Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Computing the Energy of Certain Graphs based on Vertex Status

Author(s): Asim Khurshid and Muhammad Salman*

Volume 21, Issue 3, 2024

Published on: 01 September, 2023

Page: [274 - 285] Pages: 12

DOI: 10.2174/1570179420666230811124140

Price: $65

Abstract

Background: The concept of Hückel molecular orbital theory is used to compute the graph energy numerically and graphically on the base of the status of a vertex.

Objective: Our aim is to explore the graph energy of various graph families on the base of the status adjacency matrix and its Laplacian version.

Methods: We opt for the technique of finding eigenvalues of adjacency and Laplacian matrices constructed on the base of the status of vertices.

Results: We explore the exact status sum and Laplacian status sum energies of a complete graph, complete bipartite graph, star graphs, bistar graphs, barbell graphs and graphs of two thorny rings. We also compared the obtained results of energy numerically and graphically.

Conclusion: In this article, we extended the study of graph spectrum and energy by introducing the new concept of the status sum adjacency matrix and the Laplacian status sum adjacency matrix of a graph. We investigated and visualized these newly defined spectrums and energies of well-known graphs, such as complete graphs, complete bi-graphs, star graphs, friendship graphs, bistar graphs, barbell graphs, and thorny graphs with 3 and 4 cycles.

[1]
Li, Z.; Nie, F.; Chang, X.; Yang, Y.; Zhang, C.; Sebe, N. Dynamic affinity graph construction for spectral clustering using multiple features. IEEE Trans. Neural Netw. Learn. Syst., 29(12), 6323-6332.2018,
[http://dx.doi.org/10.1109/TNNLS.2018.2829867] [PMID: 29994548]
[2]
Zhou, R.; Chang, X.; Shi, L.; Shen, Y.D.; Yang, Y.; Nie, F. Person reidentification via multi-feature fusion with adaptive graph learning. IEEE Trans. Neural Netw. Learn. Syst., 31(5), 1592-1601.2020,
[http://dx.doi.org/10.1109/TNNLS.2019.2920905] [PMID: 31283511]
[3]
Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons. Chem. Phys. Lett., 1972, 17(4), 535-538.
[http://dx.doi.org/10.1016/0009-2614(72)85099-1]
[4]
Gutman, I. The energy of a graph. Ber.Math.Stat.Sket. Forschungsz.Graz, 1978, 103, 1-22.
[5]
Gutman, I.; Zhou, B. Laplacian energy of a graph. Linear Algebra Appl., 2006, 414(1), 29-37.
[http://dx.doi.org/10.1016/j.laa.2005.09.008]
[6]
Estrada, E; Torres, L; Rodriguez, L; Gutman, I An atom-bond connectivity index: Modeling the enthalpy of formation of alkanes. Ind.J.chem. Sect. A: Inorg. phy. theor. analy., 1998, 37, 849-855.
[7]
Liu, J.B.; Bao, Y.; Zheng, W.T.; Hayat, S. Network coherence analysis on a family of nested weighted n-polygon networks. Fractals, 2021, 29(8), 2150260.
[http://dx.doi.org/10.1142/S0218348X21502601]
[8]
Haemers, W.H. Seidel switching and graph energy. Math. Comput. Chem., 2012, 68, 653-659.
[9]
Liu, J.B.; Pan, X-F. Minimizing kirchhoff index among graphs with a given vertex bipartiteness. Appl. Math. Comput., 2016, 291, 84-88.
[http://dx.doi.org/10.1016/j.amc.2016.06.017]
[10]
Kirchhoff, G. On the resolution of the equations to which one is lead in the investigation of the linear distribution of galvanic currents. Annals. Phys.chem., 1847, 72, 497-508.
[http://dx.doi.org/10.1002/andp.18471481202]
[11]
Naji, A.M.; Soner, N.D. The maximum eccentricity energy of a graph. Int. J. Sci. Eng. Res., 2016, 7, 5-13.
[12]
Oboudi, M.R. Energy and seidel energy of graphs. MATCH Commun. Math. Comput. Chem., 2016, 75(2), 291-303.
[13]
Randic, M. Characterization of molecular branching. J. Am. Chem. Soc., 1975, 97(23), 6609-6615.
[http://dx.doi.org/10.1021/ja00856a001]
[14]
Wang, J.; Lu, M.; Belardo, F.; Randić, M. The anti-adjacency matrix of a graph: Eccentricity matrix. Discrete Appl. Math., 2018, 251, 299-309.
[http://dx.doi.org/10.1016/j.dam.2018.05.062]
[15]
Liu, J.B.; Zhao, B.Y. Study on environmental efficiency of ANHUI province based on SBM-DEA model and fractal theory. Fractals, 2023, 2340072.
[http://dx.doi.org/10.1142/S0218348X23400728]
[16]
Liu, J.B.; Bao, Y.; Zheng, W.T. Analyses of some structural properties on a class of hierarchical scale-free networks. arXiv, 2022, 2203, 12361.
[17]
Liu, J.B.; Gu, J.J.; Wang, K. The expected values for the GUTMAN INDEX, SCHULTZ index, and some SOMBOR indices of a random cyclooctane chain. Int. J. Quantum Chem., 2023, 123(3), e27022.
[http://dx.doi.org/10.1002/qua.27022]
[18]
Buckley, F.; Harary, F. Distance in graphs; Addison-Wesley: Redwood City, 1990.
[19]
Harary, F. Status and contrastatus. Sociometry, 1959, 22(1), 23-43.
[http://dx.doi.org/10.2307/2785610]
[20]
Biggs, N.; Biggs, N.L.; Norman, B. Algebraic graph theory; Cambridge university press, 1993.
[21]
Fiedler, M. Algebraic connectivity of graphs. Czech. Math. J., 1973, 23(2), 298-305.
[http://dx.doi.org/10.21136/CMJ.1973.101168]
[22]
Fiedler, M. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J., 1975, 25(4), 619-633.
[http://dx.doi.org/10.21136/CMJ.1975.101357]
[23]
Harary, F. Graph Theory; Addison-Wesley: Reading, MA, 1994.
[24]
Talwar, S; Ramane, H Status sum adjacency energy of graphs research review. Int. J. Multidis., 2019, 4(8), 26A-28A.
[25]
Pemmaraju, S.; Skiena, S. Cycles, stars, and wheels, § 6.2.4 in computational discrete mathematics: Combinatorics and graph theory in mathematica; Cambridge University Press UK, 2003, pp. 248-249.
[http://dx.doi.org/10.21136/CMJ.1975.101357]
[26]
Skiena, S. Implementing discrete mathematics: Combinatorics and graph theory with Mathematica; Addison-Wesley Longman Publishing Co., Inc., 1991.
[27]
Bondy, J.A.; Murty, U.R. Graph Theory; Springer: Berlin, 2008.
[28]
Gallian, J.A. Dynamic survey graph labeling. J. Combin., 2007, DS6, 1-58.
[29]
Yousefi, A.; Iranmanesh, A.; Dobrynin, A.A.; Tehranian, A. The F–Index for some special graphs and some properties of the F–Index. Iranian J. Mathem. Chem., 2018, 9(3), 213-225.
[30]
Gutman, I. Distance of thorny graphs. Publ. Inst. Math., 1998, 63(31-36), 73-74.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy