Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Probiotic Influences on Motor Skills: A Review

Author(s): Robert Lalonde* and Catherine Strazielle

Volume 21, Issue 12, 2023

Published on: 07 August, 2023

Page: [2481 - 2486] Pages: 6

DOI: 10.2174/1570159X21666230807150523

Price: $65

Abstract

The effects of probiotics have mostly been shown to be favorable on measures of anxiety and stress. More recent experiments indicate single- and multi-strain probiotics in treating motorrelated diseases. Initial studies in patients with Parkinson’s disease and Prader-Willi syndrome are concordant with this hypothesis. In addition, probiotics improved motor coordination in normal animals and models of Parkinson’s disease, multiple sclerosis, and spinal cord injury as well as grip strength in hepatic encephalopathy. Further studies should delineate the most optimal bacterial profile under each condition.

Graphical Abstract

[1]
Bermúdez-Humarán, L.G.; Salinas, E.; Ortiz, G.G.; Ramirez-Jirano, L.J.; Morales, J.A.; Bitzer-Quintero, O.K. From probiotics to psychobiotics: live beneficial bacteria which act on the brain-gut axis. Nutrients, 2019, 11(4), 890.
[http://dx.doi.org/10.3390/nu11040890] [PMID: 31010014]
[2]
Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; Guzzetta, K.E.; Jaggar, M.; Long-Smith, C.M.; Lyte, J.M.; Martin, J.A.; Molinero-Perez, A.; Moloney, G.; Morelli, E.; Morillas, E.; O’Connor, R.; Cruz-Pereira, J.S.; Peterson, V.L.; Rea, K.; Ritz, N.L.; Sherwin, E.; Spichak, S.; Teichman, E.M.; van de Wouw, M.; Ventura-Silva, A.P.; Wallace-Fitzsimons, S.E.; Hyland, N.; Clarke, G.; Dinan, T.G. The microbiota-gut-brain axis. Physiol. Rev., 2019, 99(4), 1877-2013.
[http://dx.doi.org/10.1152/physrev.00018.2018] [PMID: 31460832]
[3]
Zagórska, A.; Marcinkowska, M.; Jamrozik, M. Wiśniowska, B.; Paśko, P. From probiotics to psychobiotics – the gut-brain axis in psychiatric disorders. Benef. Microbes, 2020, 11(8), 717-732.
[http://dx.doi.org/10.3920/BM2020.0063] [PMID: 33191776]
[4]
Sharma, R.; Gupta, D.; Mehrotra, R.; Mago, P. Psychobiotics: the next-generation probiotics for the brain. Curr. Microbiol., 2021, 78(2), 449-463.
[http://dx.doi.org/10.1007/s00284-020-02289-5] [PMID: 33394083]
[5]
Appleton, J. The gut-brain axis: influence of microbiota on mood and mental health. Integr. Med. (Encinitas), 2018, 17(4), 28-32.
[PMID: 31043907]
[6]
El Dib, R.; Periyasamy, AG.; de Barros, JL.; França, CG.; Senefonte, FL.; Vesentini, G. Probiotics for the treatment of depression and anxiety: a systematic review and meta-analysis of randomized controlled trials. Clin. Nutr., 2021, 45, 75-90.
[http://dx.doi.org/10.1016/j.clnesp.2021.07.027]
[7]
Long-Smith, C.; O’Riordan, K.J.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Microbiota-gut-brain axis: new therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol., 2020, 60(1), 477-502.
[http://dx.doi.org/10.1146/annurev-pharmtox-010919-023628] [PMID: 31506009]
[8]
Wang, H.; Lee, I.S.; Braun, C.; Enck, P. Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J. Neurogastroenterol. Motil., 2016, 22(4), 589-605.
[http://dx.doi.org/10.5056/jnm16018] [PMID: 27413138]
[9]
Borre, Y.E.; O’Keeffe, G.W.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol. Med., 2014, 20(9), 509-518.
[http://dx.doi.org/10.1016/j.molmed.2014.05.002] [PMID: 24956966]
[10]
Acuña, I.; Cerdó, T.; Ruiz, A.; Torres-Espínola, F.J.; López-Moreno, A.; Aguilera, M.; Suárez, A.; Campoy, C. Infant gut microbiota associated with fine motor skills. Nutrients, 2021, 13(5), 1673.
[http://dx.doi.org/10.3390/nu13051673] [PMID: 34069166]
[11]
Jacobs, S.E.; Hickey, L.; Donath, S.; Opie, G.F.; Anderson, P.J.; Garland, S.M.; Cheong, J.L.Y. Probiotics, prematurity and neurodevelopment: follow-up of a randomised trial. BMJ Paediatr. Open, 2017, 1(1), e000176.
[http://dx.doi.org/10.1136/bmjpo-2017-000176] [PMID: 29637171]
[12]
Upadhyay, R.P.; Taneja, S.; Chowdhury, R.; Strand, T.A.; Bhandari, N. Effect of prebiotic and probiotic supplementation on neurodevelopment in preterm very low birth weight infants: findings from a meta-analysis. Pediatr. Res., 2020, 87(5), 811-822.
[http://dx.doi.org/10.1038/s41390-018-0211-9] [PMID: 30353041]
[13]
Kim, J.; Yoon, B.E.; Jeon, Y.K. Effect of treadmill exercise and probiotic ingestion on motor coordination and brain activity in adolescent mice. Healthcare (Basel), 2020, 9(1), 7.
[http://dx.doi.org/10.3390/healthcare9010007] [PMID: 33374692]
[14]
Lalonde, R.; Strazielle, C. Motor performances of spontaneous and genetically modified mutants with cerebellar atrophy. Cerebellum, 2019, 18(3), 615-634.
[http://dx.doi.org/10.1007/s12311-019-01017-5] [PMID: 30820866]
[15]
Park, M.R.; Shin, M.; Mun, D.; Jeong, S.Y.; Jeong, D.Y.; Song, M.; Ko, G.; Unno, T.; Kim, Y.; Oh, S. Probiotic Lactobacillus fermentum strain JDFM216 improves cognitive behavior and modulates immune response with gut microbiota. Sci. Rep., 2020, 10(1), 21701.
[http://dx.doi.org/10.1038/s41598-020-77587-w] [PMID: 33303803]
[16]
Leite, G.S.F.; Resende Master Student, A.S.; West, N.P.; Lancha, A.H., Jr Probiotics and sports: A new magic bullet? Nutrition, 2019, 60, 152-160.
[http://dx.doi.org/10.1016/j.nut.2018.09.023] [PMID: 30590242]
[17]
Arslanova, A.; Tarasova, A.; Alexandrova, A.; Novoselova, V.; Shaidullov, I.; Khusnutdinova, D.; Grigoryeva, T.; Yarullina, D.; Yakovleva, O.; Sitdikova, G. Protective effects of probiotics on cognitive and motor functions, anxiety level, visceral sensitivity, oxidative stress and microbiota in mice with antibiotic-induced dysbiosis. Life (Basel), 2021, 11(8), 764.
[http://dx.doi.org/10.3390/life11080764] [PMID: 34440509]
[18]
Barichella, M.; Pacchetti, C.; Bolliri, C.; Cassani, E.; Iorio, L.; Pusani, C.; Pinelli, G.; Privitera, G.; Cesari, I.; Faierman, S.A.; Caccialanza, R.; Pezzoli, G.; Cereda, E. Probiotics and prebiotic fiber for constipation associated with Parkinson disease. Neurology, 2016, 87(12), 1274-1280.
[http://dx.doi.org/10.1212/WNL.0000000000003127] [PMID: 27543643]
[19]
Lubomski, M.; Tan, A.H.; Lim, S.Y.; Holmes, A.J.; Davis, R.L.; Sue, C.M. Parkinson’s disease and the gastrointestinal microbiome. J. Neurol., 2020, 267(9), 2507-2523.
[http://dx.doi.org/10.1007/s00415-019-09320-1] [PMID: 31041582]
[20]
Metta, V.; Leta, V.; Mrudula, K.R.; Prashanth, L.K.; Goyal, V.; Borgohain, R.; Chung-Faye, G.; Chaudhuri, K.R. Gastrointestinal dysfunction in Parkinson’s disease: molecular pathology and implications of gut microbiome, probiotics, and fecal microbiota transplantation. J. Neurol., 2022, 269(3), 1154-1163.
[http://dx.doi.org/10.1007/s00415-021-10567-w] [PMID: 33881598]
[21]
Ramprasad, C.; Douglas, J.Y.; Moshiree, B. Parkinson’s disease and current treatments for its gastrointestinal neurogastromotility effects. Curr. Treat. Options Gastroenterol., 2018, 16(4), 489-510.
[http://dx.doi.org/10.1007/s11938-018-0201-3] [PMID: 30361854]
[22]
Wallen, Z.D.; Appah, M.; Dean, M.N.; Sesler, C.L.; Factor, S.A.; Molho, E.; Zabetian, C.P.; Standaert, D.G.; Payami, H. Characterizing dysbiosis of gut microbiome in PD: evidence for overabundance of opportunistic pathogens. NPJ Parkinsons Dis., 2020, 6(1), 11.
[http://dx.doi.org/10.1038/s41531-020-0112-6] [PMID: 32566740]
[23]
Chen, Z.; Ruan, J.; Li, D.; Wang, M.; Han, Z.; Qiu, W.; Wu, G. The role of intestinal bacteria and gut-brain axis in hepatic encephalopathy. Front. Cell. Infect. Microbiol., 2021, 10, 595759.
[http://dx.doi.org/10.3389/fcimb.2020.595759] [PMID: 33553004]
[24]
Gazerani, P. Probiotics for Parkinson’s disease. Int. J. Mol. Sci., 2019, 20(17), 4121.
[http://dx.doi.org/10.3390/ijms20174121] [PMID: 31450864]
[25]
Leta, V.; Ray Chaudhuri, K.; Milner, O.; Chung-Faye, G.; Metta, V.; Pariante, C.M.; Borsini, A. Neurogenic and anti-inflammatory effects of probiotics in Parkinson’s disease: A systematic review of preclinical and clinical evidence. Brain Behav. Immun., 2021, 98, 59-73.
[http://dx.doi.org/10.1016/j.bbi.2021.07.026] [PMID: 34364965]
[26]
Mirzaei, H.; Sedighi, S.; Kouchaki, E.; Barati, E.; Dadgostar, E.; Aschner, M. Probiotics and the treatment of Parkinson’s disease: an update. Cell. Mol. Neurobiol., 2021, 2021, 2449-2457.
[http://dx.doi.org/10.1007/s10571-021-01128-w] [PMID: 34283340]
[27]
Tan, A.H.; Hor, J.W.; Chong, C.W.; Lim, S.Y. Probiotics for Parkinson’s disease: Current evidence and future directions. JGH Open, 2021, 5(4), 414-419.
[http://dx.doi.org/10.1002/jgh3.12450] [PMID: 33860090]
[28]
Uyar, G.Ö.; Yildiran, H. A nutritional approach to microbiota in Parkinson’s disease. Biosci. Microbiota Food Health, 2019, 38(4), 115-127.
[http://dx.doi.org/10.12938/bmfh.19-002] [PMID: 31763115]
[29]
Van Laar, T.; Boertien, J.M.; Herranz, A.H. Faecal transplantation, pro- and prebiotics in Parkinson’s disease; hope or hype? J. Parkinsons Dis., 2019, 9(s2), S371-S379.
[http://dx.doi.org/10.3233/JPD-191802] [PMID: 31609702]
[30]
Wang, Q.; Luo, Y.; Ray Chaudhuri, K.; Reynolds, R.; Tan, E.K.; Pettersson, S. The role of gut dysbiosis in Parkinson’s disease: mechanistic insights and therapeutic options. Brain, 2021, 144(9), 2571-2593.
[http://dx.doi.org/10.1093/brain/awab156] [PMID: 33856024]
[31]
Magistrelli, L.; Amoruso, A.; Mogna, L.; Graziano, T.; Cantello, R.; Pane, M.; Comi, C. Probiotics may have beneficial effects in Parkinson’s disease: in vitro evidence. Front. Immunol., 2019, 10, 969.
[http://dx.doi.org/10.3389/fimmu.2019.00969] [PMID: 31134068]
[32]
Lu, C.S.; Chang, H.C.; Weng, Y.H.; Chen, C.C.; Kuo, Y.S.; Tsai, Y.C. The add-on effect of Lactobacillus plantarum PS128 in patients with Parkinson’s disease: a pilot study. Front. Nutr., 2021, 8, 650053.
[http://dx.doi.org/10.3389/fnut.2021.650053] [PMID: 34277679]
[33]
Tamtaji, O.R.; Taghizadeh, M.; Daneshvar Kakhaki, R.; Kouchaki, E.; Bahmani, F.; Borzabadi, S.; Oryan, S.; Mafi, A.; Asemi, Z. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin. Nutr., 2019, 38(3), 1031-1035.
[http://dx.doi.org/10.1016/j.clnu.2018.05.018] [PMID: 29891223]
[34]
Castelli, V.; d’Angelo, M.; Lombardi, F.; Alfonsetti, M.; Antonosante, A.; Catanesi, M.; Benedetti, E.; Palumbo, P.; Cifone, M.G.; Giordano, A.; Desideri, G.; Cimini, A. Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson’s disease models. Aging, 2020, 12(5), 4641-4659.
[http://dx.doi.org/10.18632/aging.102927] [PMID: 32155131]
[35]
Nurrahma, B.A.; Tsao, S.P.; Wu, C.H.; Yeh, T.H.; Hsieh, P.S.; Panunggal, B.; Huang, H.Y. Probiotic supplementation facilitates recovery of 6-OHDA-induced motor deficit via improving mitochondrial function and energy metabolism. Front. Aging Neurosci., 2021, 13, 668775.
[http://dx.doi.org/10.3389/fnagi.2021.668775] [PMID: 34025392]
[36]
Ma, Y.F.; Lin, Y.A.; Huang, C.L.; Hsu, C.C.; Wang, S.; Yeh, S.R. Lactiplantibacillus plantarum PS128 alleviates exaggerated cortical beta oscillations and motor deficits in the 6-hydroxydopamine rat model of Parkinson’s disease. Probiotics Antimicrob. Proteins, 2021, 2021, 312-325.
[http://dx.doi.org/10.1007/s12602-021-09828-x] [PMID: 34449056]
[37]
Alipour Nosrani, E.; Tamtaji, O.R.; Alibolandi, Z.; Sarkar, P.; Ghazanfari, M.; Azami Tameh, A.; Taghizadeh, M.; Banikazemi, Z.; Hadavi, R.; Naderi Taheri, M. Neuroprotective effects of probiotics bacteria on animal model of Parkinson’s disease induced by 6-hydroxydopamine: A behavioral, biochemical, and histological study. J. Immunoassay Immunochem., 2021, 42(2), 106-120.
[http://dx.doi.org/10.1080/15321819.2020.1833917] [PMID: 33078659]
[38]
Marsova, M.; Poluektova, E.; Odorskaya, M.; Ambaryan, A.; Revishchin, A.; Pavlova, G.; Danilenko, V. Protective effects of Lactobacillus fermentum U-21 against paraquat-induced oxidative stress in Caenorhabditis elegans and mouse models. World J. Microbiol. Biotechnol., 2020, 36(7), 104.
[http://dx.doi.org/10.1007/s11274-020-02879-2] [PMID: 32632560]
[39]
Perez Visñuk, D.; Savoy de Giori, G.; LeBlanc, J.G.; de Moreno de LeBlanc, A. Neuroprotective effects associated with immune modulation by selected lactic acid bacteria in a Parkinson’s disease model. Nutrition, 2020, 79-80, 110995.
[http://dx.doi.org/10.1016/j.nut.2020.110995] [PMID: 32977125]
[40]
Sun, J.; Li, H.; Jin, Y.; Yu, J.; Mao, S.; Su, K.P.; Ling, Z.; Liu, J. Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson’s disease via gut microbiota-GLP-1 pathway. Brain Behav. Immun., 2021, 91, 703-715.
[http://dx.doi.org/10.1016/j.bbi.2020.10.014] [PMID: 33148438]
[41]
Fang, X.; Tian, P.; Zhao, X.; Jiang, C.; Chen, T. Neuroprotective effects of an engineered commensal bacterium in the 1‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine Parkinson disease mouse model via producing glucagon‐like peptide‐1. J. Neurochem., 2019, 150(4), 441-452.
[http://dx.doi.org/10.1111/jnc.14694] [PMID: 30851189]
[42]
Fang, X.; Zhou, X.; Miao, Y.; Han, Y.; Wei, J.; Chen, T. Therapeutic effect of GLP-1 engineered strain on mice model of Alzheimer’s disease and Parkinson’s disease. AMB Express, 2020, 10(1), 80.
[http://dx.doi.org/10.1186/s13568-020-01014-6] [PMID: 32333225]
[43]
Hsieh, T.H.; Kuo, C.W.; Hsieh, K.H.; Shieh, M.J.; Peng, C.W.; Chen, Y.C.; Chang, Y.L.; Huang, Y.Z.; Chen, C.C.; Chang, P.K.; Chen, K.Y.; Chen, H.Y. Probiotics alleviate the progressive deterioration of motor functions in a mouse model of Parkinson’s disease. Brain Sci., 2020, 10(4), 206.
[http://dx.doi.org/10.3390/brainsci10040206] [PMID: 32244769]
[44]
Dutta, R.; Trapp, B.D. Relapsing and progressive forms of multiple sclerosis. Curr. Opin. Neurol., 2014, 27(3), 271-278.
[http://dx.doi.org/10.1097/WCO.0000000000000094] [PMID: 24722325]
[45]
Esmaeil Amini, M.; Shomali, N.; Bakhshi, A.; Rezaei, S.; Hemmatzadeh, M.; Hosseinzadeh, R.; Eslami, S.; Babaie, F.; Aslani, S.; Torkamandi, S.; Mohammadi, H. Gut microbiome and multiple sclerosis: New insights and perspective. Int. Immunopharmacol., 2020, 88, 107024.
[http://dx.doi.org/10.1016/j.intimp.2020.107024] [PMID: 33182024]
[46]
Ghezzi, L.; Cantoni, C.; Pinget, G.V.; Zhou, Y.; Piccio, L. Targeting the gut to treat multiple sclerosis. J. Clin. Invest., 2021, 131(13), e143774.
[http://dx.doi.org/10.1172/JCI143774] [PMID: 34196310]
[47]
Kohl, H.M.; Castillo, A.R.; Ochoa-Repáraz, J. The microbiome as a therapeutic target for multiple sclerosis: can genetically engineered probiotics treat the disease? Diseases, 2020, 8(3), 33.
[http://dx.doi.org/10.3390/diseases8030033] [PMID: 32872621]
[48]
Parodi, B.; Kerlero de Rosbo, N. The gut-brain axis in multiple sclerosis: is its dysfunction a pathological trigger or a consequence of the disease? Front. Immunol., 2021, 12, 718220.
[http://dx.doi.org/10.3389/fimmu.2021.718220] [PMID: 34621267]
[49]
Pellizoni, F.P.; Leite, A.Z.; Rodrigues, N.C.; Ubaiz, M.J.; Gonzaga, M.I.; Takaoka, N.N.C.; Mariano, V.S.; Omori, W.P.; Pinheiro, D.G.; Matheucci Junior, E.; Gomes, E.; de Oliveira, G.L.V. Detection of dysbiosis and increased intestinal permeability in Brazilian patients with relapsing-remitting multiple sclerosis. Int. J. Environ. Res. Public Health, 2021, 18(9), 4621.
[http://dx.doi.org/10.3390/ijerph18094621] [PMID: 33925359]
[50]
Jiang, J.; Chu, C.; Wu, C.; Wang, C.; Zhang, C.; Li, T.; Zhai, Q.; Yu, L.; Tian, F.; Chen, W. Efficacy of probiotics in multiple sclerosis: a systematic review of preclinical trials and meta-analysis of randomized controlled trials. Food Funct., 2021, 12(6), 2354-2377.
[http://dx.doi.org/10.1039/D0FO03203D] [PMID: 33629669]
[51]
Mirashrafi, S.; Hejazi Taghanaki, S.Z.; Sarlak, F.; Moravejolahkami, A.R.; Hojjati Kermani, M.A.; Haratian, M. Effect of probiotics supplementation on disease progression, depression, general health, and anthropometric measurements in relapsing‐remitting multiple sclerosis patients: A systematic review and meta‐analysis of clinical trials. Int. J. Clin. Pract., 2021, 75(11), e14724.
[http://dx.doi.org/10.1111/ijcp.14724] [PMID: 34379879]
[52]
Ullah, H.; Tovchiga, O.; Daglia, M.; Khan, H. Modulating gut microbiota: an emerging approach in the prevention and treatment of multiple sclerosis. Curr. Neuropharmacol., 2021, 19(11), 1966-1983.
[http://dx.doi.org/10.2174/18756190MTE02Mjcrz] [PMID: 33596808]
[53]
Salami, M.; Kouchaki, E.; Asemi, Z.; Tamtaji, O.R. How probiotic bacteria influence the motor and mental behaviors as well as immunological and oxidative biomarkers in multiple sclerosis? A double blind clinical trial. J. Funct. Foods, 2019, 52, 8-13.
[http://dx.doi.org/10.1016/j.jff.2018.10.023]
[54]
Mestre, L.; Carrillo-Salinas, F.J.; Mecha, M.; Feliú, A.; Espejo, C.; Álvarez-Cermeño, J.C.; Villar, L.M.; Guaza, C. Manipulation of gut microbiota influences immune responses, axon preservation, and motor disability in a model of progressive multiple sclerosis. Front. Immunol., 2019, 10, 1374.
[http://dx.doi.org/10.3389/fimmu.2019.01374] [PMID: 31258540]
[55]
Mestre, L.; Carrillo-Salinas, F.J.; Feliú, A.; Mecha, M.; Alonso, G.; Espejo, C.; Calvo-Barreiro, L.; Luque-García, J.L.; Estevez, H.; Villar, L.M.; Guaza, C. How oral probiotics affect the severity of an experimental model of progressive multiple sclerosis? Bringing commensal bacteria into the neurodegenerative process. Gut Microbes, 2020, 12(1), 1813532.
[http://dx.doi.org/10.1080/19490976.2020.1813532] [PMID: 32900255]
[56]
Calvo-Barreiro, L.; Eixarch, H.; Ponce-Alonso, M.; Castillo, M.; Lebrón-Galán, R.; Mestre, L.; Guaza, C.; Clemente, D.; del Campo, R.; Montalban, X.; Espejo, C. A commercial probiotic induces tolerogenic and reduces pathogenic responses in experimental autoimmune encephalomyelitis. Cells, 2020, 9(4), 906.
[http://dx.doi.org/10.3390/cells9040906] [PMID: 32272791]
[57]
Goudarzvand, M.; Rasouli Koohi, S.; Khodaii, Z.; Soleymanzadeh, M.S. Probiotics Lactobacillus plantarum and bifidobacterium B94: cognitive function in demyelinated model. Med. J. Islam. Repub. Iran, 2016, 30, 391.
[PMID: 27579282]
[58]
Gharehkhani Digehsara, S.; Name, N.; Esfandiari, B.; Karim, E.; Taheri, S.; Tajabadi-Ebrahimi, M.; Arasteh, J. Effects of Lactobacillus casei strain T2 (IBRC-M10783) on the modulation of Th17/Treg and evaluation of miR-155, miR-25, and IDO-1 expression in a cuprizone-induced C57BL/6 mouse model of demyelination. Inflammation, 2021, 44(1), 334-343.
[http://dx.doi.org/10.1007/s10753-020-01339-1] [PMID: 32914363]
[59]
Lalonde, R. The neurobiological basis of spontaneous alternation. Neurosci. Biobehav. Rev., 2002, 26(1), 91-104.
[http://dx.doi.org/10.1016/S0149-7634(01)00041-0] [PMID: 11835987]
[60]
Blais, L.L.; Montgomery, T.L.; Amiel, E.; Deming, P.B.; Krementsov, D.N. Probiotic and commensal gut microbial therapies in multiple sclerosis and its animal models: a comprehensive review. Gut Microbes, 2021, 13(1), 1943289.
[http://dx.doi.org/10.1080/19490976.2021.1943289] [PMID: 34264791]
[61]
Valizadeh, S.; Majdi, S.A.; Maleki, C.K.; Bahadori, A.; Abbaszadeh, S.; Taghdir, M.; Behniafar, H.; Riahi, S.M. The efficacy of probiotics in experimental autoimmune encephalomyelitis (an animal model for MS): a systematic review and meta‐analysis. Lett. Appl. Microbiol., 2021, 73(4), 408-417.
[http://dx.doi.org/10.1111/lam.13543] [PMID: 34310737]
[62]
Jing, Y.; Bai, F.; Yu, Y. Spinal cord injury and gut microbiota: A review. Life Sci., 2021, 266, 118865.
[http://dx.doi.org/10.1016/j.lfs.2020.118865] [PMID: 33301807]
[63]
Kigerl, K.A.; Mostacada, K.; Popovich, P.G. Gut microbiota are disease-modifying factors after traumatic spinal cord injury. Neurotherapeutics, 2018, 15(1), 60-67.
[http://dx.doi.org/10.1007/s13311-017-0583-2] [PMID: 29101668]
[64]
Kigerl, K.A.; Hall, J.C.E.; Wang, L.; Mo, X.; Yu, Z.; Popovich, P.G. Gut dysbiosis impairs recovery after spinal cord injury. J. Exp. Med., 2016, 213(12), 2603-2620.
[http://dx.doi.org/10.1084/jem.20151345] [PMID: 27810921]
[65]
Cassidy, S.B.; Schwartz, S.; Miller, J.L.; Driscoll, D.J. Prader-Willi syndrome. Genet. Med., 2012, 14(1), 10-26.
[http://dx.doi.org/10.1038/gim.0b013e31822bead0] [PMID: 22237428]
[66]
Olsson, L.M.; Poitou, C.; Tremaroli, V.; Coupaye, M.; Aron-Wisnewsky, J.; Bäckhed, F.; Clément, K.; Caesar, R. Gut microbiota of obese subjects with Prader-Willi syndrome is linked to metabolic health. Gut, 2020, 69(7), 1229-1238.
[http://dx.doi.org/10.1136/gutjnl-2019-319322] [PMID: 31611297]
[67]
Kong, X.J.; Liu, K.; Zhuang, P.; Tian, R.; Liu, S.; Clairmont, C.; Lin, X.; Sherman, H.; Zhu, J.; Wang, Y.; Fong, M.; Li, A.; Wang, B.K.; Wang, J.; Yu, Z.; Shen, C.; Cui, X.; Cao, H.; Du, T.; Wan, G.; Cao, X. The effects of Limosilactobacillus reuteri LR-99 supplementation on body mass index, social communication, fine motor function, and gut microbiome composition in individuals with Prader-Willi syndrome: a randomized double-blinded placebo-controlled trial. Probiotics Antimicrob. Proteins, 2021, 13(6), 1508-1520.
[http://dx.doi.org/10.1007/s12602-021-09800-9] [PMID: 34115318]
[68]
Bervini, S.; Herzog, H. Mouse models of Prader-Willi Syndrome: A systematic review. Front. Neuroendocrinol., 2013, 34(2), 107-119.
[http://dx.doi.org/10.1016/j.yfrne.2013.01.002] [PMID: 23391702]
[69]
Garfield, A.S.; Davies, J.R.; Burke, L.K.; Furby, H.V.; Wilkinson, L.S.; Heisler, L.K.; Isles, A.R. Increased alternate splicing of Htr2c in a mouse model for Prader-Willi syndrome leads disruption of 5HT2C receptor mediated appetite. Mol. Brain, 2016, 9(1), 95.
[http://dx.doi.org/10.1186/s13041-016-0277-4] [PMID: 27931246]
[70]
Sharma, P. Minimal hepatic encephalopathy. J. Assoc. Physicians India, 2009, 57, 760-763.
[PMID: 20329443]
[71]
Moratalla, A.; Ampuero, J.; Bellot, P.; Gallego-Durán, R.; Zapater, P.; Roger, M.; Figueruela, B.; Martínez-Moreno, B.; González-Navajas, J.M.; Such, J.; Romero-Gómez, M.; Francés, R. Lactulose reduces bacterial DNA translocation, which worsens neurocognitive shape in cirrhotic patients with minimal hepatic encephalopathy. Liver Int., 2017, 37(2), 212-223.
[http://dx.doi.org/10.1111/liv.13200] [PMID: 27388776]
[72]
Bloom, PP.; Tapper, EB.; Young, VB.; Lok, AS. Microbiome therapeutics for hepatic encephalopathy. J. Hepatol., 2021, 21, S0168-S8278.
[http://dx.doi.org/10.1016/j.jhep.2021.08.004]
[73]
Chen, Z.J.; Liang, C.Y.; Yang, L.Q.; Ren, S.M.; Xia, Y.M.; Cui, L.; Li, X.F.; Gao, B.L. Association of Parkinson’s disease with microbes and microbiological therapy. Front. Cell. Infect. Microbiol., 2021, 11, 619354.
[http://dx.doi.org/10.3389/fcimb.2021.619354] [PMID: 33763383]
[74]
Lunia, M.K.; Sharma, B.C.; Sharma, P.; Sachdeva, S.; Srivastava, S. Probiotics prevent hepatic encephalopathy in patients with cirrhosis: a randomized controlled trial. Clin. Gastroenterol. Hepatol., 2014, 12(6), 1003-1008.e1.
[http://dx.doi.org/10.1016/j.cgh.2013.11.006] [PMID: 24246768]
[75]
Maslennikov, R.; Ivashkin, V.; Efremova, I.; Poluektova, E.; Shirokova, E. Probiotics in hepatology: An update. World J. Hepatol., 2021, 13(9), 1154-1166.
[http://dx.doi.org/10.4254/wjh.v13.i9.1154] [PMID: 34630882]
[76]
Ochoa-Sanchez, R.; Oliveira, M.M.; Tremblay, M.; Petrazzo, G.; Pant, A.; Bosoi, C.R.; Perreault, M.; Querbes, W.; Kurtz, C.B.; Rose, C.F. Genetically engineered E. coli Nissle attenuates hyperammonemia and prevents memory impairment in bile‐duct ligated rats. Liver Int., 2021, 41(5), 1020-1032.
[http://dx.doi.org/10.1111/liv.14815] [PMID: 33548108]
[77]
Flatt, E.; McLin, V.A.; Braissant, O.; Pierzchala, K.; Mastromarino, P.; Mitrea, S.O.; Sessa, D.; Gruetter, R.; Cudalbu, C. Probiotics combined with rifaximin influence the neurometabolic changes in a rat model of type C HE. Sci. Rep., 2021, 11(1), 17988.
[http://dx.doi.org/10.1038/s41598-021-97018-8] [PMID: 34504135]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy