; Rajamalli, P. Palladium-catalyzed C–H activation and cyclization of anilides with 2-iodoacetates and 2-iodobenzoates: An efficient method toward oxindoles and phenanthridones. Synthesis, 2016, 48(12), 1872-1879.
[http://dx.doi.org/10.1055/s-0035-1561856]
[29]
(a) Thirunavukkarasu, V.S.; Parthasarathy, K.; Cheng, C.H. Synthesis of fluorenones from aromatic aldoxime ethers and aryl halides by palladium-catalyzed dual C-H activation and Heck cyclization. Angew. Chem. Int. Ed., 2008, 47(49), 9462-9465.
[http://dx.doi.org/10.1002/anie.200804153] [PMID: 18979484];
(b) Gandeepan, P.; Parthasarathy, K.; Cheng, C.H. Synthesis of phenanthrone derivatives from sec-alkyl aryl ketones and aryl halides via a palladium-catalyzed dual C-H bond activation and enolate cyclization. J. Am. Chem. Soc., 2010, 132(25), 8569-8571.
[http://dx.doi.org/10.1021/ja1026248] [PMID: 20524609];
(c) Karthikeyan, J.; Cheng, C.H. Synthesis of phenanthridinones from N-methoxybenzamides and arenes by multiple palladium-catalyzed C-H activation steps at room temperature. Angew. Chem. Int. Ed., 2011, 50(42), 9880-9883.
[http://dx.doi.org/10.1002/anie.201104311] [PMID: 21887827]
[30]
Gandeepan, P.; Cheng, C-H. Catalytic transformations via C–H activation 1.In: Science of Synthesis; Yu, J.Q., Ed.; Georg Thieme Verlag: Stuttgart, 2015, p. 69.
[31]
(a) Martin, R.B.; Parcell, A.; Hedrick, R.I. Intramolecular aminolysis of esters and transamidation. J. Am. Chem. Soc., 1964, 86(12), 2406-2413.
[http://dx.doi.org/10.1021/ja01066a023];
(b) Satterthwait, A.C.; Jencks, W.P. Mechanism of the aminolysis of acetate esters. J. Am. Chem. Soc., 1974, 96(22), 7018-7031.
[http://dx.doi.org/10.1021/ja00829a034] [PMID: 4436508];
(c) Wu, J.; Xiang, S.; Zeng, J.; Leow, M.; Liu, X.W. Practical route to 2-quinolinones via a Pd-catalyzed C-H bond activation/C-C bond formation/cyclization cascade reaction. Org. Lett., 2015, 17(2), 222-225.
[http://dx.doi.org/10.1021/ol503292p] [PMID: 25545799]
[32]
Tsukano, C.; Okuno, M.; Takemoto, Y. Palladium-catalyzed amidation by chemoselective C(sp3)-H activation: Concise route to oxindoles using a carbamoyl chloride precursor. Angew. Chem. Int. Ed., 2012, 51(11), 2763-2766.
[http://dx.doi.org/10.1002/anie.201108889] [PMID: 22302600]
[33]
(a) Chaumontet, M.; Piccardi, R.; Audic, N.; Hitce, J.; Peglion, J.L.; Clot, E.; Baudoin, O. Synthesis of benzocyclobutenes by palladium-catalyzed C-H activation of methyl groups: Method and mechanistic study. J. Am. Chem. Soc., 2008, 130(45), 15157-15166.
[http://dx.doi.org/10.1021/ja805598s] [PMID: 18928284];
(b) Rousseaux, S.; Davi, M.; Sofack-Kreutzer, J.; Pierre, C.; Kefalidis, C.E.; Clot, E.; Fagnou, K.; Baudoin, O. Intramolecular palladium-catalyzed alkane C-H arylation from aryl chlorides. J. Am. Chem. Soc., 2010, 132(31), 10706-10716.
[http://dx.doi.org/10.1021/ja1048847] [PMID: 20681703];
(c) Lafrance, M.; Gorelsky, S.I.; Fagnou, K. High-yielding palladium-catalyzed intramolecular alkane arylation: Reaction development and mechanistic studies. J. Am. Chem. Soc., 2007, 129(47), 14570-14571.
[http://dx.doi.org/10.1021/ja076588s] [PMID: 17985911];
(d) Rousseaux, S.; Gorelsky, S.I.; Chung, B.K.W.; Fagnou, K. Investigation of the mechanism of C(sp3)-H bond cleavage in Pd(0)-catalyzed intramolecular alkane arylation adjacent to amides and sulfonamides. J. Am. Chem. Soc., 2010, 132(31), 10692-10705.
[http://dx.doi.org/10.1021/ja103081n] [PMID: 20681702]
[34]
(a) Pastre, J.C.; Browne, D.L.; Ley, S.V. Flow chemistry syntheses of natural products. Chem. Soc. Rev., 2013, 42(23), 8849-8869.
[http://dx.doi.org/10.1039/c3cs60246j] [PMID: 23999700];
(b) Newton, S.; Carter, C.F.; Pearson, C.M. eAccelerating spirocyclic polyketide synthesis using flow chemistry. Angew. Chem. Int. Ed., 2014, 53, 4915.
[http://dx.doi.org/10.1002/anie.201402056];
(c) Poechlauer, P.; Colberg, J.; Fisher, E.; Jansen, M.; Johnson, M.D.; Koenig, S.G.; Lawler, M.; Laporte, T.; Manley, J.; Martin, B.; O’Kearney-McMullan, A. Pharmaceutical roundtable study demonstrates the value of continuous manufacturing in the design of greener processes. Org. Process Res. Dev., 2013, 17(12), 1472-1478.
[http://dx.doi.org/10.1021/op400245s];
(d) Jiménez-González, C.; Poechlauer, P.; Broxterman, Q.B.; Yang, B.S.; am Ende, D.; Baird, J.; Bertsch, C.; Hannah, R.E.; Dell’Orco, P.; Noorman, H.; Yee, S.; Reintjens, R.; Wells, A.; Massonneau, V.; Manley, J. Key green engineering research areas for sustainable manufacturing: A perspective from pharmaceutical and fine chemicals manufacturers. Org. Process Res. Dev., 2011, 15(4), 900-911.
[http://dx.doi.org/10.1021/op100327d]
[35]
(a) Koy, M.; Bellotti, P.; Das, M.; Glorius, F. N-Heterocyclic carbenes as tunable ligands for catalytic metal surfaces. Nat. Catal., 2021, 4(5), 352-363.
[http://dx.doi.org/10.1038/s41929-021-00607-z];
(b) Nahra, F.; Cazin, C.S.J. Sustainability in Ru- and Pd-based catalytic systems using N-heterocyclic carbenes as ligands. Chem. Soc. Rev., 2021, 50(5), 3094-3142.
[http://dx.doi.org/10.1039/C8CS00836A] [PMID: 33475632];
(c) Hameury, S.; de Frémont, P.; Braunstein, P. Metal complexes with oxygen-functionalized NHC ligands: Synthesis and applications. Chem. Soc. Rev., 2017, 46(3), 632-733.
[http://dx.doi.org/10.1039/C6CS00499G] [PMID: 28083579];
(d) Hopkinson, M.N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature, 2014, 510(7506), 485-496.
[http://dx.doi.org/10.1038/nature13384] [PMID: 24965649]
[36]
Salameh, N.; Ferlin, F.; Valentini, F.; Anastasiou, I.; Vaccaro, L. Waste-minimized continuous-flow synthesis of oxindoles exploiting a polymer-supported N-heterocyclic palladium carbene complex in a CPME/Water azeotrope. ACS Sustain. Chem.Eng., 2022, 10(11), 3766-3776.
[http://dx.doi.org/10.1021/acssuschemeng.2c00550]
[37]
(a) Ferlin, F.; Valentini, F.; Brufani, G.; Lanari, D.; Vaccaro, L. Waste-minimized cyanosilylation of carbonyls using fluoride on polymeric ionic tags in batch and under continuous flow conditions. ACS Sustain. Chem. Eng., 2021, 9(16), 5740-5749.
[http://dx.doi.org/10.1021/acssuschemeng.1c01138];
(b) Valentini, F.; Mahmoudi, H.; Bivona, L.A.; Piermatti, O.; Bagherzadeh, M.; Fusaro, L.; Aprile, C.; Marrocchi, A.; Vaccaro, L. Polymer-supported bis-1,2,4-triazolium ionic tag framework for an efficient Pd(0) catalytic system in biomass derived γ-valerolactone. ACS Sustain. Chem. Eng., 2019, 7(7), 6939-6946.
[http://dx.doi.org/10.1021/acssuschemeng.8b06502];
(c) Mahmoudi, H.; Valentini, F.; Ferlin, F.; Bivona, L.A.; Anastasiou, I.; Fusaro, L.; Aprile, C.; Marrocchi, A.; Vaccaro, L. A tailored polymeric cationic tag–anionic Pd(II) complex as a catalyst for the low-leaching Heck–Mizoroki coupling in flow and in biomass-derived GVL. Green Chem., 2019, 21(2), 355-360.
[http://dx.doi.org/10.1039/C8GC03228A];
(d) Sciosci, D.; Valentini, F.; Ferlin, F.; Chen, S.; Gu, Y.; Piermatti, O.; Vaccaro, L. A heterogeneous and recoverable palladium catalyst to access the regioselective C–H alkenylation of quinoline N-oxides. Green Chem., 2020, 22(19), 6560-6566.
[http://dx.doi.org/10.1039/D0GC02634D]
[38]
(a) Davies, H.M.L.; Beckwith, R.E.J. Catalytic enantioselective C-H activation by means of metal-carbenoid-induced C-H insertion. Chem. Rev., 2003, 103(8), 2861-2904.
[http://dx.doi.org/10.1021/cr0200217] [PMID: 12914484];
(b) Doyle, M.P.; Duffy, R.; Ratnikov, M.; Zhou, L. Catalytic carbene insertion into C-H bonds. Chem. Rev., 2010, 110(2), 704-724.
[http://dx.doi.org/10.1021/cr900239n] [PMID: 19785457];
(c) Davies, H.M.L.; Morton, D. Guiding principles for site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. Chem. Soc. Rev., 2011, 40(4), 1857-1869.
[http://dx.doi.org/10.1039/c0cs00217h] [PMID: 21359404];
(d) Xiao, Q.; Zhang, Y.; Wang, J. Diazo compounds and N-tosylhydrazones: Novel cross-coupling partners in transition-metal-catalyzed reactions. Acc. Chem. Res., 2013, 46(2), 236-247.
[http://dx.doi.org/10.1021/ar300101k] [PMID: 23013153]
[39]
Choi, M.K.W.; Yu, W.Y.; Che, C.M. Ruthenium-catalyzed stereoselective intramolecular carbenoid C-H insertion for β- and γ-lactam formations by decomposition of α-diazoacetamides. Org. Lett., 2005, 7(6), 1081-1084.
[http://dx.doi.org/10.1021/ol050003m] [PMID: 15760144]
[40]
Patel, P.; Borah, G. Synthesis of oxindole from acetanilide via Ir(III)-catalyzed C–H carbenoid functionalization. Chem. Commun., 2017, 53(2), 443-446.
[http://dx.doi.org/10.1039/C6CC08788D] [PMID: 27966703]
[41]
(a) Chan, W.W.; Lo, S.F.; Zhou, Z.; Yu, W.Y. Rh-catalyzed intermolecular carbenoid functionalization of aromatic C-H bonds by α-diazomalonates. J. Am. Chem. Soc., 2012, 134(33), 13565-13568.
[http://dx.doi.org/10.1021/ja305771y] [PMID: 22860697];
(b) Shi, Z.; Koester, D.C.; Boultadakis-Arapinis, M.; Glorius, F. Rh(III)-catalyzed synthesis of multisubstituted isoquinoline and pyridine N-oxides from oximes and diazo compounds. J. Am. Chem. Soc., 2013, 135(33), 12204-12207.
[http://dx.doi.org/10.1021/ja406338r] [PMID: 23889167];
(c) Hu, F.; Xia, Y.; Ye, F.; Liu, Z.; Ma, C.; Zhang, Y.; Wang, J. Rhodium(III)-catalyzed ortho alkenylation of N-phenoxyacetamides with N-tosylhydrazones or diazoesters through C-H activation. Angew. Chem. Int. Ed., 2014, 53(5), 1364-1367.
[http://dx.doi.org/10.1002/anie.201309650] [PMID: 24353090]
[42]
(a) Kim, H.; Park, G.; Park, J.; Chang, S. A facile access to primary alkylamines and anilines via Ir(III)-catalyzed C–H amidation using azidoformates. ACS Catal., 2016, 6(9), 5922-5929.
[http://dx.doi.org/10.1021/acscatal.6b01869];
(b) Kim, J.; Chang, S. Iridium-catalyzed direct C-H amidation with weakly coordinating carbonyl directing groups under mild conditions. Angew. Chem. Int. Ed., 2014, 53(8), 2203-2207.
[http://dx.doi.org/10.1002/anie.201310544] [PMID: 24470125]
[43]
Meldrum, A.N. LIV.—A β-lactonic acid from acetone and malonic acid. J. Chem. Soc. Trans., 1908, 93(0), 598-601.
[http://dx.doi.org/10.1039/CT9089300598]
[44]
Karmakar, U.; Das, D.; Samanta, R. Iridium-catalysed cascade synthesis of oxindoles using diazo compounds: A quick entry to C7-functionalized oxindoles. Eur. J. Org. Chem., 2017, 2017(19), 2780-2788.
[http://dx.doi.org/10.1002/ejoc.201700214]
[45]
(a) Shin, K.; Chang, S. Iridium(III)-catalyzed direct C-7 amination of indolines with organic azides. J. Org. Chem., 2014, 79(24), 12197-12204.
[http://dx.doi.org/10.1021/jo5018475] [PMID: 25219399];
(b) Kim, H.; Shin, K.; Chang, S. Iridium-catalyzed C-H amination with anilines at room temperature: Compatibility of iridacycles with external oxidants. J. Am. Chem. Soc., 2014, 136(16), 5904-5907.
[http://dx.doi.org/10.1021/ja502270y] [PMID: 24702587]
[46]
Xia, Y.; Liu, Z.; Feng, S.; Zhang, Y.; Wang, J. Ir(III)-catalyzed aromatic C–H bond functionalization via metal carbene migratory insertion. J. Org. Chem., 2015, 80(1), 223-236.
[http://dx.doi.org/10.1021/jo5023102] [PMID: 25437770]
[47]
Smout, V.; Peschiulli, A.; Verbeeck, S.; Mitchell, E.A.; Herrebout, W.; Bultinck, P.; Vande Velde, C.M.L.; Berthelot, D.; Meerpoel, L.; Maes, B.U.W. Removal of the pyridine directing group from α-substituted N-(pyridin-2-yl)piperidines obtained via directed Ru-catalyzed sp3 C-H functionalization. J. Org. Chem., 2013, 78(19), 9803-9814.
[http://dx.doi.org/10.1021/jo401521y] [PMID: 24007399]
[48]
(a) Li, L.; Brennessel, W.W.; Jones, W.D. An efficient low-temperature route to polycyclic isoquinoline salt synthesis via C-H activation with [Cp*MCl2]2 (M = Rh, Ir). J. Am. Chem. Soc., 2008, 130(37), 12414-12419.
[http://dx.doi.org/10.1021/ja802415h] [PMID: 18714995];
(b) Li, L.; Brennessel, W.W.; Jones, W.D. C-h activation of phenyl imines and 2-phenylpyridines with [Cp*MCl 2 ] 2 (M = Ir, Rh): Regioselectivity, kinetics, and mechanism. Organometallics, 2009, 28(12), 3492-3500.
[http://dx.doi.org/10.1021/om9000742]
[49]
(a) Hu, F.; Xia, Y.; Ma, C.; Zhang, Y.; Wang, J. C–H bond functionalization based on metal carbene migratory insertion. Chem. Commun., 2015, 51(38), 7986-7995.
[http://dx.doi.org/10.1039/C5CC00497G] [PMID: 25739369];
(b) Frasco, D.A.; Lilly, C.P.; Boyle, P.D.; Ison, E.A. Cp*IrIII-catalyzed oxidative coupling of benzoic acids with alkynes. ACS Catal., 2013, 3(10), 2421-2429.
[http://dx.doi.org/10.1021/cs400656q];
(c) Kang, T.; Kim, Y.; Lee, D.; Wang, Z.; Chang, S. Iridium-catalyzed intermolecular amidation of sp³ C-H bonds: Late-stage functionalization of an unactivated methyl group. J. Am. Chem. Soc., 2014, 136(11), 4141-4144.
[http://dx.doi.org/10.1021/ja501014b] [PMID: 24580093];
(d) Xie, F.; Qi, Z.; Yu, S.; Li, X. Rh(III)- and Ir(III)-catalyzed C-H alkynylation of arenes under chelation assistance J. Am. Chem. Soc, 2014, 136(12), 4780-4787.
[http://dx.doi.org/10.1021/ja501910e] [PMID: 24593822]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy