Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Research Article

Ultrasound-Assisted Catalyst-free Synthesis of α,β -Unsaturated Amino Acid Esters and Unsaturated Amino Ketones

Author(s): Guoshu Xie, Nicolas de Moura Ricketti and Béla Török*

Volume 11, Issue 2, 2024

Published on: 18 September, 2023

Page: [201 - 209] Pages: 9

DOI: 10.2174/2213346110666230816095531

Price: $65

Abstract

Introduction: Sonication has been introduced as a green and effective activation method for the selective monoamination of β-dicarbonyl compounds. The simple one-pot process resulted in different substituted β-amino-α,β-unsaturated esters and ketones at room temperature with quantitative yields. Aqueous NH4OH was used as a safe and economical nitrogen source for pressurized NH3 gas. The process is considered green, accounting for not using any solvents and catalysts, besides some aqueous NH4OH-involved reactions using nontoxic water. A broad variety of useful synthetic intermediates, β- amino-α,β-unsaturated esters and ketones have been prepared in short reaction time.

Methods: Using this developed protocol, we were able to synthesize a series of structurally diverse β- amino-α,β-unsaturated esters and unsaturated amino ketones.

Results: The synthesis of target compounds was achieved in a truly green process with high atom economy and excellent yields in a catalyst-free one-pot system in an aqueous medium using simple, commercially available, inexpensive ammonium hydroxide as the source of the nitrogen. The high atom economy has been accompanied by the formation of a small amount of nontoxic waste, water.

Conclusion: In conclusion, a simple, convenient, and high-yielding catalyst-free environmentally benign method was developed for the synthesis of unsaturated amino acid esters and unsaturated amino ketones.

Graphical Abstract

[1]
Wang, P.Z.; Chen, J.R.; Xiao, W.J. Hantzsch esters: An emerging versatile class of reagents in photoredox catalyzed organic synthesis. Org. Biomol. Chem., 2019, 17(29), 6936-6951.
[http://dx.doi.org/10.1039/C9OB01289C] [PMID: 31268084]
[2]
De Paolis, O.; Baffoe, J.; Landge, S.; Török, B. Multicomponent domino cyclization-oxidative aromatization on a bifunctional Pd/C/K-10 catalyst: An environmentally benign approach toward the synthesis of pyridines. Synthesis, 2008, 3423-3428.
[3]
Correa, W.H.; Scott, J.L. Solvent-free, two-step synthesis of some unsymmetrical 4-aryl-1,4-dihydropyridines. Green Chem., 2001, 3(6), 296-301.
[http://dx.doi.org/10.1039/b106397a]
[4]
Reeve, P.A.P.; Grabowska, U.; Oden, L.S.; Wiktelius, D.; Wångsell, F.; Jackson, R.F.W. Radical functionalization of unsaturated amino acids: synthesis of side-chain-fluorinated, azido-substituted, and hydroxylated amino acids. ACS Omega, 2019, 4(6), 10854-10865.
[http://dx.doi.org/10.1021/acsomega.9b01509] [PMID: 31460183]
[5]
(a) Zhu, G.; Chen, Z.; Zhang, X. Highly efficient asymmetric synthesis of β-amino acid derivatives via rhodium-catalyzed hydrogenation of β-(acylamino)acrylates. J. Org. Chem., 1999, 64(18), 6907-6910.
[http://dx.doi.org/10.1021/jo990565h] [PMID: 11674707];
(b) Baraldi, P.G.; Simoni, D.; Manfredini, S. An improved preparation of enaminones from 1,3-diketones and ammonium acetate or amine acetates. Synthesis, 1983, 1983(11), 902-903.
[http://dx.doi.org/10.1055/s-1983-30557];
(c) Marchalín, Š.; Kuthan, J. Synthesis and spectral properties of 4-substituted 2,6-bis-(4-biphenylyl)-3,5-dicyano-1,4-dihydropyridines. Collect. Czech. Chem. Commun., 1983, 48(11), 3112-3122.
[http://dx.doi.org/10.1135/cccc19833112];
(d) Marchalín, Š.; Kuthan, J. Cyclocondensation reactions of 4-R-benzylidene-4-phenylbenzoylacetonitriles with cycloalkanones. Collect. Czech. Chem. Commun., 1984, 49(6), 1395-1408.
[http://dx.doi.org/10.1135/cccc19841395]
[6]
Rodríguez, H.; Reyes, O.; Suarez, M.; Garay, H.E.; Pérez, R.; Cruz, L.J.; Verdecia, Y.; Martín, N.; Seoane, C. Solid-phase synthesis of 4-aryl substituted 5-carboxy-6-methyl-3,4-dihydropyridones. Tetrahedron Lett., 2002, 43(3), 439-441.
[http://dx.doi.org/10.1016/S0040-4039(01)02172-4]
[7]
Sobolev, A.; Franssen, M.C.R.; Vigante, B.; Cekavicus, B.; Zhalubovskis, R.; Kooijman, H.; Spek, A.L.; Duburs, G.; de Groot, A. Effect of acyl chain length and branching on the enantioselectivity of Candida rugosa lipase in the kinetic resolution of 4-(2-difluoromethoxyphenyl)-substituted 1,4-dihydropyridine 3,5-diesters. J. Org. Chem., 2002, 67(2), 401-410.
[http://dx.doi.org/10.1021/jo0104025] [PMID: 11798310]
[8]
Leonardi, A.; Motta, G.; Pennini, R.; Testa, R.; Sironi, G.; Catto, A.; Cerri, A.; Zappa, M.; Bianchi, G.; Nardi, D. Asymmetric N-(3,3-diphenylpropyl)aminoalkyl esters of 4-aryl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylic acids with antihypertensive activity. Eur. J. Med. Chem., 1998, 33(5), 399-420.
[http://dx.doi.org/10.1016/S0223-5234(98)80015-9]
[9]
Sadanandam, Y.S.; Shetty, M.M.; Ram, M.R.K.; Leelavathi, P. Synthesis and pharmacology of new 1,4-dihydropyridines. 2,6-Dimethyl-4-(substituted phenyl) or (2-furyl)-, (2-thienyl)- or (3-pyridyl)-3,5-di[(N-methyl) or (N-diethyl)]carbamoyl-1,4-dihydropyridines as potent calcium-channel blockers. Eur. J. Med. Chem., 1994, 29(12), 975-979.
[http://dx.doi.org/10.1016/0223-5234(94)90198-8]
[10]
Shan, R.; Howlett, S.E.; Knaus, E.E. Syntheses, calcium channel agonist-antagonist modulation activities, nitric oxide release, and voltage-clamp studies of 2-nitrooxyethyl 1,4-dihydro- 2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)pyridine-5-carboxylate enantiomers. J. Med. Chem., 2002, 45(4), 955-961.
[http://dx.doi.org/10.1021/jm010394k] [PMID: 11831908]
[11]
Gao, Y.; Zhang, Q.; Xu, J. A Convenient and effective method for synthesizing β‐amino‐α,β‐unsaturated esters and ketones. Synth. Commun., 2004, 34(5), 909-916.
[http://dx.doi.org/10.1081/SCC-120028364]
[12]
Das, B.; Venkateswarlu, K.; Majhi, A.; Reddy, M.R.; Reddy, K.N.; Rao, Y.K.; Ravikumar, K.; Sridhar, B. Highly efficient, mild and chemo- and stereoselective synthesis of enaminones and enamino esters using silica supported perchloric acid under solvent-free conditions. J. Mol. Catal. Chem., 2006, 246(1-2), 276-281.
[http://dx.doi.org/10.1016/j.molcata.2005.11.045]
[13]
Braibante, M.E.F.; Braibante, H.S.; Missio, L.; Andricopulo, A. Synthesis and reactivity of β-Amino α,β-unsaturated ketones and esters using K-10 montmorillonite. Synthesis, 1994, 1994(9), 898-900.
[http://dx.doi.org/10.1055/s-1994-25595]
[14]
Litvić, M.; Filipan, M.; Pogorelić, I.; Cepanec, I. Ammonium carbamate; mild, selective and efficient ammonia source for preparation of β-amino-α,β-unsaturated esters at room temperature. Green Chem., 2005, 7(11), 771-774.
[http://dx.doi.org/10.1039/b510276f]
[15]
Bellassoued, M.; Grugier, J.; Lensen, N. Direct synthesis of unsaturated β-amino acids. J. Organomet. Chem., 2002, 662(1-2), 172-177.
[http://dx.doi.org/10.1016/S0022-328X(02)01905-8]
[16]
Fanelli, R.; Jeanne-Julien, L.; René, A.; Martinez, J.; Cavelier, F. Stereoselective synthesis of unsaturated α-amino acids. Amino Acids, 2015, 47(6), 1107-1115.
[http://dx.doi.org/10.1007/s00726-015-1934-0] [PMID: 25715756]
[17]
Rémond, E.; Bayardon, J.; Ondel-Eymin, M.J.; Jugé, S. Stereoselective synthesis of unsaturated and functionalized L-NHBoc amino acids, using Wittig reaction under mild phase-transfer conditions. J. Org. Chem., 2012, 77(17), 7579-7587.
[http://dx.doi.org/10.1021/jo3013622] [PMID: 22870957]
[18]
Mali, S.M.; Bandyopadhyay, A.; Jadhav, S.V.; Kumar, M.G.; Gopi, H.N. Synthesis of α, β-unsaturated γ-amino esters with unprecedented high (E)-stereoselectivity and their conformational analysis in peptides. Org. Biomol. Chem., 2011, 9(19), 6566-6574.
[http://dx.doi.org/10.1039/c1ob05732d] [PMID: 21826295]
[19]
Schäfer, C.; Ellstrom, C.J.; Cho, H.; Török, B. Pd/C–Al–water facilitated selective reduction of a broad variety of functional groups. Green Chem., 2017, 19(5), 1230-1234.
[http://dx.doi.org/10.1039/C6GC03032G]
[20]
Polshettiwar, V.; Varma, R.S. Non-conventional energy sources for green synthesis in water (Microwave, Ultrasound, and Photo). In: Handbook of Green Chemistry; Anastas PT, 2010; 5, pp. 273-290.
[21]
Török, B.; Schäfer, C., Eds.; Non-traditional Activation Methods in Green and Sustainable Applications: Microwaves, Ultrasounds, Photo, Electro and Mechanochemistry and High Hydrostatic Pressure; Elsevier: Amsterdam, Cambridge, Oxford, 2021.
[22]
Mason, T.J.; Lorimer, J.P. Applied sonochemistry – The uses of power ultrasound in chemistry and processing; Wiley-VCH: Weinheim, 2002.
[http://dx.doi.org/10.1002/352760054X]
[23]
Grieser, F.; Choi, P.K.; Enomoto, N.; Harada, H.; Okitsu, K. Sonochemistry and the Acoustic Bubble; Elsevier: Amsterdam, Oxford, Waltham, 2015.
[24]
Pankaj, M.A., Ed.; Theoretical and experimental sonochemistry involving inorganic systems; Springer: Dordrecht, 2011.
[25]
Luche, J-L., Ed.; Synthetic organic sonochemistry; Springer: New York, 1998.
[http://dx.doi.org/10.1007/978-1-4899-1910-6]
[26]
Suslick, K.S., Ed.; Ultrasound, Its physical, chemical and biological effects; VCH: Weinheim, 1988.
[27]
Fernandez R.D.; Cintas, P.; Gardeniers, H.J.G.E. Merging microfluidics and sonochemistry: Towards greener and more efficient micro-sono-reactors. Chem. Commun., 2012, 48(89), 10935-10947.
[http://dx.doi.org/10.1039/c2cc33920j] [PMID: 23001310]
[28]
Baig, R.B.N.; Varma, R.S. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev., 2012, 41(4), 1559-1584.
[http://dx.doi.org/10.1039/C1CS15204A] [PMID: 22076552]
[29]
Cravotto, G.; Borretto, E.; Oliverio, M.; Procopio, A.; Penoni, A. Organic reactions in water or biphasic aqueous systems under sonochemical conditions. A review on catalytic effects. Catal. Commun., 2015, 63, 2-9.
[http://dx.doi.org/10.1016/j.catcom.2014.12.014]
[30]
Török, B.; Balázsik, K.; Felföldi, K.; Bartók, M. Asymmetric reactions in sonochemistry. Ultrason. Sonochem., 2001, 8(3), 191-200.
[http://dx.doi.org/10.1016/S1350-4177(01)00077-3] [PMID: 11441597]
[31]
Ujwaldev, S.M.; Rohit, K.R.; Radhika, S.; Anilkumar, G. Sonochemistry in transition metal catalyzed cross-coupling reactions: Recent developments. Curr. Org. Chem., 2020, 23(28), 3137-3153.
[http://dx.doi.org/10.2174/1385272823666191118103844]
[32]
Saranya, S.; Radhika, S.; Afsina Abdulla, C.M.; Anilkumar, G. Ultrasound irradiation in heterocycle synthesis: An overview. J. Heterocycl. Chem., 2021, 58(8), 1570-1580.
[http://dx.doi.org/10.1002/jhet.4261]
[33]
Szöllösi, G.; Kun, I.; Török, B.; Bartók, M. Ultrasonics in chemoselective heterogeneous metal catalysis. Sonochemical hydrogenation of unsaturated carbonyl compounds over platinum catalysts. Ultrason. Sonochem., 2000, 7(4), 173-176.
[http://dx.doi.org/10.1016/S1350-4177(00)00038-9] [PMID: 11062871]
[34]
Mhadgut, S.C.; Bucsi, I.; Török, M.; Török, B. Sonochemical asymmetric hydrogenation of isophorone on proline modified Pd/Al 2 O 3 catalysts. Chem. Commun., 2004, (8), 984-985.
[http://dx.doi.org/10.1039/B315244H] [PMID: 15069506]
[35]
Török, B.; Schäfer, C.; Nişanci, B.; Bere, M.; Daştan, A. Heterogeneous catalytic reductive amination of carbonyl compounds with Ni-Al alloy in water as solvent and hydrogen source. Synthesis, 2016, 48(18), 3127-3133.
[http://dx.doi.org/10.1055/s-0035-1561647]
[36]
Xie, G.; Lazarev, A.; Török, B. High pressure initiated solvent and catalyst-free instant Paal–Knorr reactions. Green Chem., 2023, 25(4), 1582-1587.
[http://dx.doi.org/10.1039/D2GC04753E]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy