Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Myricitrin versus EGCG in the Treatment of Obesity: Target Mining and Molecular Mechanism Exploring based on Network Pharmacology

Author(s): Peipei Yin, Jiangping Huang, Kang Yang, Chuang Deng and Lingguang Yang*

Volume 29, Issue 24, 2023

Published on: 29 August, 2023

Page: [1939 - 1957] Pages: 19

DOI: 10.2174/1381612829666230817145742

Price: $65

Abstract

Background: Myricitrin is a flavonol glycoside possessing beneficial effects on obesity, a rising global health issue that affects millions of people worldwide. However, the involving target and mechanism remain unclear.

Objective: In the present study, the anti-obesity targets and molecular mechanisms of Myricitrin, along with another flavanol Epigallocatechin gallate (EGCG), were explored through network pharmacology, bioinformatics, and molecular docking.

Methods: The potential targets for Myricitrin and EGCG were obtained from Pharmmaper, SwissTargetPrediction, TargetNet, SEA, Super-PRED, TCMSP, and STICH databases. Meanwhile, DEG targets were retrieved from GEO datasets, and obesity targets were collected from DrugBank, TTD, DisGeNet, OMIM, GeneCards, PharmGKB, and CTD databases. GO and KEGG pathway enrichment analyses were conducted through Metascape online tool. Protein-protein interaction (PPI) networks were also constructed for compound, DEG, and obesity targets to screen the core targets through MCODE analysis. The further screened-out key targets were finally verified through the compound-target-pathway-disease network, mRNA expression level, target-organ correlation, and molecular docking analyses.

Results: In total, 538 and 660 targets were identified for Myricitrin and EGCG, respectively, and 725 DEG targets and 1880 obesity targets were retrieved. GO and KEGG analysis revealed that Myricitrin and EGCG targets were enriched in the pathways correlating with obesity, cancer, diabetes, and cardiovascular disease. Furthermore, the intersection core targets for Myricitrin and EGCG function mainly through the regulation of responses to hormones and involving pathways in cancer. Above all, androgen receptor (AR), cyclin D1 (CCND1), early growth response protein 1 (EGR1), and estrogen receptor (ERS1) were identified as key targets in the compound-target-pathway-disease network for both Myricitrin and EGCG, with significant different mRNA expression between weight loss and control groups. Target-organ correlation analysis exhibited that AR and CCND1 showed high expression in adipocytes. Molecular docking also revealed good binding abilities between Myricitrin and EGCG, and all four receptor proteins.

Conclusion: The present research integrated network pharmacology and bioinformatics approach to reveal the key targets of Myricitrin and EGCG against obesity. The results provided novel insights into the molecular mechanism of Myricitrin and EGCG in obesity prevention and treatment and laid the foundations for the exploitation of flavonoid-containing herbal resources.

« Previous
[1]
Cercato C, Fonseca FA. Cardiovascular risk and obesity. Diabetol Metab Syndr 2019; 11(1): 74.
[http://dx.doi.org/10.1186/s13098-019-0468-0] [PMID: 31467596]
[2]
Ahmad MN, Zawatia AA. Current prospects of metabolically healthy obesity. Obes Med 2021; 25: 100361.
[3]
Rubino F, Puhl RM, Cummings DE, et al. Joint international consensus statement for ending stigma of obesity. Nat Med 2020; 26(4): 485-97.
[http://dx.doi.org/10.1038/s41591-020-0803-x] [PMID: 32127716]
[4]
Silva KR, Baptista LS. Adipose-derived stromal/stem cells from different adipose depots in obesity development. World J Stem Cells 2019; 11(3): 147-66.
[http://dx.doi.org/10.4252/wjsc.v11.i3.147] [PMID: 30949294]
[5]
Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: A review. Obes Rev 2007; 8(1): 21-34.
[http://dx.doi.org/10.1111/j.1467-789X.2006.00270.x] [PMID: 17212793]
[6]
Venkatesh VS, Grossmann M, Zajac JD, Davey RA. The role of the androgen receptor in the pathogenesis of obesity and its utility as a target for obesity treatments. Obes Rev 2022; 23(6): e13429.
[http://dx.doi.org/10.1111/obr.13429] [PMID: 35083843]
[7]
Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol Metab 2014; 25(6): 293-302.
[http://dx.doi.org/10.1016/j.tem.2014.04.001] [PMID: 24793638]
[8]
White UA, Stephens JM. Transcriptional factors that promote formation of white adipose tissue. Mol Cell Endocrinol 2010; 318(1-2): 10-4.
[http://dx.doi.org/10.1016/j.mce.2009.08.023] [PMID: 19733624]
[9]
Borah AK, Sharma P, Singh A, Kalita KJ, Saha S, Chandra Borah J. Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. J Ethnopharmacol 2021; 280: 114410.
[http://dx.doi.org/10.1016/j.jep.2021.114410] [PMID: 34273447]
[10]
Ma R, Zhang X, Zhang K, Wang Y. Effects of myricitrin and relevant molecular mechanisms. Curr Stem Cell Res Ther 2020; 15(1): 11-7.
[http://dx.doi.org/10.2174/1574888X14666181126103338] [PMID: 30474534]
[11]
Gao J, Liu C, Zhang H, Sun Z, Wang R. Myricitrin exhibits anti-atherosclerotic and anti-hyperlipidemic effects in diet-induced hypercholesterolemic rats. AMB Express 2019; 9(1): 204.
[http://dx.doi.org/10.1186/s13568-019-0924-0] [PMID: 31865448]
[12]
Shen C, Xu M, Xu S, et al. Myricitrin inhibits fibroblast-like synoviocyte-mediated rheumatoid synovial inflammation and joint destruction by targeting AIM2. Front Pharmacol 2022; 13: 905376.
[http://dx.doi.org/10.3389/fphar.2022.905376] [PMID: 36120327]
[13]
Hwang IW, Chung SK. Isolation and identification of myricitrin, an antioxidant flavonoid, from daebong persimmon peel. Prev Nutr Food Sci 2018; 23(4): 341-6.
[http://dx.doi.org/10.3746/pnf.2018.23.4.341] [PMID: 30675464]
[14]
Domitrović R, Rashed K, Cvijanović O, Vladimir-Knežević S, Škoda M, Višnić A. Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chem Biol Interact 2015; 230: 21-9.
[http://dx.doi.org/10.1016/j.cbi.2015.01.030] [PMID: 25656916]
[15]
Perdomo RT, Defende CP, da Silva Mirowski P, et al. Myricitrin from Combretum lanceolatum exhibits inhibitory effect on DNA- Topoisomerase Type II α and protective effect against in vivo doxorubicin-induced mutagenicity. J Med Food 2021; 24(3): 273-81.
[http://dx.doi.org/10.1089/jmf.2020.0033] [PMID: 32543997]
[16]
Wang M, Sun G, Du Y, et al. Myricitrin protects cardiomyocytes from hypoxia/reoxygenation injury: Involvement of heat shock protein 90. Front Pharmacol 2017; 8: 353.
[http://dx.doi.org/10.3389/fphar.2017.00353] [PMID: 28642708]
[17]
Chen W, Zhuang J, Li Y, Shen Y, Zheng X. Myricitrin protects against peroxynitrite-mediated DNA damage and cytotoxicity in astrocytes. Food Chem 2013; 141(2): 927-33.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.033] [PMID: 23790869]
[18]
Shen Y, Shen X, Cheng Y, Liu Y. Myricitrin pretreatment ameliorates mouse liver ischemia reperfusion injury. Int Immunopharmacol 2020; 89(Pt A): 107005.
[http://dx.doi.org/10.1016/j.intimp.2020.107005] [PMID: 33045574]
[19]
Gong J, Luo S, Zhao S, Yin S, Li X, Mou T. Myricitrin attenuates memory impairment in a rat model of sepsis-associated encephalopathy via the NLRP3/Bax/Bcl pathway. Folia Neuropathol 2019; 57(4): 327-34.
[http://dx.doi.org/10.5114/fn.2019.89856] [PMID: 32337945]
[20]
Zhao WH, Gao LF, Gao W, et al. Weight-reducing effect of Acer truncatum Bunge may be related to the inhibition of fatty acid synthase. Nat Prod Res 2011; 25(4): 422-31.
[http://dx.doi.org/10.1080/14786419.2010.488625] [PMID: 21328136]
[21]
White PAS, Cercato LM, Batista VS, et al. Aqueous extract of Chrysobalanus icaco leaves, in lower doses, prevent fat gain in obese high-fat fed mice. J Ethnopharmacol 2016; 179: 92-100.
[http://dx.doi.org/10.1016/j.jep.2015.12.047] [PMID: 26723470]
[22]
Cai Y, Wu L, Lin X, Hu X, Wang L. Phenolic profiles and screening of potential α-glucosidase inhibitors from Polygonum aviculare L. leaves using ultra-filtration combined with HPLC-ESI-qTOF-MS/MS and molecular docking analysis. Ind Crops Prod 2020; 154: 112673.
[http://dx.doi.org/10.1016/j.indcrop.2020.112673]
[23]
Zhang C, Ma Y, Gao F, Zhao Y, Cai S, Pang M. The free, esterified, and insoluble-bound phenolic profiles of rhus chinensis mill. fruits and their pancreatic lipase inhibitory activities with molecular docking analysis. J Funct Foods 2018; 40: 729-35.
[http://dx.doi.org/10.1016/j.jff.2017.12.019]
[24]
Kim YJ, Kim SR, Kim DY, et al. Supplementation of the flavonoid myricitrin attenuates the adverse metabolic effects of long-term consumption of a high-fat diet in mice. J Med Food 2019; 22(11): 1151-8.
[http://dx.doi.org/10.1089/jmf.2018.4341] [PMID: 31549892]
[25]
Yuan H, Li Y, Ling F, et al. The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. Aging Cell 2020; 19(9): e13199.
[http://dx.doi.org/10.1111/acel.13199] [PMID: 32729662]
[26]
Kim S, Chen J, Cheng T, et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res 2021; 49(D1): D1388-95.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[27]
Wang X, Shen Y, Wang S, et al. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 2017; 45(W1): W356-60.
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[28]
Daina A, Michielin O, Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 2019; 47(W1): W357-64.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[29]
Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. Nat Biotechnol 2007; 25(2): 197-206.
[http://dx.doi.org/10.1038/nbt1284] [PMID: 17287757]
[30]
Nickel J, Gohlke BO, Erehman J, et al. SuperPred: Update on drug classification and target prediction. Nucleic Acids Res 2014; 42(W1): W26-31.
[http://dx.doi.org/10.1093/nar/gku477] [PMID: 24878925]
[31]
Yao ZJ, Dong J, Che YJ, et al. TargetNet: A web service for predicting potential drug–target interaction profiling via multi-target SAR models. J Comput Aided Mol Des 2016; 30(5): 413-24.
[http://dx.doi.org/10.1007/s10822-016-9915-2] [PMID: 27167132]
[32]
Ru J, Li P, Wang J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6(1): 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[33]
Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: Augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res 2016; 44(D1): D380-4.
[http://dx.doi.org/10.1093/nar/gkv1277] [PMID: 26590256]
[34]
Bateman A, Martin M-J, Orchard S, et al. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res 2021; 49(D1): D480-9.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[35]
Clough E, Barrett T. The gene expression omnibus database Methods Mol Biol 2016; 1418: 93-110.
[36]
Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[37]
Zhou Y, Zhang Y, Lian X, et al. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res 2022; 50(D1): D1398-407.
[http://dx.doi.org/10.1093/nar/gkab953] [PMID: 34718717]
[38]
Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The DisGeNET knowledge platform for disease genomics: 2019 Update. Nucleic Acids Res 2020; 48(D1): D845-55.
[PMID: 31680165]
[39]
Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 2015; 43(D1): D789-98.
[http://dx.doi.org/10.1093/nar/gku1205] [PMID: 25428349]
[40]
Stelzer G, Rosen N, Plaschkes I, et al. The genecards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 2016; 54: 30-1.
[41]
Barbarino JM, Whirl-Carrillo M, Altman RB, Klein TE, Pharm GKB. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip Rev Syst Biol Med 2018; 10(4): e1417.
[http://dx.doi.org/10.1002/wsbm.1417] [PMID: 29474005]
[42]
Davis AP, Wiegers TC, Johnson RJ, Sciaky D, Wiegers J, Mattingly CJ. Comparative toxicogenomics database (CTD): Update 2023. Nucleic Acids Res 2023; 51(D1): D1257-62.
[http://dx.doi.org/10.1093/nar/gkac833] [PMID: 36169237]
[43]
Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019; 10(1): 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[44]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[45]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[46]
Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003; 4(1): 2.
[http://dx.doi.org/10.1186/1471-2105-4-2] [PMID: 12525261]
[47]
Wu C, Jin X, Tsueng G, Afrasiabi C, Su AI. BioGPS: Building your own mash-up of gene annotations and expression profiles. Nucleic Acids Res 2016; 44(D1): D313-6.
[http://dx.doi.org/10.1093/nar/gkv1104] [PMID: 26578587]
[48]
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[PMID: 19499576]
[49]
Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 2010; 24(5): 417-22.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[50]
Laskowski RA, Swindells MB. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 2011; 51(10): 2778-86.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[51]
Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28: 235-42.
[52]
Tan X, Xian W, Li X, et al. Mechanisms of quercetin against atrial fibrillation explored by network pharmacology combined with molecular docking and experimental validation. Sci Rep 2022; 12(1): 9777.
[http://dx.doi.org/10.1038/s41598-022-13911-w] [PMID: 35697725]
[53]
Tan MHE, Li J, Xu HE, Melcher K, Yong E. Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin 2015; 36(1): 3-23.
[http://dx.doi.org/10.1038/aps.2014.18] [PMID: 24909511]
[54]
Li X, Zhang Y, Wang S, et al. A review on the potential use of natural products in overweight and obesity. Phytother Res 2022; 36(5): 1990-2015.
[http://dx.doi.org/10.1002/ptr.7426] [PMID: 35229380]
[55]
Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti- cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit Rev Food Sci Nutr 2018; 58(6): 924-41.
[http://dx.doi.org/10.1080/10408398.2016.1231168] [PMID: 27645804]
[56]
Cheng L, Yan B, Chen K, et al. Resveratrol-induced downregulation of NAF-1 enhances the sensitivity of pancreatic cancer cells to gemcitabine via the ROS/Nrf2 Signaling Pathways. Oxid Med Cell Longev 2018; 2018: 1-16.
[http://dx.doi.org/10.1155/2018/9482018] [PMID: 29765509]
[57]
Shi J, Liu F, Zhang W, Liu X, Lin B, Tang X. Epigallocatechin-3- gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells. Oncol Rep 2015; 33(6): 2972-80.
[http://dx.doi.org/10.3892/or.2015.3889] [PMID: 25845434]
[58]
Oussaada SM, van Galen KA, Cooiman MI, et al. The pathogenesis of obesity. Metabolism 2019; 92: 26-36.
[http://dx.doi.org/10.1016/j.metabol.2018.12.012] [PMID: 30639246]
[59]
Pasquali R, Oriolo C. Obesity and androgens in women. Hyperandrogenism in Women 2019; pp. 120-34.
[60]
Li Q, Hagberg CE, Silva Cascales H, et al. Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce. Nat Med 2021; 27(11): 1941-53.
[http://dx.doi.org/10.1038/s41591-021-01501-8] [PMID: 34608330]
[61]
Lagarrigue S, Lopez-Mejia IC, Denechaud PD, et al. CDK4 is an essential insulin effector in adipocytes. J Clin Invest 2015; 126(1): 335-48.
[http://dx.doi.org/10.1172/JCI81480] [PMID: 26657864]
[62]
Meriin AB, Zaarur N, Roy D, Kandror KV. Egr1 plays a major role in the transcriptional response of white adipocytes to insulin and environmental cues. Front Cell Dev Biol 2022; 10: 1003030.
[http://dx.doi.org/10.3389/fcell.2022.1003030] [PMID: 36246998]
[63]
Marks BA, Pipia IM, Mukai C, et al. GDNF-RET signaling and EGR1 form a positive feedback loop that promotes tamoxifen resistance via cyclin D1. BMC Cancer 2023; 23(1): 138.
[http://dx.doi.org/10.1186/s12885-023-10559-1] [PMID: 36765275]
[64]
Park S, Lim W, Bazer FW, Whang KY, Song G. Quercetin inhibits proliferation of endometriosis regulating cyclin D1 and its target microRNAs in vitro and in vivo. J Nutr Biochem 2019; 63: 87-100.
[http://dx.doi.org/10.1016/j.jnutbio.2018.09.024] [PMID: 30359864]
[65]
Zhang Y, Chen J, Fang W, et al. Kaempferol suppresses androgen-dependent and androgen-independent prostate cancer by regulating Ki67 expression. Mol Biol Rep 2022; 49(6): 4607-17.
[http://dx.doi.org/10.1007/s11033-022-07307-2] [PMID: 35286519]
[66]
Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 2011; 11(8): 558-72.
[http://dx.doi.org/10.1038/nrc3090] [PMID: 21734724]
[67]
Augello MA, Burd CJ, Birbe R, et al. Convergence of oncogenic and hormone receptor pathways promotes metastatic phenotypes. J Clin Invest 2013; 123(1): 493-508.
[http://dx.doi.org/10.1172/JCI64750] [PMID: 23257359]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy