Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

mirna-383-5p Functions as an Anti-oncogene in Glioma through the Akt/mTOR Signaling Pathway by Targeting VEGFA

Author(s): Yan Liu, Zhen Wang, Zhi Tang, Yao Fu* and Lei Wang*

Volume 24, Issue 4, 2024

Published on: 14 September, 2023

Page: [463 - 475] Pages: 13

DOI: 10.2174/1568009623666230817102104

Price: $65

Abstract

Background: Previously, we have screened 59 differentially expressed miRNAs and 419 mRNAs in the glioblastoma samples that have been compared to the peritumoral tissues using bioinformatics analyses, which included miRNA-383-5p and vascular endothelial growth factor A (VEGFA). miRNA-383-5p and VEGFA/Akt/mTOR pathway play important regulatory roles in the malignant biological behavior of glioma.

Methods: Glioma cell lines, U87 and U251, were collected for in vitro experiments. miRNA-383-5p and VEGFA expression levels were detected with qRT-PCR and WB. The protein expressions of Akt, mTOR, and VEGFR in U87 and U251 were detected with WB. The effect of miRNA-383-5p on the VEGFA activity was verified by dual-luciferase reporter assay. CCK-8 was used to examine the U87 and U251 cells’ inhibition. Flow cytometry and transwell assays were used to detect cell apoptosis and invasion, respectively.

Results: Our research data indicated overexpression of miRNA-383-5p to suppress malignant biological behavior, which was manifested as promoting the apoptosis of U87 and U251 cells and inhibiting invasion, proliferation, and metastasis. VEGFA is one of the downstream target genes of miRNA-383- 5p. miRNA-383-5p could inhibit the expression of VEGFA and Akt/mTOR signaling pathways. Overexpression of VEGFA can reverse the inhibitory effect of miRNA-383-5p and reactivate the Akt/mTOR signaling pathway.

Conclusion: Our results indicate that miRNA-383-5p functions as an anti-oncogene by inhibiting the VEGFA/Akt/mTOR signaling pathway in glioma cells. These data provide potential therapeutic targets for glioblastoma.

« Previous
Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Tan, A.C.; Ashley, D.M.; López, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of glioblastoma: State of the art and fu-ture directions. CA Cancer J. Clin., 2020, 70(4), 299-312.
[http://dx.doi.org/10.3322/caac.21613] [PMID: 32478924]
[3]
Wang, L.; Liu, Y.; Yu, Z.; Gong, J.; Deng, Z.; Ren, N.; Zhong, Z.; Cai, H.; Tang, Z.; Cheng, H.; Chen, S.; He, Z. Mir-139-5p inhibits glioma cell proliferation and progression by targeting GABRA1. J. Transl. Med., 2021, 19(1), 213.
[http://dx.doi.org/10.1186/s12967-021-02880-9] [PMID: 34001135]
[4]
Yu, Z.; Liu, Y.; Li, Y.; Zhang, J.; Peng, J.; Gong, J.; Xia, Y.; Wang, L. miRNA-338-3p inhibits glioma cell proliferation and progression by targeting MYT1L. Brain Res. Bull., 2022, 179, 1-12.
[http://dx.doi.org/10.1016/j.brainresbull.2021.11.016] [PMID: 34848272]
[5]
Gong, J.; Tang, Z.; Yu, Z.; Deng, Z.; Liu, Y.; Ren, N.; Wang, L.; He, Z. miR-138-5p inhibits the growth and invasion of glioma cells by regulating WEE1. Anal. Cell. Pathol., 2022, 2022, 1-12.
[http://dx.doi.org/10.1155/2022/7809882] [PMID: 35127343]
[6]
Zhi, Y.; Xie, X.; Wang, R.; Wang, B.; Gu, W.; Ling, Y.; Dong, W.; Zhi, F.; Liu, Y. Serum level of miR-10-5p as a prognostic biomarker for acute myeloid leukemia. Int. J. Hematol., 2015, 102(3), 296-303.
[http://dx.doi.org/10.1007/s12185-015-1829-6] [PMID: 26134365]
[7]
Srinivasan, S.; Patric, I.R.P.; Somasundaram, K. A ten-microRNA expression signature predicts survival in glioblastoma. PLoS One, 2011, 6(3), e17438.
[http://dx.doi.org/10.1371/journal.pone.0017438] [PMID: 21483847]
[8]
Romano, G.; Kwong, L.N. Diagnostic and therapeutic applications of miRNA-based strategies to cancer immunotherapy. Cancer Metastasis Rev., 2018, 37(1), 45-53.
[http://dx.doi.org/10.1007/s10555-017-9716-7] [PMID: 29270700]
[9]
Abba, M.L.; Patil, N.; Leupold, J.H.; Moniuszko, M.; Utikal, J.; Niklinski, J.; Allgayer, H. MicroRNAs as novel targets and tools in cancer therapy. Cancer Lett., 2017, 387, 84-94.
[http://dx.doi.org/10.1016/j.canlet.2016.03.043] [PMID: 27045478]
[10]
Chen, L.; Han, X. Anti-PD-1/PD-L1 therapy of human cancer: Past, present, and future. J. Clin. Invest., 2015, 125(9), 3384-3391.
[http://dx.doi.org/10.1172/JCI80011] [PMID: 26325035]
[11]
Cortez, M.A.; Ivan, C.; Valdecanas, D.; Wang, X.; Peltier, H.J.; Ye, Y.; Araujo, L.; Carbone, D.P.; Shilo, K.; Giri, D.K.; Kelnar, K.; Martin, D.; Komaki, R.; Gomez, D.R.; Krishnan, S.; Calin, G.A.; Bader, A.G.; Welsh, J.W. PDL1 regulation by p53 via miR-34. J. Natl. Cancer Inst., 2015, 108(1), djv303.
[PMID: 26577528]
[12]
Zhou, Q.; Liu, J.; Quan, J.; Liu, W.; Tan, H.; Li, W. MicroRNAs as potential biomarkers for the diagnosis of glioma: A systematic review and meta‐analysis. Cancer Sci., 2018, 109(9), 2651-2659.
[http://dx.doi.org/10.1111/cas.13714] [PMID: 29949235]
[13]
Gu, J.; Lu, Z.; Ji, C.; Chen, Y.; Liu, Y.; Lei, Z.; Wang, L.; Zhang, H.T.; Li, X. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells. Biomed. Pharmacother., 2017, 93, 969-975.
[http://dx.doi.org/10.1016/j.biopha.2017.07.010] [PMID: 28724215]
[14]
Huang, W.; Zhong, Z.; Luo, C.; Xiao, Y.; Li, L.; Zhang, X.; Yang, L.; Xiao, K.; Ning, Y.; Chen, L.; Liu, Q.; Hu, X.; Zhang, J.; Ding, X.; Xiang, S. The miR-26a/AP-2α/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma. Theranostics, 2019, 9(19), 5497-5516.
[http://dx.doi.org/10.7150/thno.33800] [PMID: 31534499]
[15]
Chakravarti, A.; Zhai, G.; Suzuki, Y.; Sarkesh, S.; Black, P.M.; Muzikansky, A.; Loeffler, J.S. The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J. Clin. Oncol., 2004, 22(10), 1926-1933.
[http://dx.doi.org/10.1200/JCO.2004.07.193] [PMID: 15143086]
[16]
Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell, 2011, 146(6), 873-887.
[http://dx.doi.org/10.1016/j.cell.2011.08.039] [PMID: 21925313]
[17]
Jiang, J.; Xie, C.; Liu, Y.; Shi, Q.; Chen, Y. Up-regulation of miR-383-5p suppresses proliferation and enhances chemosensitivity in ovari-an cancer cells by targeting TRIM27. Biomed. Pharmacother., 2019, 109, 595-601.
[http://dx.doi.org/10.1016/j.biopha.2018.10.148] [PMID: 30399596]
[18]
Wei, C.; Gao, J.J. Downregulated miR-383-5p contributes to the proliferation and migration of gastric cancer cells and is associated with poor prognosis. PeerJ, 2019, 7, e7882.
[http://dx.doi.org/10.7717/peerj.7882] [PMID: 31637133]
[19]
Zhao, S.; Gao, X.; Zang, S.; Li, Y.; Feng, X.; Yuan, X. MicroRNA-383-5p acts as a prognostic marker and inhibitor of cell proliferation in lung adenocarcinoma by cancerous inhibitor of protein phosphatase 2A. Oncol. Lett., 2017, 14(3), 3573-3579.
[http://dx.doi.org/10.3892/ol.2017.6603] [PMID: 28927114]
[20]
Wang, J.; Zhou, Y.; Fei, X.; Chen, X.; Chen, Y. Biostatistics mining associated method identifies AKR1B10 enhancing hepatocellular carcinoma cell growth and degenerated by miR-383-5p. Sci. Rep., 2018, 8(1), 11094.
[http://dx.doi.org/10.1038/s41598-018-29271-3] [PMID: 30038373]
[21]
Wang, N.; Chen, Y.; Shi, C.; Lin, Z.; Xie, H. CREB3L4 promotes angiogenesis and tumor progression in gastric cancer through regulating VEGFA expression. Cancer Gene Ther., 2022, 29(2), 241-252.
[PMID: 33637885]
[22]
Barbagallo, D.; Caponnetto, A.; Brex, D.; Mirabella, F.; Barbagallo, C.; Lauretta, G.; Morrone, A.; Certo, F.; Broggi, G.; Caltabiano, R.; Barbagallo, G.; Spina-Purrello, V.; Ragusa, M.; Di Pietro, C.; Hansen, T.; Purrello, M. CircSMARCA5 regulates VEGFA mRNA splicing and angiogenesis in glioblastoma multiforme through the binding of SRSF1. Cancers., 2019, 11(2), 194.
[http://dx.doi.org/10.3390/cancers11020194] [PMID: 30736462]
[23]
Hu, F.; Sun, X.; Li, G.; Wu, Q.; Chen, Y.; Yang, X.; Luo, X.; Hu, J.; Wang, G. Inhibition of SIRT2 limits tumour angiogenesis via inactivation of the STAT3/VEGFA signalling pathway. Cell Death Dis., 2018, 10(1), 9.
[http://dx.doi.org/10.1038/s41419-018-1260-z] [PMID: 30584257]
[24]
Sullivan, L.A.; Brekken, R.A. The VEGF family in cancer and antibody-based strategies for their inhibition. In: mAbs; Taylor & Francis, 2010, pp. 165-175.
[http://dx.doi.org/10.4161/mabs.2.2.11360]
[25]
Garber, K. Promising early results for immunotherapy-antiangiogenesis combination. J. Natl. Cancer Inst., 2014, 106(11), dju392.
[http://dx.doi.org/10.1093/jnci/dju392] [PMID: 25421345]
[26]
Hu, H.; Chen, Y.; Tan, S.; Wu, S.; Huang, Y.; Fu, S.; Luo, F.; He, J. The research progress of antiangiogenic therapy, immune therapy and tumor microenvironment. Front. Immunol., 2022, 13, 802846.
[http://dx.doi.org/10.3389/fimmu.2022.802846] [PMID: 35281003]
[27]
Lopes-Coelho, F.; Martins, F.; Pereira, S.A.; Serpa, J. Anti-angiogenic therapy: Current challenges and future perspectives. Int. J. Mol. Sci., 2021, 22(7), 3765.
[http://dx.doi.org/10.3390/ijms22073765] [PMID: 33916438]
[28]
Azarbarzin, S.; Hosseinpour-Feizi, M.A.; Banan Khojasteh, S.M.; Baradaran, B.; Safaralizadeh, R. MicroRNA -383-5p restrains the proliferation and migration of breast cancer cells and promotes apoptosis via inhibition of PD-L1. Life Sci., 2021, 267, 118939.
[http://dx.doi.org/10.1016/j.lfs.2020.118939] [PMID: 33359245]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy