Abstract
This article explores the significant impact of artificial intelligence (AI) and machine learning (ML) on the pharmaceutical industry, which has transformed the drug development process. AI and ML technologies provide powerful tools for analysis, decision-making, and prediction by simplifying complex procedures from drug design to formulation design. These techniques could potentially speed up the development of better medications and drug development processes, improving the lives of millions of people. However, the use of these techniques requires trained personnel and human surveillance for AI to function effectively, if not there is a possibility of errors like security breaches of personal data and bias can also occur. Thus, the present review article discusses the transformative power of AI and ML in the pharmaceutical industry and provides insights into the future of drug development and patient care.
[http://dx.doi.org/10.1016/j.procir.2020.04.109]
[http://dx.doi.org/10.1038/s41746-018-0061-1] [PMID: 31304333]
[http://dx.doi.org/10.1126/science.aaa8415] [PMID: 26185243]
[PMID: 36117026]
[http://dx.doi.org/10.1021/acs.jmedchem.9b02130] [PMID: 32101427]
[http://dx.doi.org/10.1111/1742-6723.13145] [PMID: 30014578];
(b) Henstock PV. Artificial intelligence for pharma: Time for internal investment. Trends Pharmacol Sci 2019; 40(8): 543-6.
[http://dx.doi.org/10.1016/j.tips.2019.05.003] [PMID: 31204059]
[http://dx.doi.org/10.1056/NEJMra1814259] [PMID: 30943338]
[http://dx.doi.org/10.1038/s41598-017-18564-8] [PMID: 29323142]
[http://dx.doi.org/10.1109/CompComm.2016.7925139]
[http://dx.doi.org/10.1371/journal.pone.0179804] [PMID: 28662070]
[http://dx.doi.org/10.12688/f1000research.13016.1] [PMID: 29375816]
[http://dx.doi.org/10.1109/ACCESS.2019.2895636]
[http://dx.doi.org/10.1016/j.diii.2019.02.009] [PMID: 30926443]
[http://dx.doi.org/10.3390/mti2030047]
[http://dx.doi.org/10.3348/kjr.2017.18.4.570] [PMID: 28670152]
[http://dx.doi.org/10.1007/s12194-017-0406-5] [PMID: 28689314];
(b) Mwandau B, Nyanchama M. Investigating keystroke dynamics as a two-factor biometric security. Doctoral dissertation, Strathmore University.
[http://dx.doi.org/10.1377/hlthaff.2017.1624] [PMID: 29733705]
[http://dx.doi.org/10.1111/cts.12884] [PMID: 32961010]
[http://dx.doi.org/10.3390/molecules23102520] [PMID: 30279331]
[http://dx.doi.org/10.1021/acscentsci.7b00303] [PMID: 29104927]
[http://dx.doi.org/10.1002/wcms.1568]
[http://dx.doi.org/10.1016/j.drudis.2021.09.006] [PMID: 34555509];
(b) Mak KK, Pichika MR. Artificial intelligence in drug development: Present status and future prospects. Drug Discov Today 2019; 24(3): 773-80.
[http://dx.doi.org/10.1016/j.drudis.2018.11.014] [PMID: 30472429]
[http://dx.doi.org/10.1186/s13321-017-0235-x] [PMID: 29086083]
[http://dx.doi.org/10.1039/C8SC02634C] [PMID: 30310622]
[http://dx.doi.org/10.5853/jos.2017.02054] [PMID: 29037014]
[http://dx.doi.org/10.1016/j.drudis.2020.10.010] [PMID: 33099022]
[http://dx.doi.org/10.1080/17460441.2019.1621284] [PMID: 31140873]
[http://dx.doi.org/10.3390/molecules23092384] [PMID: 30231499]
[http://dx.doi.org/10.1016/j.abb.2020.108730] [PMID: 33347838]
[http://dx.doi.org/10.1038/s42256-020-00236-4]
[http://dx.doi.org/10.1007/s11030-021-10217-3] [PMID: 33844136]
[http://dx.doi.org/10.1021/acs.jmedchem.8b00760] [PMID: 30035545]
[http://dx.doi.org/10.1080/17460441.2020.1767063] [PMID: 32452701]
[http://dx.doi.org/10.1186/s13321-017-0199-x] [PMID: 28270862]
[http://dx.doi.org/10.5530/ijper.55.2.68]
[http://dx.doi.org/10.1021/jacs.9b08660] [PMID: 31497954]
[http://dx.doi.org/10.1093/bioinformatics/btt321] [PMID: 23740740]
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[http://dx.doi.org/10.1080/17460441.2017.1336157] [PMID: 28562095]
[http://dx.doi.org/10.1080/17460441.2021.1909567] [PMID: 33779453]
[http://dx.doi.org/10.1021/acs.jcim.5b00229] [PMID: 26754147]
[http://dx.doi.org/10.1002/med.21764] [PMID: 33295676]
[http://dx.doi.org/10.1021/acs.jcim.7b00166] [PMID: 28651433]
[http://dx.doi.org/10.3390/molecules24234393] [PMID: 31805692]
[http://dx.doi.org/10.2174/1386207322666191016110232] [PMID: 31622216]
[http://dx.doi.org/10.1021/acs.jcim.6b00753] [PMID: 28715209]
[http://dx.doi.org/10.1002/smll.202001883] [PMID: 32537842]
[http://dx.doi.org/10.1021/nl303144k] [PMID: 23039907]
[http://dx.doi.org/10.1371/journal.pone.0176486] [PMID: 28453576]
[http://dx.doi.org/10.1186/s12967-017-1285-6] [PMID: 28851378]
[http://dx.doi.org/10.1016/j.tips.2019.06.004] [PMID: 31320117]
[http://dx.doi.org/10.1038/s41573-019-0024-5] [PMID: 30976107]
[http://dx.doi.org/10.1371/journal.pone.0061318] [PMID: 23646105]
[http://dx.doi.org/10.1021/acs.jcim.8b00524] [PMID: 30558418]
[http://dx.doi.org/10.1093/bib/bbz103] [PMID: 31711157]
[http://dx.doi.org/10.1038/s41392-022-00994-0] [PMID: 35538061]
[http://dx.doi.org/10.1186/s13073-014-0057-7] [PMID: 25165489]
[http://dx.doi.org/10.1016/j.cell.2018.03.028] [PMID: 29681454]
[http://dx.doi.org/10.1021/ci060003g] [PMID: 16711732]
[http://dx.doi.org/10.26508/lsa.201800098] [PMID: 30515477]
[http://dx.doi.org/10.1186/s13321-016-0130-x] [PMID: 27110288]
[http://dx.doi.org/10.1016/j.drudis.2013.05.015] [PMID: 23732176]
[http://dx.doi.org/10.1016/j.chembiol.2016.07.023] [PMID: 27642066]
[http://dx.doi.org/10.1093/bioinformatics/btx806] [PMID: 29253077]
[http://dx.doi.org/10.1093/toxsci/kfy152] [PMID: 30007363]
[http://dx.doi.org/10.1080/07391102.2020.1835725] [PMID: 33246398]
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[http://dx.doi.org/10.1021/ci500588j] [PMID: 25558886]
[http://dx.doi.org/10.1021/acs.jcim.6b00662] [PMID: 28345905]
[http://dx.doi.org/10.1021/jm8008663] [PMID: 19108654]
[http://dx.doi.org/10.1002/jcc.21778] [PMID: 21455963]
[http://dx.doi.org/10.1186/s13321-018-0283-x] [PMID: 29943074]
[http://dx.doi.org/10.1038/s41598-017-02365-0] [PMID: 28522849]
[http://dx.doi.org/10.1093/bioinformatics/btx491] [PMID: 28961788]
[http://dx.doi.org/10.3390/ijms19041040] [PMID: 29601530]
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[http://dx.doi.org/10.3389/fphar.2017.00889] [PMID: 29255418]
[http://dx.doi.org/10.1038/s41573-019-0050-3] [PMID: 31801986]
[http://dx.doi.org/10.1136/svn-2019-000290] [PMID: 32030204]
[http://dx.doi.org/10.1093/bioinformatics/bty707] [PMID: 30165565]
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[http://dx.doi.org/10.1016/j.fct.2019.110921] [PMID: 31669597]
[http://dx.doi.org/10.1080/15376516.2018.1499840] [PMID: 29998769]
[http://dx.doi.org/10.1186/s13321-021-00557-5] [PMID: 34583740]
[http://dx.doi.org/10.4155/fmc-2020-0259] [PMID: 33124448]
[http://dx.doi.org/10.1021/acs.jmedchem.7b00935] [PMID: 28956609]
[http://dx.doi.org/10.1039/C8RA01206G] [PMID: 35542768]
[http://dx.doi.org/10.1038/s41598-017-06692-0] [PMID: 28743970]
[http://dx.doi.org/10.2174/1573409915666190227230744] [PMID: 30827257];
(b) Li S, Wu S, Wang L, Li F, Jiang H, Bai F. Recent advances in predicting protein-protein interactions with the aid of artificial intelligence algorithms. Curr Opin Struct Biol 2022; 73: 102344.
[http://dx.doi.org/10.1016/j.sbi.2022.102344] [PMID: 35219216]
[http://dx.doi.org/10.1016/S0006-3495(03)74997-2] [PMID: 12609891]
[http://dx.doi.org/10.1093/nar/gkq481] [PMID: 20513650]
[http://dx.doi.org/10.1155/2014/147648]
[http://dx.doi.org/10.1089/cmb.2013.0083] [PMID: 24134392]
[http://dx.doi.org/10.1093/bioinformatics/btaa1091] [PMID: 33416858]
[http://dx.doi.org/10.1098/rsif.2013.0860] [PMID: 24196694]
[http://dx.doi.org/10.1093/bib/bbab111] [PMID: 33839740]
[http://dx.doi.org/10.1186/s12859-021-04022-w] [PMID: 34078261]
[http://dx.doi.org/10.3390/e23060643] [PMID: 34064042]
[http://dx.doi.org/10.1186/s12864-022-08772-6] [PMID: 35922751]
[http://dx.doi.org/10.1093/bib/bbac024] [PMID: 35189639]
[http://dx.doi.org/10.1016/j.ymeth.2016.06.024] [PMID: 27378654]
[http://dx.doi.org/10.1038/nrg.2016.86] [PMID: 27528417]
[http://dx.doi.org/10.1016/j.inffus.2018.09.012] [PMID: 30467459]
[http://dx.doi.org/10.1016/j.cell.2014.06.049] [PMID: 25109877]
[http://dx.doi.org/10.1038/s41591-018-0029-3] [PMID: 29736024]
[http://dx.doi.org/10.1208/s12248-021-00644-3] [PMID: 34984579]
[http://dx.doi.org/10.5120/ijca2018917434]
[http://dx.doi.org/10.1016/j.clinthera.2019.05.018] [PMID: 31248680]
[http://dx.doi.org/10.4103/picr.PICR_312_20] [PMID: 33816201]
[PMID: 33397449]
[http://dx.doi.org/10.1016/j.tips.2019.05.005] [PMID: 31326235]
[http://dx.doi.org/10.3390/cancers14225595] [PMID: 36428686]
[http://dx.doi.org/10.3390/cancers13071524] [PMID: 33810251]
[http://dx.doi.org/10.1145/2623330.2623667]
[http://dx.doi.org/10.1016/S2589-7500(20)30219-3] [PMID: 33328049]
[http://dx.doi.org/10.1016/j.drugalcdep.2009.05.019] [PMID: 19616902]
[http://dx.doi.org/10.1177/2042098620938595] [PMID: 32843958]
[http://dx.doi.org/10.1002/pds.4247] [PMID: 28653790]
[http://dx.doi.org/10.4103/0975-8453.83440]
[http://dx.doi.org/10.1056/NEJMp1606181] [PMID: 27682033]
[PMID: 34686947]
[http://dx.doi.org/10.3390/ijerph18010271] [PMID: 33401373]
[http://dx.doi.org/10.1038/s41551-018-0305-z] [PMID: 31015651]
[http://dx.doi.org/10.1093/jamia/ocv202] [PMID: 27026615]
[http://dx.doi.org/10.1016/j.drudis.2021.11.023] [PMID: 34838731]
[http://dx.doi.org/10.1377/hlthaff.2014.0352] [PMID: 25006140]
[http://dx.doi.org/10.1001/jama.2015.6177] [PMID: 26151261]
[http://dx.doi.org/10.1377/hlthaff.2014.0053] [PMID: 25006142]
(b) Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA 2017; 318: 517-8.
[http://dx.doi.org/10.1038/538020a] [PMID: 27708329]
[http://dx.doi.org/10.1377/hlthaff.2014.0048] [PMID: 25006139]
[http://dx.doi.org/10.1038/s41591-018-0316-z] [PMID: 30617335]
[http://dx.doi.org/10.1038/s41591-018-0300-7] [PMID: 30617339]
[http://dx.doi.org/10.1056/NEJMra1704286] [PMID: 30184457]