Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Separation of Channels Subserving Approach and Avoidance/Escape at the Level of the Basal Ganglia and Related Brainstem Structures

Author(s): Véronique Coizet*, Racha Al Tannir, Arnaud Pautrat and Paul G. Overton

Volume 22, Issue 9, 2024

Published on: 24 August, 2023

Page: [1473 - 1490] Pages: 18

DOI: 10.2174/1570159X21666230818154903

Price: $65

Abstract

The basal ganglia have the key function of directing our behavior in the context of events from our environment and/or our internal state. This function relies on afferents targeting the main input structures of the basal ganglia, entering bids for action selection at the level of the striatum or signals for behavioral interruption at the level of the subthalamic nucleus, with behavioral reselection facilitated by dopamine signaling. Numerous experiments have studied action selection in relation to inputs from the cerebral cortex. However, less is known about the anatomical and functional link between the basal ganglia and the brainstem. In this review, we describe how brainstem structures also project to the main input structures of the basal ganglia, namely the striatum, the subthalamic nucleus and midbrain dopaminergic neurons, in the context of approach and avoidance (including escape from threat), two fundamental, mutually exclusive behavioral choices in an animal’s repertoire in which the brainstem is strongly involved. We focus on three particularly well-described loci involved in approach and avoidance, namely the superior colliculus, the parabrachial nucleus and the periaqueductal grey nucleus. We consider what is known about how these structures are related to the basal ganglia, focusing on their projections toward the striatum, dopaminergic neurons and subthalamic nucleus, and explore the functional consequences of those interactions.

Graphical Abstract

[1]
Redgrave, P.; Prescott, T.J.; Gurney, K. The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 1999, 89(4), 1009-1023.
[http://dx.doi.org/10.1016/S0306-4522(98)00319-4] [PMID: 10362291]
[2]
Medina, L.; Reiner, A. Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: implications for the evolution of basal ganglia. Brain Behav. Evol., 1995, 46(4-5), 235-246.
[http://dx.doi.org/10.1159/000113277] [PMID: 8564466]
[3]
Butler, A.B. The evolution of the dorsal thalamus of jawed vertebrates, including mammals: Cladistic analysis and a new hypothesis. Brain Res. Brain Res. Rev., 1994, 19(1), 29-65.
[http://dx.doi.org/10.1016/0165-0173(94)90003-5] [PMID: 8167659]
[4]
Wicht, H.; Northcutt, R.G. An immunohistochemical study of the telencephalon and the diencephalon in a Myxinoid jawless fish, the Pacific hagfish, Eptatretus stouti. Brain Behav. Evol., 1994, 43(3), 140-161.
[http://dx.doi.org/10.1159/000113631] [PMID: 7514941]
[5]
McHaffie, J.; Stanford, T.; Stein, B.; Coizet, V.; Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci., 2005, 28(8), 401-407.
[http://dx.doi.org/10.1016/j.tins.2005.06.006] [PMID: 15982753]
[6]
Hopkins, D.A.; Niessen, L.W. Substantia nigra projections to the reticular formation, superior colliculus and central gray in the rat, cat and monkey. Neurosci. Lett., 1976, 2(5), 253-259.
[http://dx.doi.org/10.1016/0304-3940(76)90156-7] [PMID: 19604767]
[7]
Parent, A.; Hazrati, L.N. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Brain Res. Rev., 1995, 20(1), 91-127.
[http://dx.doi.org/10.1016/0165-0173(94)00007-C] [PMID: 7711769]
[8]
Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci., 1986, 9(1), 357-381.
[http://dx.doi.org/10.1146/annurev.ne.09.030186.002041] [PMID: 3085570]
[9]
Gerfen, C.R.; Wilson, C.J. The basal ganglia. In: Handbook of Chemical Neuroanatomy – Intergrated systems of the CNS; Swanson, L.W.; Bjorklund, A.; Hokfelt, T., Eds.; Elsvier: Amsterdam, 1996; Vol. 12, pp. 371-468.
[10]
Mink, J.W. The basal ganglia: Focused selection and inhibition of competing motor programs. Prog. Neurobiol., 1996, 50(4), 381-425.
[http://dx.doi.org/10.1016/S0301-0082(96)00042-1] [PMID: 9004351]
[11]
Wickens, J. Basal ganglia: structure and computations. Network, 1997, 8(4), R77-R109.
[http://dx.doi.org/10.1088/0954-898X_8_4_001]
[12]
Deniau, J.M.; Chevalier, G. The lamellar organization of the rat substantia nigra pars reticulata: Distribution of projection neurons. Neuroscience, 1992, 46(2), 361-377.
[http://dx.doi.org/10.1016/0306-4522(92)90058-A] [PMID: 1542412]
[13]
Schneider, J.S. Interactions between the basal ganglia, the pontine parabrachial region, and the trigeminal system in cat. Neuroscience, 1986, 19(2), 411-425.
[http://dx.doi.org/10.1016/0306-4522(86)90271-X] [PMID: 3774149]
[14]
Spann, B.M.; Grofova, I. Nigropedunculopontine projection in the rat: An Anterograde tracing study with phaseolus vulgaris-leucoagglutinin (PHA-L). J. Comp. Neurol., 1991, 311(3), 375-388.
[http://dx.doi.org/10.1002/cne.903110308] [PMID: 1720145]
[15]
Albin, R.L.; Young, A.B.; Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci., 1989, 12(10), 366-375.
[http://dx.doi.org/10.1016/0166-2236(89)90074-X] [PMID: 2479133]
[16]
Nambu, A.; Tokuno, H.; Hamada, I.; Kita, H.; Imanishi, M.; Akazawa, T.; Ikeuchi, Y.; Hasegawa, N. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J. Neurophysiol., 2000, 84(1), 289-300.
[http://dx.doi.org/10.1152/jn.2000.84.1.289] [PMID: 10899204]
[17]
Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol., 1998, 80(1), 1-27.
[http://dx.doi.org/10.1152/jn.1998.80.1.1] [PMID: 9658025]
[18]
Schultz, W.; Dayan, P.; Montague, P.R. A neural substrate of prediction and reward. Science, 1997, 275(5306), 1593-1599.
[http://dx.doi.org/10.1126/science.275.5306.1593] [PMID: 9054347]
[19]
Redgrave, P.; Gurney, K. The short-latency dopamine signal: A role in discovering novel actions? Nat. Rev. Neurosci., 2006, 7(12), 967-975.
[http://dx.doi.org/10.1038/nrn2022] [PMID: 17115078]
[20]
Isoda, M.; Hikosaka, O. Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J. Neurosci., 2008, 28(28), 7209-7218.
[http://dx.doi.org/10.1523/JNEUROSCI.0487-08.2008] [PMID: 18614691]
[21]
Tokuno, H.; Takada, M.; Ikai, Y.; Mizuno, N. Direct projections from the deep layers of the superior colliculus to the subthalamic nucleus in the rat. Brain Res., 1994, 639(1), 156-160.
[http://dx.doi.org/10.1016/0006-8993(94)91776-0] [PMID: 8180831]
[22]
Coizet, V.; Graham, J.H.; Moss, J.; Bolam, J.P.; Savasta, M.; McHaffie, J.G.; Redgrave, P.; Overton, P.G. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci., 2009, 29(17), 5701-5709.
[http://dx.doi.org/10.1523/JNEUROSCI.0247-09.2009] [PMID: 19403836]
[23]
Pautrat, A.; Rolland, M.; Barthelemy, M.; Baunez, C.; Sinniger, V.; Piallat, B.; Savasta, M.; Overton, P.G.; David, O.; Coizet, V. Revealing a novel nociceptive network that links the subthalamic nucleus to pain processing. eLife, 2018, 7(7), e36607.
[http://dx.doi.org/10.7554/eLife.36607] [PMID: 30149836]
[24]
Çavdar, S.; Özgür, M.; Çakmak, Y.Ö.; Kuvvet, Y.; Kunt, S.K. Sağlam, G. Afferent projections of the subthalamic nucleus in the rat: Emphasis on bilateral and interhemispheric connections. Acta Neurobiol. Exp. (Warsz.), 2018, 78(3), 251-263.
[http://dx.doi.org/10.21307/ane-2018-023] [PMID: 30295682]
[25]
Smith, Y.; Bevan, M.D.; Shink, E.; Bolam, J.P. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience, 1998, 86(2), 353-387.
[PMID: 9881853]
[26]
Cheruel, F.; Dormont, J.F.; Farin, D. Activity of neurons of the subthalamic nucleus in relation to motor performance in the cat. Exp. Brain Res., 1996, 108(2), 206-220.
[http://dx.doi.org/10.1007/BF00228095] [PMID: 8815030]
[27]
Ryan, L.J.; Clark, K.B. The role of the subthalamic nucleus in the response of globus pallidus neurons to stimulation of the prelimbic and agranular frontal cortices in rats. Exp. Brain Res., 1991, 86(3), 641-651.
[http://dx.doi.org/10.1007/BF00230538] [PMID: 1761097]
[28]
May, P.J. The mammalian superior colliculus: Laminar structure and connections. Prog. Brain Res., 2006, 151, 321-378.
[http://dx.doi.org/10.1016/S0079-6123(05)51011-2] [PMID: 16221594]
[29]
Wilson, M.E.; Toyne, M.J. Retino-tectal and cortico-tectal projections inMacaca mulatta. Brain Res., 1970, 24(3), 395-406.
[http://dx.doi.org/10.1016/0006-8993(70)90181-2] [PMID: 4099749]
[30]
Kelly, J.P.; Gilbert, C.D. The projections of different morphological types of ganglion cells in the cat retina. J. Comp. Neurol., 1975, 163(1), 65-80.
[http://dx.doi.org/10.1002/cne.901630105] [PMID: 1159111]
[31]
Garey, L.J.; Jones, E.G.; Powell, T.P. Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway. J. Neurol. Neurosurg. Psychiatry, 1968, 31(2), 135-157.
[http://dx.doi.org/10.1136/jnnp.31.2.135] [PMID: 5684020]
[32]
Stein, B.E.; Arigbede, M.O. Unimodal and multimodal response properties of neurons in the cat’s superior colliculus. Exp. Neurol., 1972, 36(1), 179-196.
[http://dx.doi.org/10.1016/0014-4886(72)90145-8] [PMID: 4558413]
[33]
Siminoff, R.; Schwassmann, H.O.; Kruger, L. An electrophysiological study of the visual projection to the superior colliculus of the rat. J. Comp. Neurol., 1966, 127(4), 435-444.
[http://dx.doi.org/10.1002/cne.901270402] [PMID: 5968989]
[34]
Feldon, S.; Feldon, P.; Kruger, L. Topography of the retinal projection upon the superior colliculus of the cat. Vision Res., 1970, 10(2), 135-143.
[http://dx.doi.org/10.1016/0042-6989(70)90111-2] [PMID: 5440778]
[35]
Rosa, M.G.P.; Schmid, L.M. Topography and extent of visual-field representation in the superior colliculus of the megachiropteran Pteropus. Vis. Neurosci., 1994, 11(6), 1037-1057.
[http://dx.doi.org/10.1017/S0952523800006878] [PMID: 7841115]
[36]
Wurtz, R.H.; Albano, J.E. Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci., 1980, 3(1), 189-226.
[http://dx.doi.org/10.1146/annurev.ne.03.030180.001201] [PMID: 6774653]
[37]
Hikosaka, O.; Wurtz, R.H. Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. J. Neurophysiol., 1985, 53(1), 266-291.
[http://dx.doi.org/10.1152/jn.1985.53.1.266] [PMID: 2983037]
[38]
Cowie, R.J.; Robinson, D.L. Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus. J. Neurophysiol., 1994, 72(6), 2648-2664.
[http://dx.doi.org/10.1152/jn.1994.72.6.2648] [PMID: 7897481]
[39]
Anderson, E.J.; Rees, G. Neural correlates of spatial orienting in the human superior colliculus. J. Neurophysiol., 2011, 106(5), 2273-2284.
[http://dx.doi.org/10.1152/jn.00286.2011] [PMID: 21753026]
[40]
Gandhi, N.J.; Katnani, H.A. Motor functions of the superior colliculus. Annu. Rev. Neurosci., 2011, 34(1), 205-231.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113728] [PMID: 21456962]
[41]
DesJardin, J.T.; Holmes, A.L.; Forcelli, P.A.; Cole, C.E.; Gale, J.T.; Wellman, L.L.; Gale, K.; Malkova, L. Defense-like behaviors evoked by pharmacological disinhibition of the superior colliculus in the primate. J. Neurosci., 2013, 33(1), 150-155.
[http://dx.doi.org/10.1523/JNEUROSCI.2924-12.2013] [PMID: 23283329]
[42]
Wu, L.Q.; Niu, Y.Q.; Yang, J.; Wang, S.R. Tectal neurons signal impending collision of looming objects in the pigeon. Eur. J. Neurosci., 2005, 22(9), 2325-2331.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04397.x] [PMID: 16262670]
[43]
Kang, H.J.; Li, X.H. Response properties and receptive field organization of collision-sensitive neurons in the optic tectum of bullfrog, Rana catesbeiana. Neurosci. Bull., 2010, 26(4), 304-316.
[http://dx.doi.org/10.1007/s12264-010-0306-8] [PMID: 20651812]
[44]
Zhao, X.; Liu, M.; Cang, J. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron, 2014, 84(1), 202-213.
[http://dx.doi.org/10.1016/j.neuron.2014.08.037] [PMID: 25220812]
[45]
Liu, Y.J.; Wang, Q.; Li, B. Neuronal responses to looming objects in the superior colliculus of the cat. Brain Behav. Evol., 2011, 77(3), 193-205.
[http://dx.doi.org/10.1159/000327045] [PMID: 21546772]
[46]
Billington, J.; Wilkie, R.M.; Field, D.T.; Wann, J.P. Neural processing of imminent collision in humans. Proc. Biol. Sci., 2011, 278(1711), 1476-1481.
[http://dx.doi.org/10.1098/rspb.2010.1895] [PMID: 20980303]
[47]
Comoli, E.; Das Neves Favaro, P.; Vautrelle, N.; Leriche, M.; Overton, P.G.; Redgrave, P. Segregated anatomical input to sub-regions of the rodent superior colliculus associated with approach and defense. Front. Neuroanat., 2012, 6, 9.
[http://dx.doi.org/10.3389/fnana.2012.00009] [PMID: 22514521]
[48]
Redgrave, P.; Odekunle, A.; Dean, P. Tectal cells of origin of predorsal bundle in rat: Location and segregation from ipsilateral descending pathway. Exp. Brain Res., 1986, 63(2), 279-293.
[http://dx.doi.org/10.1007/BF00236845] [PMID: 3093259]
[49]
Redgrave, P.; Mitchell, I.J.; Dean, P. Descending projections from the superior colliculus in rat: A study using orthograde transport of wheatgerm-agglutinin conjugated horseradish peroxidase. Exp. Brain Res., 1987, 68(1), 147-167.
[http://dx.doi.org/10.1007/BF00255241] [PMID: 2826204]
[50]
Redgrave, P.; Dean, P.; Mitchell, I.J.; Odekunle, A.; Clark, A. The projection from superior colliculus to cuneiform area in the rat. Exp. Brain Res., 1988, 72(3), 611-625.
[http://dx.doi.org/10.1007/BF00250606] [PMID: 2466683]
[51]
Chevalier, G.; Deniau, J.M. Spatio-temporal organization of a branched tecto-spinal/tecto-diencephalic neuronal system. Neuroscience, 1984, 12(2), 427-439.
[http://dx.doi.org/10.1016/0306-4522(84)90063-0] [PMID: 6462457]
[52]
Krout, K.E.; Loewy, A.D.; Westby, G.W.; Redgrave, P. Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol., 2001, 431(2), 198-216.
[http://dx.doi.org/10.1002/1096-9861(20010305)431:2<198:AID-CNE1065>3.0.CO;2-8] [PMID: 11170000]
[53]
Yamasaki, D.S.G.; Krauthamer, G.M. Somatosensory neurons projecting from the superior colliculus to the intralaminar thalamus in the rat. Brain Res., 1990, 523(2), 188-194.
[http://dx.doi.org/10.1016/0006-8993(90)91486-Z] [PMID: 2400905]
[54]
Hayes, L.M. Subcortical loops through the basal ganglia are orgainised into segregated channels., Doctoral dissertation, University of Sheffield, 2012.
[55]
Pan, W.X.; Mao, T.; Dudman, J.T. Inputs to the dorsal striatum of the mouse reflect the parallel circuit architecture of the forebrain. Front. Neuroanat., 2010, 4, 147.
[http://dx.doi.org/10.3389/fnana.2010.00147] [PMID: 21212837]
[56]
Schwab, M.; Agid, Y.; Glowinski, J.; Thoenen, H. Retrograde axonal transport of125I-tetanus toxin as a too for tracing fiber connections in the central nervous system; connections of the rostral part of the rat neostriatum. Brain Res., 1977, 126(2), 211-224.
[http://dx.doi.org/10.1016/0006-8993(77)90722-3] [PMID: 67875]
[57]
LeDoux, J.E.; Farb, C.; Ruggiero, D.A. Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J. Neurosci., 1990, 10(4), 1043-1054.
[http://dx.doi.org/10.1523/JNEUROSCI.10-04-01043.1990] [PMID: 2158523]
[58]
LeDoux, J.E.; Farb, C.R.; Romanski, L.M. Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex. Neurosci. Lett., 1991, 134(1), 139-144.
[http://dx.doi.org/10.1016/0304-3940(91)90526-Y] [PMID: 1815147]
[59]
Gangarossa, G.; Castell, L.; Castro, L.; Tarot, P.; Veyrunes, F.; Vincent, P.; Bertaso, F.; Valjent, E. Contrasting patterns of ERK activation in the tail of the striatum in response to aversive and rewarding signals. J. Neurochem., 2019, 151(2), 204-226.
[http://dx.doi.org/10.1111/jnc.14804] [PMID: 31245856]
[60]
Miyamoto, Y.; Katayama, S.; Shigematsu, N.; Nishi, A.; Fukuda, T. Striosome-based map of the mouse striatum that is conformable to both cortical afferent topography and uneven distributions of dopamine D1 and D2 receptor-expressing cells. Brain Struct. Funct., 2018, 223(9), 4275-4291.
[http://dx.doi.org/10.1007/s00429-018-1749-3] [PMID: 30203304]
[61]
Miyamoto, Y.; Nagayoshi, I.; Nishi, A.; Fukuda, T. Three divisions of the mouse caudal striatum differ in the proportions of dopamine D1 and D2 receptor-expressing cells, distribution of dopaminergic axons, and composition of cholinergic and GABAergic interneurons. Brain Struct. Funct., 2019, 224(8), 2703-2716.
[http://dx.doi.org/10.1007/s00429-019-01928-3] [PMID: 31375982]
[62]
Kim, H.F.; Hikosaka, O. Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron, 2013, 79(5), 1001-1010.
[http://dx.doi.org/10.1016/j.neuron.2013.06.044] [PMID: 23954031]
[63]
Kim, H.F.; Ghazizadeh, A.; Hikosaka, O. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories. Front. Neuroanat., 2014, 8, 120.
[http://dx.doi.org/10.3389/fnana.2014.00120] [PMID: 25400553]
[64]
Menegas, W.; Akiti, K.; Amo, R.; Uchida, N.; Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat. Neurosci., 2018, 21(10), 1421-1430.
[http://dx.doi.org/10.1038/s41593-018-0222-1] [PMID: 30177795]
[65]
Li, Z.; Wei, J.X.; Zhang, G.W.; Huang, J.J.; Zingg, B.; Wang, X.; Tao, H.W.; Zhang, L.I. Corticostriatal control of defense behavior in mice induced by auditory looming cues. Nat. Commun., 2021, 12(1), 1040.
[http://dx.doi.org/10.1038/s41467-021-21248-7] [PMID: 33589613]
[66]
Tulloch, I.F.; Arbuthnott, G.W.; Wright, A.K. Topographical organization of the striatonigral pathway revealed by anterograde and retrograde neuroanatomical tracing techniques. J. Anat., 1978, 127(Pt 2), 425-441.
[PMID: 721701]
[67]
Redgrave, P.; Marrow, L.; Dean, P. Topographical organization of the nigrotectal projection in rat: Evidence for segregated channels. Neuroscience, 1992, 50(3), 571-595.
[http://dx.doi.org/10.1016/0306-4522(92)90448-B] [PMID: 1279464]
[68]
Coizet, V.; Comoli, E.; Westby, G.W.M.; Redgrave, P. Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: An electrophysiological investigation in the rat. Eur. J. Neurosci., 2003, 17(1), 28-40.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02415.x] [PMID: 12534966]
[69]
Comoli, E.; Coizet, V.; Boyes, J.; Bolam, J.P.; Canteras, N.S.; Quirk, R.H.; Overton, P.G.; Redgrave, P. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci., 2003, 6(9), 974-980.
[http://dx.doi.org/10.1038/nn1113] [PMID: 12925855]
[70]
Dommett, E.; Coizet, V.; Blaha, C.D.; Martindale, J.; Lefebvre, V.; Walton, N.; Mayhew, J.E.W.; Overton, P.G.; Redgrave, P. How visual stimuli activate dopaminergic neurons at short latency. Science, 2005, 307(5714), 1476-1479.
[http://dx.doi.org/10.1126/science.1107026] [PMID: 15746431]
[71]
Huang, M.; Li, D.; Cheng, X.; Pei, Q.; Xie, Z.; Gu, H.; Zhang, X.; Chen, Z.; Liu, A.; Wang, Y.; Sun, F.; Li, Y.; Zhang, J.; He, M.; Xie, Y.; Zhang, F.; Qi, X.; Shang, C.; Cao, P. The tectonigral pathway regulates appetitive locomotion in predatory hunting in mice. Nat. Commun., 2021, 2012(1), 4409.
[http://dx.doi.org/10.1038/s41467-021-24696-3]
[72]
Solié, C.; Contestabile, A.; Espinosa, P.; Musardo, S.; Bariselli, S.; Huber, C.; Carleton, A.; Bellone, C. Superior colliculus to VTA pathway controls orienting response and influences social interaction in mice. Nat. Commun., 2022, 13(1), 817.
[http://dx.doi.org/10.1038/s41467-022-28512-4] [PMID: 35145124]
[73]
McHaffie, J.G.; Jiang, H.; May, P.J.; Coizet, V.; Overton, P.G.; Stein, B.E.; Redgrave, P. A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience, 2006, 138(1), 221-234.
[http://dx.doi.org/10.1016/j.neuroscience.2005.11.015] [PMID: 16361067]
[74]
May, P.J.; McHaffie, J.G.; Stanford, T.R.; Jiang, H.; Costello, M.G.; Coizet, V.; Hayes, L.M.; Haber, S.N.; Redgrave, P. Tectonigral projections in the primate: A pathway for pre-attentive sensory input to midbrain dopaminergic neurons. Eur. J. Neurosci., 2009, 29(3), 575-587.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06596.x] [PMID: 19175405]
[75]
Vautrelle, N.; Coizet, V.; Leriche, M.; Dahan, L.; Schulz, J.M.; Zhang, Y.F.; Zeghbib, A.; Overton, P.G.; Bracci, E.; Redgrave, P.; Reynolds, J.N.J. Sensory reinforced corticostriatal plasticity. Curr. Neuropharmacol., 2024, 22(9), 1513-1527.
[76]
Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol., 2006, 57(1), 87-115.
[http://dx.doi.org/10.1146/annurev.psych.56.091103.070229] [PMID: 16318590]
[77]
Lee, J.; Wang, W.; Sabatini, B.L. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nat. Neurosci., 2020, 23(11), 1388-1398.
[http://dx.doi.org/10.1038/s41593-020-00712-5] [PMID: 32989293]
[78]
Westlund, K.N.; Bowker, R.M.; Ziegler, M.G.; Coulter, J.D. Noradrenergic projections to the spinal cord of the rat. Brain Res., 1983, 263(1), 15-31.
[http://dx.doi.org/10.1016/0006-8993(83)91196-4] [PMID: 6839168]
[79]
Ren, K.; Dubner, R. Descending control mechanisms. The Senses: A Comprehensive Reference, 2008, 723-762.
[80]
Norgren, R.; Leonard, C.M. Ascending central gustatory pathways. J. Comp. Neurol., 1973, 150(2), 217-237.
[http://dx.doi.org/10.1002/cne.901500208] [PMID: 4723066]
[81]
Weiss, M.S.; Victor, J.D.; Di Lorenzo, P.M. Taste coding in the parabrachial nucleus of the pons in awake, freely licking rats and comparison with the nucleus of the solitary tract. J. Neurophysiol., 2014, 111(8), 1655-1670.
[http://dx.doi.org/10.1152/jn.00643.2013] [PMID: 24381029]
[82]
Arima, Y.; Yokota, S.; Fujitani, M. Lateral parabrachial neurons innervate orexin neurons projecting to brainstem arousal areas in the rat. Sci. Rep., 2019, 9(1), 2830.
[http://dx.doi.org/10.1038/s41598-019-39063-y] [PMID: 30808976]
[83]
Carter, M.E.; Soden, M.E.; Zweifel, L.S.; Palmiter, R.D. Genetic identification of a neural circuit that suppresses appetite. Nature, 2013, 503(7474), 111-114.
[http://dx.doi.org/10.1038/nature12596] [PMID: 24121436]
[84]
Campos, C.A.; Bowen, A.J.; Schwartz, M.W.; Palmiter, R.D. Parabrachial CGRP neurons control meal termination. Cell Metab., 2016, 23(5), 811-820.
[http://dx.doi.org/10.1016/j.cmet.2016.04.006] [PMID: 27166945]
[85]
Chamberlin, N.L.; Saper, C.B. Topographic organization of respiratory responses to glutamate microstimulation of the parabrachial nucleus in the rat. J. Neuro., 1992, 14(11 I), 6500-6510.
[86]
Fuller, P.; Sherman, D.; Pedersen, N.P.; Saper, C.B.; Lu, J. Reassessment of the structural basis of the ascending arousal system. J. Comp. Neurol., 2011, 519(5), 933-956.
[http://dx.doi.org/10.1002/cne.22559] [PMID: 21280045]
[87]
Kaur, S.; Pedersen, N.P.; Yokota, S.; Hur, E.E.; Fuller, P.M.; Lazarus, M.; Chamberlin, N.L.; Saper, C.B. Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. J. Neurosci., 2013, 33(18), 7627-7640.
[http://dx.doi.org/10.1523/JNEUROSCI.0173-13.2013] [PMID: 23637157]
[88]
Saper, C.B. The house alarm. Cell Metab., 2016, 23(5), 754-755.
[http://dx.doi.org/10.1016/j.cmet.2016.04.021] [PMID: 27166934]
[89]
Palmiter, R.D. The Parabrachial nucleus: CGRP neurons function as a general alarm. Trends Neurosci., 2018, 41(5), 280-293.
[http://dx.doi.org/10.1016/j.tins.2018.03.007] [PMID: 29703377]
[90]
Allen, G.V.; Pronych, S.P. Trigeminal autonomic pathways involved in nociception-induced reflex cardiovascular responses. Brain Res., 1997, 754(1-2), 269-278.
[http://dx.doi.org/10.1016/S0006-8993(97)00091-7] [PMID: 9134984]
[91]
Allen, G.V.; Barbrick, B.; Esser, M.J. Trigeminal-parabrachial connections: possible pathway for nociception-induced cardiovascular reflex responses. Brain Res., 1996, 715(1-2), 125-135.
[http://dx.doi.org/10.1016/0006-8993(95)01580-9] [PMID: 8739631]
[92]
Bernard, J.F.; Peschanski, M.; Besson, J.M. A possible spino (trigemino)-ponto-amygdaloid pathway for pain. Neurosci. Lett., 1989, 100(1-3), 83-88.
[http://dx.doi.org/10.1016/0304-3940(89)90664-2] [PMID: 2474780]
[93]
Bernard, J.F.; Huang, G.F.; Besson, J.M. The parabrachial area: Electrophysiological evidence for an involvement in visceral nociceptive processes. J. Neurophysiol., 1994, 71(5), 1646-1660.
[http://dx.doi.org/10.1152/jn.1994.71.5.1646] [PMID: 8064340]
[94]
Bester, H.; Menendez, L.; Besson, J.M.; Bernard, J.F. Spino (trigemino) parabrachiohypothalamic pathway: electrophysiological evidence for an involvement in pain processes. J. Neurophysiol., 1995, 73(2), 568-585.
[http://dx.doi.org/10.1152/jn.1995.73.2.568] [PMID: 7760119]
[95]
Klop, E.M.; Mouton, L.J.; Hulsebosch, R.; Boers, J.; Holstege, G. In cat four times as many lamina I neurons project to the parabrachial nuclei and twice as many to the periaqueductal gray as to the thalamus. Neuroscience, 2005, 134(1), 189-197.
[http://dx.doi.org/10.1016/j.neuroscience.2005.03.035] [PMID: 15953685]
[96]
Spike, R.C.; Puskár, Z.; Andrew, D.; Todd, A.J. A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur. J. Neurosci., 2003, 18(9), 2433-2448.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02981.x] [PMID: 14622144]
[97]
Bernard, J.F.; Besson, J.M. The spino(trigemino)pontoamygdaloid pathway: Electrophysiological evidence for an involvement in pain processes. J. Neurophysiol., 1990, 63(3), 473-490.
[http://dx.doi.org/10.1152/jn.1990.63.3.473] [PMID: 2329357]
[98]
Hunt, S.P.; Mantyh, P.W. The molecular dynamics of pain control. Nat. Rev. Neurosci., 2001, 2(2), 83-91.
[http://dx.doi.org/10.1038/35053509] [PMID: 11252998]
[99]
Yasui, Y.; Saper, C.B.; Cechetto, D.F. Calcitonin gene-related peptide immunoreactivity in the visceral sensory cortex, thalamus, and related pathways in the rat. J. Comp. Neurol., 1989, 290(4), 487-501.
[http://dx.doi.org/10.1002/cne.902900404] [PMID: 2613940]
[100]
Deng, J.; Zhou, H.; Lin, J.K.; Shen, Z.X.; Chen, W.Z.; Wang, L.H.; Li, Q.; Mu, D.; Wei, Y.C.; Xu, X.H.; Sun, Y.G. The parabrachial nucleus directly channels spinal nociceptive signals to the intralaminar thalamic nuclei, but not the amygdala. Neuron, 2020, 107(5), 909-923.e6.
[http://dx.doi.org/10.1016/j.neuron.2020.06.017] [PMID: 32649865]
[101]
Han, S.; Soleiman, M.T.; Soden, M.E.; Zweifel, L.S.; Palmiter, R.D. Elucidating an affective pain circuit that creates a threat memory. Cell, 2015, 162(2), 363-374.
[http://dx.doi.org/10.1016/j.cell.2015.05.057] [PMID: 26186190]
[102]
Barik, A.; Thompson, J.H.; Seltzer, M.; Ghitani, N.; Chesler, A.T. A brainstem-spinal circuit controlling nocifensive behavior. Neuron, 2018, 100(6), 1491-1503.e3.
[http://dx.doi.org/10.1016/j.neuron.2018.10.037] [PMID: 30449655]
[103]
Chen, J.Y.; Campos, C.A.; Jarvie, B.C.; Palmiter, R.D. Parabrachial CGRP neurons establish and sustain aversive taste memories. Neuron, 2018, 100(4), 891-899.e5.
[http://dx.doi.org/10.1016/j.neuron.2018.09.032] [PMID: 30344042]
[104]
Gauriau, C.; Bernard, J.F. Pain pathways and parabrachial circuits in the rat. Exp. Physiol., 2002, 87(2), 251-258.
[http://dx.doi.org/10.1113/eph8702357] [PMID: 11856971]
[105]
Roeder, Z.; Chen, Q.; Davis, S.; Carlson, J.D.; Tupone, D.; Heinricher, M.M. Parabrachial complex links pain transmission to descending pain modulation. Pain, 2016, 157(12), 2697-2708.
[http://dx.doi.org/10.1097/j.pain.0000000000000688] [PMID: 27657698]
[106]
Campos, C.A.; Bowen, A.J.; Roman, C.W.; Palmiter, R.D. Encoding of danger by parabrachial CGRP neurons. Nature, 2018, 555(7698), 617-622.
[http://dx.doi.org/10.1038/nature25511] [PMID: 29562230]
[107]
Chiang, M.C.; Bowen, A.; Schier, L.A.; Tupone, D.; Uddin, O.; Heinricher, M.M. Parabrachial complex: A hub for pain and aversion. J. Neurosci., 2019, 39(42), 8225-8230.
[http://dx.doi.org/10.1523/JNEUROSCI.1162-19.2019] [PMID: 31619491]
[108]
Hermanson, O.; Blomqvist, A. Preproenkephalin messenger RNA-expressing neurons in the rat parabrachial nucleus: subnuclear organization and projections to the intralaminar thalamus. Neuroscience, 1997, 81(3), 803-812.
[http://dx.doi.org/10.1016/S0306-4522(97)00241-8] [PMID: 9316029]
[109]
Krout, K.E.; Jansen, A.S.P.; Loewy, A.D. Periaqueductal gray matter projection to the parabrachial nucleus in rat. J. Comp. Neurol., 1998, 401(4), 437-454.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19981130)401:4<437:AID-CNE2>3.0.CO;2-5] [PMID: 9826272]
[110]
Krout, K.E.; Loewy, A.D. Parabrachial nucleus projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol., 2000, 428(3), 475-494.
[http://dx.doi.org/10.1002/1096-9861(20001218)428:3<475:AID-CNE6>3.0.CO;2-9] [PMID: 11074446]
[111]
Saper, C.B. The spinoparabrachial pathway: Shedding new light on an old path. J. Comp. Neurol., 1995, 353(4), 477-479.
[http://dx.doi.org/10.1002/cne.903530402] [PMID: 7759611]
[112]
Fulwiler, C.E.; Saper, C.B. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res. Brain Res. Rev., 1984, 7(3), 229-259.
[http://dx.doi.org/10.1016/0165-0173(84)90012-2] [PMID: 6478256]
[113]
Esser, M.J.; Pronych, S.P.; Allen, G.V. Trigeminal-reticular connections: Possible pathways for nociception-induced cardiovascular reflex responses in the rat. J. Comp. Neurol., 1998, 391(4), 526-544.
[PMID: 9486829]
[114]
Benarroch, E.E. Parabrachial nuclear complex. Neurology, 2016, 86(7), 676-683.
[http://dx.doi.org/10.1212/WNL.0000000000002393] [PMID: 26791152]
[115]
Bourgeais, L.; Monconduit, L.; Villanueva, L.; Bernard, J.F. Parabrachial internal lateral neurons convey nociceptive messages from the deep laminas of the dorsal horn to the intralaminar thalamus. J. Neurosci., 2001, 21(6), 2159-2165.
[http://dx.doi.org/10.1523/JNEUROSCI.21-06-02159.2001] [PMID: 11245700]
[116]
Bernard, J.F.; Dallel, R.; Raboisson, P.; Villanueva, L.; Bars, D.L. Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal graye. A PHA-L study in the rat. J. Comp. Neurol., 1995, 353(4), 480-505.
[http://dx.doi.org/10.1002/cne.903530403] [PMID: 7759612]
[117]
Pauli, J.L.; Chen, J.Y.; Basiri, M.L.; Park, S.; Carter, M.E.; Sanz, E.; McKnight, G.S.; Stuber, G.D.; Palmiter, R.D. Molecular and anatomical characterization of parabrachial neurons and their axonal projections. eLife, 2022, 11, e81868.
[http://dx.doi.org/10.7554/eLife.81868] [PMID: 36317965]
[118]
McElvain, L.E.; Chen, Y.; Moore, J.D.; Brigidi, G.S.; Bloodgood, B.L.; Lim, B.K.; Costa, R.M.; Kleinfeld, D. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron, 2021, 109(10), 1721-1738.e4.
[http://dx.doi.org/10.1016/j.neuron.2021.03.017] [PMID: 33823137]
[119]
Freeman, A.S.; Bunney, B.S. Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin. Brain Res., 1987, 405(1), 46-55.
[http://dx.doi.org/10.1016/0006-8993(87)90988-7] [PMID: 3032350]
[120]
Horvitz, J.C.; Stewart, T.; Jacobs, B.L. Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Res., 1997, 759(2), 251-258.
[http://dx.doi.org/10.1016/S0006-8993(97)00265-5] [PMID: 9221945]
[121]
Schultz, W. Reward signaling by dopamine neurons. Neuroscientist, 2001, 7(4), 293-302.
[http://dx.doi.org/10.1177/107385840100700406] [PMID: 11488395]
[122]
Schultz, W.; Romo, R. Responses of nigrostriatal dopamine neurons to high-intensity somatosensory stimulation in the anesthetized monkey. J. Neurophysiol., 1987, 57(1), 201-217.
[http://dx.doi.org/10.1152/jn.1987.57.1.201] [PMID: 3559672]
[123]
Coizet, V.; Dommett, E.J.; Redgrave, P.; Overton, P.G. Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat. Neuroscience, 2006, 139(4), 1479-1493.
[http://dx.doi.org/10.1016/j.neuroscience.2006.01.030] [PMID: 16516396]
[124]
Ungless, M.A.; Magill, P.J.; Bolam, J.P. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science, 2004, 303(5666), 2040-2042.
[http://dx.doi.org/10.1126/science.1093360] [PMID: 15044807]
[125]
Coizet, V.; Dommett, E.J.; Klop, E.M.; Redgrave, P.; Overton, P.G. The parabrachial nucleus is a critical link in the transmission of short latency nociceptive information to midbrain dopaminergic neurons. Neuroscience, 2010, 168(1), 263-272.
[http://dx.doi.org/10.1016/j.neuroscience.2010.03.049] [PMID: 20363297]
[126]
Huang, D.; Grady, F.S.; Peltekian, L.; Laing, J.J.; Geerling, J.C. Efferent projections of CGRP/Calca ‐expressing parabrachial neurons in mice. J. Comp. Neurol., 2021, 529(11), 2911-2957.
[http://dx.doi.org/10.1002/cne.25136] [PMID: 33715169]
[127]
Yang, H.; de Jong, J.W.; Cerniauskas, I.; Peck, J.R.; Lim, B.K.; Gong, H.; Fields, H.L.; Lammel, S. Pain modulates dopamine neurons via a spinal–parabrachial–mesencephalic circuit. Nat. Neurosci., 2021, 24(10), 1402-1413.
[http://dx.doi.org/10.1038/s41593-021-00903-8] [PMID: 34373644]
[128]
Zhang, L.; Wang, J.; Niu, C.; Zhang, Y.; Zhu, T.; Huang, D.; Ma, J.; Sun, H.; Gamper, N.; Du, X.; Zhang, H. Activation of parabrachial nucleus - ventral tegmental area pathway underlies the comorbid depression in chronic neuropathic pain in mice. Cell Rep., 2021, 37(5), 109936.
[http://dx.doi.org/10.1016/j.celrep.2021.109936] [PMID: 34731609]
[129]
Kaufling, J.; Veinante, P.; Pawlowski, S.A.; Freund-Mercier, M.J.; Barrot, M. Afferents to the GABAergic tail of the ventral tegmental area in the rat. J. Comp. Neurol., 2009, 513(6), 597-621.
[http://dx.doi.org/10.1002/cne.21983] [PMID: 19235223]
[130]
Li, H.; Vento, P.J.; Parrilla-Carrero, J.; Pullmann, D.; Chao, Y.S.; Eid, M.; Jhou, T.C. Three rostromedial tegmental afferents drive triply dissociable aspects of punishment learning and aversive valence encoding. Neuron, 2019, 104(5), 987-999.e4.
[http://dx.doi.org/10.1016/j.neuron.2019.08.040] [PMID: 31627985]
[131]
Kelland, M.D.; Freeman, A.S.; Rubin, J.; Chiodo, L.A. Ascending afferent regulation of rat midbrain dopamine neurons. Brain Res. Bull., 1993, 31(5), 539-546.
[http://dx.doi.org/10.1016/0361-9230(93)90121-Q] [PMID: 8495379]
[132]
Sun, L.; Liu, R.; Guo, F.; Wen, M.; Ma, X.; Li, K.; Sun, H.; Xu, C.; Li, Y.; Wu, M.; Zhu, Z.; Li, X.; Yu, Y.; Chen, Z.; Li, X.; Duan, S. Parabrachial nucleus circuit governs neuropathic pain-like behavior. Nat. Commun., 2020, 11(1), 5974.
[http://dx.doi.org/10.1038/s41467-020-19767-w] [PMID: 33239627]
[133]
Saper, C.B.; Loewy, A.D. Efferent connections of the parabrachial nucleus in the rat. Brain Res., 1980, 197(2), 291-317.
[http://dx.doi.org/10.1016/0006-8993(80)91117-8] [PMID: 7407557]
[134]
Halsell, C.B. Organization of parabrachial nucleus efferents to the thalamus and amygdala in the golden hamster. J. Comp. Neurol., 1992, 317(1), 57-78.
[http://dx.doi.org/10.1002/cne.903170105] [PMID: 1374087]
[135]
Al Tannir, R.; Pautrat, A.; Baufreton, J.; Overton, P.G.; Coizet, V. The subthalamic nucleus: A hub for sensory control via short three-lateral loop connections with the brainstem? Curr. Neuropharmacol., 2022, 2022 Online ahead of print
[http://dx.doi.org/10.2174/1570159X20666220718113548] [PMID: 35850655]
[136]
Jahanshahi, M.; Obeso, I.; Baunez, C.; Alegre, M.; Krack, P. Parkinson’s disease, the subthalamic nucleus, inhibition, and impulsivity. Mov. Disord., 2015, 30(2), 128-140.
[http://dx.doi.org/10.1002/mds.26049] [PMID: 25297382]
[137]
Carrive, P. The periaqueductal gray and defensive behavior: Functional representation and neuronal organization. Behav. Brain Res., 1993, 58(1-2), 27-47.
[http://dx.doi.org/10.1016/0166-4328(93)90088-8] [PMID: 8136048]
[138]
Bandler, R.; Shipley, M.T. Columnar organization in the midbrain periaqueductal gray: Modules for emotional expression? Trends Neurosci., 1994, 17(9), 379-389.
[http://dx.doi.org/10.1016/0166-2236(94)90047-7] [PMID: 7817403]
[139]
Koutsikou, S.; Apps, R.; Lumb, B.M. Top down control of spinal sensorimotor circuits essential for survival. J. Physiol., 2017, 595(13), 4151-4158.
[http://dx.doi.org/10.1113/JP273360] [PMID: 28294351]
[140]
Silva, C.; McNaughton, N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog. Neurobiol., 2019, 177, 33-72.
[http://dx.doi.org/10.1016/j.pneurobio.2019.02.001] [PMID: 30786258]
[141]
Keay, K.A.; Bandler, R. Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci. Biobehav. Rev., 2001, 25(7-8), 669-678.
[http://dx.doi.org/10.1016/S0149-7634(01)00049-5] [PMID: 11801292]
[142]
Keay, K.A.; Crowfoot, L.J.; Floyd, N.S.; Henderson, L.A.; Christie, M.J.; Bandler, R. Cardiovascular effects of microinjections of opioid agonists into the ‘Depressor Region’ of the ventrolateral periaqueductal gray region. Brain Res., 1997, 762(1-2), 61-71.
[http://dx.doi.org/10.1016/S0006-8993(97)00285-0] [PMID: 9262159]
[143]
Tovote, P.; Esposito, M.S.; Botta, P.; Chaudun, F.; Fadok, J.P.; Markovic, M.; Wolff, S.B.E.; Ramakrishnan, C.; Fenno, L.; Deisseroth, K.; Herry, C.; Arber, S.; Lüthi, A. Midbrain circuits for defensive behaviour. Nature, 2016, 534(7606), 206-212.
[http://dx.doi.org/10.1038/nature17996] [PMID: 27279213]
[144]
La-Vu, M.Q.; Sethi, E.; Maesta-Pereira, S.; Schuette, P.J.; Tobias, B.C.; Reis, F.M.C.V.; Wang, W.; Torossian, A.; Bishop, A.; Leonard, S.J.; Lin, L.; Cahill, C.M.; Adhikari, A. Sparse genetically defined neurons refine the canonical role of periaqueductal gray columnar organization. eLife, 2022, 11, e77115.
[http://dx.doi.org/10.7554/eLife.77115] [PMID: 35674316]
[145]
Tracey, I.; Ploghaus, A.; Gati, J.S.; Clare, S.; Smith, S.; Menon, R.S.; Matthews, P.M. Imaging attentional modulation of pain in the periaqueductal gray in humans. J. Neurosci., 2002, 22(7), 2748-2752.
[http://dx.doi.org/10.1523/JNEUROSCI.22-07-02748.2002] [PMID: 11923440]
[146]
Jürgens, U. The neural control of vocalization in mammals: A review. J. Voice, 2009, 23(1), 1-10.
[http://dx.doi.org/10.1016/j.jvoice.2007.07.005] [PMID: 18207362]
[147]
Paterson, D.J. Defining the neurocircuitry of exercise hyperpnoea. J. Physiol., 2014, 592(3), 433-444.
[http://dx.doi.org/10.1113/jphysiol.2013.261586] [PMID: 23918772]
[148]
Subramanian, H.H. Descending control of the respiratory neuronal network by the midbrain periaqueductal grey in the rat in vivo. J. Physiol., 2013, 591(1), 109-122.
[http://dx.doi.org/10.1113/jphysiol.2012.245217] [PMID: 23129795]
[149]
Faull, O.K.; Subramanian, H.H.; Ezra, M.; Pattinson, K.T.S. The midbrain periaqueductal gray as an integrative and interoceptive neural structure for breathing. Neurosci. Biobehav. Rev., 2019, 98, 135-144.
[http://dx.doi.org/10.1016/j.neubiorev.2018.12.020] [PMID: 30611797]
[150]
Bowery, N.G.; Hudson, A.L.; Price, G.W. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience, 1987, 20(2), 365-383.
[http://dx.doi.org/10.1016/0306-4522(87)90098-4] [PMID: 3035421]
[151]
Samineni, V.K.; Grajales-Reyes, J.G.; Copits, B.A.; O’Brian, D.E.; Trigg, S.L.; Gomez, A.M.; Bruchas, M.R.; Gereau, R.W. Divergent modulation of nociception by glutamatergic and GABAergic neuronal subpopulations in the periaqueductal gray. eNeuro, 2017, 4(2)
[http://dx.doi.org/10.1523/ENEURO.0129-16.2017]
[152]
McNally, G.P.; Johansen, J.P.; Blair, H.T. Placing prediction into the fear circuit. Trends Neurosci., 2011, 34(6), 283-292.
[http://dx.doi.org/10.1016/j.tins.2011.03.005] [PMID: 21549434]
[153]
Wright, K.M.; McDannald, M.A. Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output. eLife, 2019, 8, e45013.
[http://dx.doi.org/10.7554/eLife.45013] [PMID: 30843787]
[154]
Yeh, L.F.; Ozawa, T.; Johansen, J.P. Functional organization of the midbrain periaqueductal gray for regulating aversive memory formation. Mol. Brain, 2021, 14(1), 136.
[http://dx.doi.org/10.1186/s13041-021-00844-0] [PMID: 34496926]
[155]
Krout, K.E.; Loewy, A.D. Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol., 2000, 424(1), 111-141.
[http://dx.doi.org/10.1002/1096-9861(20000814)424:1<111:AID-CNE9>3.0.CO;2-3] [PMID: 10888743]
[156]
Smith, Y.; Raju, D.V.; Pare, J.F.; Sidibe, M. The thalamostriatal system: A highly specific network of the basal ganglia circuitry. Trends Neurosci., 2004, 27(9), 520-527.
[http://dx.doi.org/10.1016/j.tins.2004.07.004] [PMID: 15331233]
[157]
Vertes, R.P.; Hoover, W.B. Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J. Comp. Neurol., 2008, 508(2), 212-237.
[http://dx.doi.org/10.1002/cne.21679] [PMID: 18311787]
[158]
Cameron, A.A.; Khan, I.A.; Westlund, K.N.; Willis, W.D. The efferent projections of the periaqueductal gray in the rat: APhaseolus vulgaris-leucoagglutinin study. II. Descending projections. J. Comp. Neurol., 1995, 351(4), 585-601.
[http://dx.doi.org/10.1002/cne.903510408] [PMID: 7721985]
[159]
Geisler, S.; Zahm, D.S. Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J. Comp. Neurol., 2005, 490(3), 270-294.
[http://dx.doi.org/10.1002/cne.20668] [PMID: 16082674]
[160]
Geisler, S.; Derst, C.; Veh, R.W.; Zahm, D.S. Glutamatergic afferents of the ventral tegmental area in the rat. J. Neurosci., 2007, 27(21), 5730-5743.
[http://dx.doi.org/10.1523/JNEUROSCI.0012-07.2007] [PMID: 17522317]
[161]
Kender, R.G.; Harte, S.E.; Munn, E.M.; Borszcz, G.S. Affective analgesia following muscarinic activation of the ventral tegmental area in rats. J. Pain, 2008, 9(7), 597-605.
[http://dx.doi.org/10.1016/j.jpain.2008.01.334] [PMID: 18387853]
[162]
Li, C.; Sugam, J.A.; Lowery-Gionta, E.G.; McElligott, Z.A.; McCall, N.M.; Lopez, A.J.; McKlveen, J.M.; Pleil, K.E.; Kash, T.L. Mu opioid receptor modulation of dopamine neurons in the periaqueductal gray/dorsal raphe: A role in regulation of pain. Neuropsychopharmacology, 2016, 41(8), 2122-2132.
[http://dx.doi.org/10.1038/npp.2016.12] [PMID: 26792442]
[163]
Pezze, M.; Feldon, J. Mesolimbic dopaminergic pathways in fear conditioning. Prog. Neurobiol., 2004, 74(5), 301-320.
[http://dx.doi.org/10.1016/j.pneurobio.2004.09.004] [PMID: 15582224]
[164]
Tan, K.R.; Yvon, C.; Turiault, M.; Mirzabekov, J.J.; Doehner, J.; Labouèbe, G.; Deisseroth, K.; Tye, K.M.; Lüscher, C. GABA neurons of the VTA drive conditioned place aversion. Neuron, 2012, 73(6), 1173-1183.
[http://dx.doi.org/10.1016/j.neuron.2012.02.015] [PMID: 22445344]
[165]
Ntamati, N.R.; Creed, M.; Achargui, R.; Lüscher, C. Correction: Periaqueductal efferents to dopamine and GABA neurons of the VTA. PLoS One, 2019, 14(7), e0219476.
[http://dx.doi.org/10.1371/journal.pone.0219476] [PMID: 31269079]
[166]
Suckow, S.K.; Deichsel, E.L.; Ingram, S.L.; Morgan, M.M.; Aicher, S.A. Columnar distribution of catecholaminergic neurons in the ventrolateral periaqueductal gray and their relationship to efferent pathways. Synapse, 2013, 67(2), 94-108.
[http://dx.doi.org/10.1002/syn.21624] [PMID: 23152302]
[167]
Omelchenko, N.; Sesack, S.R. Periaqueductal gray afferents synapse onto dopamine and GABA neurons in the rat ventral tegmental area. J. Neurosci. Res., 2010, 88(5), 981-991.
[PMID: 19885830]
[168]
Waung, M.W.; Margolis, E.B.; Charbit, A.R.; Fields, H.L. A Midbrain circuit that mediates headache aversiveness in rats. Cell Rep., 2019, 28(11), 2739-2747.e4.
[http://dx.doi.org/10.1016/j.celrep.2019.08.009] [PMID: 31509737]
[169]
Goodale, M.A. How (and why) the visual control of action differs from visual perception. Proc. Biol. Sci., 2014, 281(1785), 20140337.
[http://dx.doi.org/10.1098/rspb.2014.0337] [PMID: 24789899]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy