Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Recent Progress and Challenges in the Development of Edible Vaccines Produced by Genetically Modified Plants

Author(s): Smita Singh, Pranjal Kumar Singh*, Kapil Sachan, Sakshi Garg and Alok Nath Sharma

Volume 24, Issue 9, 2023

Published on: 16 August, 2023

Page: [711 - 720] Pages: 10

DOI: 10.2174/1389203724666230804095716

Price: $65

Abstract

Biotechnologists have pioneered the idea of an edible vaccination in recent years. Subunit vaccines, such as those used to create edible vaccines, involve the introduction of certain genes into transgenic plants, which are subsequently coaxed into producing the corresponding protein. Bananas, potatoes, legumes, lettuce, soybeans, corn, and rice are all examples of foods that fall under this category. They have a low unit cost, can be stored conveniently, and are simple to administer to patients of varying ages. There is great hope that the use of edible vaccinations, particularly in underdeveloped countries, could drastically reduce the prevalence of diseases, including measles, cholera, hepatitis B, and diarrhea. The development of effective and widely applicable edible vaccination, however, faces a number of technological and regulatory hurdles. When compared to traditional immunizations, edible vaccines offer significant cost savings, increased productivity, and reduced risk. It raises the possibility of a more efficient approach to illness prevention. This article includes important uses, production, host plants, benefits, drawbacks, mechanism of action, and many regulatory difficulties related to edible vaccines. In this article, we have discussed the most recent developments and successes with edible and intradermal vaccines in terms of the system used for immunogen production, the molecular properties of these vaccines, and their ability to generate a protective systemic and mucosal response.

Graphical Abstract

[1]
Kurup, V.M.; Thomas, J. Edible vaccines: Promises and challenges. Mol. Biotechnol., 2020, 62(2), 79-90.
[http://dx.doi.org/10.1007/s12033-019-00222-1] [PMID: 31758488]
[2]
Hajj, H.I.; Chams, N.; Chams, S.; El Sayegh, S.; Badran, R.; Raad, M.; Gerges-Geagea, A.; Leone, A.; Jurjus, A. Vaccines through centuries: Major cornerstones of global health. Front. Public Health, 2015, 3, 269.
[http://dx.doi.org/10.3389/fpubh.2015.00269] [PMID: 26636066]
[3]
Abbasi, J. COVID-19 and mRNA vaccines—first large test for a new approach. JAMA, 2020, 324(12), 1125-1127.
[http://dx.doi.org/10.1001/jama.2020.16866] [PMID: 32880613]
[4]
Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines: A new era in vaccinology. Nat. Rev. Drug Discov., 2018, 17(4), 261-279.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[5]
Jafari, A.; Danesh, P.F.; Niknam, Z.; Abdollahpour-Alitappeh, M.; Rezaei-Tavirani, M.; Rasmi, Y. Current advances and challenges in COVID-19 vaccine development: From conventional vaccines to next-generation vaccine platforms. Mol. Biol. Rep., 2022, 49(6), 4943-4957.
[http://dx.doi.org/10.1007/s11033-022-07132-7] [PMID: 35235159]
[6]
Vela Ramirez, J.E.; Sharpe, L.A.; Peppas, N.A. Current state and challenges in developing oral vaccines. Adv. Drug Deliv. Rev., 2017, 114, 116-131.
[http://dx.doi.org/10.1016/j.addr.2017.04.008] [PMID: 28438674]
[7]
Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol., 2021, 21(2), 83-100.
[http://dx.doi.org/10.1038/s41577-020-00479-7] [PMID: 33353987]
[8]
Pati, R.; Shevtsov, M.; Sonawane, A. Nanoparticle vaccines against infectious diseases. Front. Immunol., 2018, 9, 2224.
[http://dx.doi.org/10.3389/fimmu.2018.02224] [PMID: 30337923]
[9]
Russell, M.W.; Moldoveanu, Z.; Ogra, P.L.; Mestecky, J. Mucosal immunity in COVID-19: A neglected but critical aspect of SARS-CoV-2 infection. Front. Immunol., 2020, 11, 611337.
[http://dx.doi.org/10.3389/fimmu.2020.611337] [PMID: 33329607]
[10]
McNeil, M.M.; DeStefano, F. Vaccine-associated hypersensitivity. J. Allergy Clin. Immunol., 2018, 141(2), 463-472.
[http://dx.doi.org/10.1016/j.jaci.2017.12.971] [PMID: 29413255]
[11]
Hervé, C.; Laupèze, B.; Del Giudice, G.; Didierlaurent, A.M.; Tavares Da Silva, F. The how’s and what’s of vaccine reactogenicity. NPJ Vaccines, 2019, 4(1), 39.
[http://dx.doi.org/10.1038/s41541-019-0132-6] [PMID: 31583123]
[12]
Nooraei, S.; Bahrulolum, H.; Hoseini, Z.S.; Katalani, C.; Hajizade, A.; Easton, A.J.; Ahmadian, G. Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol., 2021, 19(1), 59.
[http://dx.doi.org/10.1186/s12951-021-00806-7] [PMID: 33632278]
[13]
Su, H.; Yakovlev, I.A.; van Eerde, A.; Su, J.; Clarke, J.L. Plant-produced vaccines: Future applications in aquaculture. Front. Plant Sci., 2021, 12, 718775.
[http://dx.doi.org/10.3389/fpls.2021.718775] [PMID: 34456958]
[14]
Concha, C.; Cañas, R.; Macuer, J.; Torres, M.; Herrada, A.; Jamett, F.; Ibáñez, C. Disease prevention: An opportunity to expand edible plant-based vaccines? Vaccines, 2017, 5(2), 14.
[http://dx.doi.org/10.3390/vaccines5020014] [PMID: 28556800]
[15]
Takeyama, N.; Kiyono, H.; Yuki, Y. Plant-based vaccines for animals and humans: Recent advances in technology and clinical trials. Ther. Adv. Vaccines, 2015, 3(5-6), 139-154.
[http://dx.doi.org/10.1177/2051013615613272] [PMID: 26668752]
[16]
Saxena, J.; Rawat, S. Edible Vaccines. Advances in Biotechnology, 2013, 207-26.
[17]
Singh, P.K.; Easwari, T.S. Natural medicines as gastro-protective therapy in the treatment of peptic ulcer: A multifaceted approach. Curr. Nutr. Food Sci., 2022, 18(6), 559-573.
[http://dx.doi.org/10.2174/1573401318666220304150152]
[18]
Dubey, K.K.; Luke, G.A.; Knox, C.; Kumar, P.; Pletschke, B.I.; Singh, P.K.; Shukla, P. Vaccine and antibody production in plants: Developments and computational tools. Brief. Funct. Genomics, 2018, 17(5), 295-307.
[http://dx.doi.org/10.1093/bfgp/ely020] [PMID: 29982427]
[19]
Dhama, K.; Natesan, S.; Iqbal Yatoo, M.; Patel, S.K.; Tiwari, R.; Saxena, S.K.; Harapan, H. Plant-based vaccines and antibodies to combat COVID-19: Current status and prospects. Hum. Vaccin. Immunother., 2020, 16(12), 2913-2920.
[http://dx.doi.org/10.1080/21645515.2020.1842034] [PMID: 33270484]
[20]
Ortega-Berlanga, B.; Pniewski, T. Plant-based vaccines in combat against coronavirus diseases. Vaccines, 2022, 10(2), 138.
[http://dx.doi.org/10.3390/vaccines10020138] [PMID: 35214597]
[21]
Lee, J.; Kim, D.; Noh, J.; Youk, S.; Jeong, J.; Lee, J.; Park, S.Y.; Choi, I.; Lee, S.W.; Song, C. Live recombinant NDV-vectored h5 vaccine protects chickens and domestic ducks from lethal infection of the highly pathogenic H5N6 avian influenza virus. Front. Vet. Sci., 2022, 8, 773715.
[http://dx.doi.org/10.3389/fvets.2021.773715] [PMID: 35187138]
[22]
Brown, V.R.; Bevins, S.N. A review of virulent newcastle disease viruses in the united states and the role of wild birds in viral persistence and spread. Vet. Res., 2017, 48(1), 68.
[http://dx.doi.org/10.1186/s13567-017-0475-9] [PMID: 29073919]
[23]
Ji, S.; Orlikova, B.; Diederich, M. Non-edible plants as an attractive source of compounds with chemopreventive potential. J. Cancer Prev., 2014, 19(1), 1-6.
[http://dx.doi.org/10.15430/JCP.2014.19.1.1] [PMID: 25337566]
[24]
Bhatia, S.; Dahiya, R. Edible Vaccines. In: Modern Applications of Plant Biotechnology in Pharmaceutical Sciences; , 2015; pp. 333-343.
[25]
Maldonado Galdeano, C.; Cazorla, S.I.; Lemme Dumit, J.M.; Vélez, E.; Perdigón, G. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab., 2019, 74(2), 115-124.
[http://dx.doi.org/10.1159/000496426] [PMID: 30673668]
[26]
Kobayashi, N.; Takahashi, D.; Takano, S.; Kimura, S.; Hase, K. The roles of peyer’s patches and microfold cells in the gut immune system: Relevance to autoimmune diseases. Front. Immunol., 2019, 10, 2345.
[http://dx.doi.org/10.3389/fimmu.2019.02345] [PMID: 31649668]
[27]
Embgenbroich, M.; Burgdorf, S. Current concepts of antigen cross-presentation. Front. Immunol., 2018, 9, 1643.
[http://dx.doi.org/10.3389/fimmu.2018.01643] [PMID: 30061897]
[28]
Couture, A.; Garnier, A.; Docagne, F.; Boyer, O.; Vivien, D.; Le-Mauff, B.; Latouche, J.B.; Toutirais, O. HLA-Class II artificial antigen presenting cells in CD4+ T cell-based immunotherapy. Front. Immunol., 2019, 10, 1081.
[http://dx.doi.org/10.3389/fimmu.2019.01081] [PMID: 31156634]
[29]
Gunasekaran, B.; Gothandam, K.M. A review on edible vaccines and their prospects. Braz. J. Med. Biol. Res., 2020, 53(2), e8749.
[http://dx.doi.org/10.1590/1414-431x20198749] [PMID: 31994600]
[30]
Sahoo, A.; Mandal, A.K.; Dwivedi, K.; Kumar, V. A cross talk between the immunization and edible vaccine: Current challenges and future prospects. Life Sci., 2020, 261, 118343.
[http://dx.doi.org/10.1016/j.lfs.2020.118343] [PMID: 32858038]
[31]
Daniell, H.; Kulis, M.; Herzog, R.W. Plant cell-made protein antigens for induction of oral tolerance. Biotechnol. Adv., 2019, 37(7), 107413.
[http://dx.doi.org/10.1016/j.biotechadv.2019.06.012] [PMID: 31251968]
[32]
Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J., 2017, 474(11), 1823-1836.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[33]
Khan, I.; Daniell, H. Oral delivery of therapeutic proteins bioencapsulated in plant cells: Preclinical and clinical advances. Curr. Opin. Colloid Interface Sci., 2021, 54, 101452.
[http://dx.doi.org/10.1016/j.cocis.2021.101452] [PMID: 33967586]
[34]
Nandkumar, A.S.; Tukaram, P.R.; Balu, P.Y.A.D. An overview on edible vaccines: Need of future. Int. J. Creat. Res. Thoughts., 2020, 8(5), 2320-28820.
[35]
Hwang, H.H.; Yu, M.; Lai, E.M. Agrobacterium-mediated plant transformation: Biology and applications. Arabidopsis Book, 2017, 15, e0186-e0186.
[http://dx.doi.org/10.1199/tab.0186] [PMID: 31068763]
[36]
Yildiz, M. New approaches to agrobacterium tumefaciens-mediated gene transfer to plants.2IntechOpen, 2016.
[http://dx.doi.org/10.5772/66465]
[37]
Lacroix, B.; Citovsky, V. Pathways of DNA transfer to plants from Agrobacterium tumefaciens and related bacterial species. Annu. Rev. Phytopathol., 2019, 57(1), 231-251.
[http://dx.doi.org/10.1146/annurev-phyto-082718-100101] [PMID: 31226020]
[38]
Pratiwi, R.A. Agrobacterium-Mediated Transformation. In: To MISE-K-Y; Rijeka, Ed.; IntechOpen, 2020, p. 1.
[39]
Subramoni, S.; Nathoo, N.; Klimov, E.; Yuan, Z.C. Agrobacterium tumefaciens responses to plant-derived signaling molecules. Front. Plant Sci., 2014, 5, 322.
[http://dx.doi.org/10.3389/fpls.2014.00322] [PMID: 25071805]
[40]
Moon, K.B.; Park, J.S.; Park, Y.I.; Song, I.J.; Lee, H.J.; Cho, H.S.; Jeon, J.H.; Kim, H.S. Development of systems for the production of plant-derived biopharmaceuticals. Plants, 2019, 9(1), 30.
[http://dx.doi.org/10.3390/plants9010030] [PMID: 31878277]
[41]
Yao, J.; Weng, Y.; Dickey, A.; Wang, K. Plants as factories for human pharmaceuticals: Applications and challenges. Int. J. Mol. Sci., 2015, 16(12), 28549-28565.
[http://dx.doi.org/10.3390/ijms161226122] [PMID: 26633378]
[42]
Criscuolo, E.; Caputo, V.; Diotti, R.A.; Sautto, G.A.; Kirchenbaum, G.A.; Clementi, N. Alternative Methods of Vaccine Delivery: An Overview of Edible and Intradermal Vaccines; Quinti, I., Ed.; J Immunol Res, 2019, p. 8303648.
[43]
Chung, Y.H.; Church, D.; Koellhoffer, E.C.; Osota, E.; Shukla, S.; Rybicki, E.P.; Pokorski, J.K.; Steinmetz, N.F. Integrating plant molecular farming and materials research for next-generation vaccines. Nat. Rev. Mater., 2021, 7(5), 372-388.
[http://dx.doi.org/10.1038/s41578-021-00399-5] [PMID: 34900343]
[44]
Budzianowski, J. Tobacco against ebola virus disease. Przegl. Lek., 2015, 72(10), 567-571.
[PMID: 26946569]
[45]
Jain, I.R.; Ansari, N.M.; Shingi, R.S.; Walode, S.G. Plant based edible vaccines: A review. World J. Pharm. Res., 2021, 10(14), 378-392.
[46]
Aswathi, P.B.; Rekha, V.; John, J.; Gopinath, D.; Sadanandan, G.; Jacob, A. Plant based edible vaccines against poultry diseases: A review. Adv. Anim. Vet. Sci., 2014, 2(5), 305-311.
[http://dx.doi.org/10.14737/journal.aavs/2014/2.5.305.311]
[47]
Joung, Y.; Park, S.; Moon, K.B.; Jeon, J.H.; Cho, H.S.; Kim, H.S. The last ten years of advancements in plant-derived recombinant vaccines against hepatitis b. Int. J. Mol. Sci., 2016, 17(10), 1715.
[http://dx.doi.org/10.3390/ijms17101715] [PMID: 27754367]
[48]
Gonzalez-Rabade, N.; McGowan, E.G.; Zhou, F.; McCabe, M.S.; Bock, R.; Dix, P.J.; Gray, J.C.; Ma, J.K.C. Immunogenicity of chloroplast-derived HIV-1 p24 and a p24-Nef fusion protein following subcutaneous and oral administration in mice. Plant Biotechnol. J., 2011, 9(6), 629-638.
[http://dx.doi.org/10.1111/j.1467-7652.2011.00609.x] [PMID: 21443546]
[49]
Lindh, I.; Bråve, A.; Hallengärd, D.; Hadad, R.; Kalbina, I.; Strid, Å.; Andersson, S. Oral delivery of plant-derived HIV-1 p24 antigen in low doses shows a superior priming effect in mice compared to high doses. Vaccine, 2014, 32(20), 2288-2293.
[http://dx.doi.org/10.1016/j.vaccine.2014.02.073] [PMID: 24631072]
[50]
Lindh, I.; Wallin, A.; Kalbina, I.; Sävenstrand, H.; Engström, P.; Andersson, S.; Strid, Å. Production of the p24 capsid protein from HIV-1 subtype C in Arabidopsis thaliana and Daucus carota using an endoplasmic reticulum-directing SEKDEL sequence in protein expression constructs. Protein Expr. Purif., 2009, 66(1), 46-51.
[http://dx.doi.org/10.1016/j.pep.2008.12.015] [PMID: 19167502]
[51]
Rubio-Infante, N.; Govea-Alonso, D.O.; Alpuche-Solís, Á.G.; García-Hernández, A.L.; Soria-Guerra, R.E.; Paz-Maldonado, L.M.T.; Ilhuicatzi-Alvarado, D.; Varona-Santos, J.T.; Verdín-Terán, L.; Korban, S.S.; Moreno-Fierros, L.; Rosales-Mendoza, S. A chloroplast-derived C4V3 polypeptide from the human immunodeficiency virus (HIV) is orally immunogenic in mice. Plant Mol. Biol., 2012, 78(4-5), 337-349.
[http://dx.doi.org/10.1007/s11103-011-9870-1] [PMID: 22228408]
[52]
Hayden, C.A.; Streatfield, S.J.; Lamphear, B.J.; Fake, G.M.; Keener, T.K.; Walker, J.H.; Clements, J.D.; Turner, D.D.; Tizard, I.R.; Howard, J.A. Bioencapsulation of the hepatitis B surface antigen and its use as an effective oral immunogen. Vaccine, 2012, 30(19), 2937-2942.
[http://dx.doi.org/10.1016/j.vaccine.2012.02.072] [PMID: 22406456]
[53]
Youm, J.W.; Won, Y.S.; Jeon, J.H.; Moon, K.B.; Kim, H.C.; Shin, K.S.; Joung, H.; Kim, H.S. Antibody responses in mice stimulated by various doses of the potato-derived major surface antigen of hepatitis B virus. Clin. Vaccine Immunol., 2010, 17(12), 2029-2032.
[http://dx.doi.org/10.1128/CVI.00262-10] [PMID: 20943879]
[54]
Hongli, L.; Xukui, L.; Ting, L.; Wensheng, L.; Lusheng, S.; Jin, Z. Transgenic tobacco expressed HPV16-L1 and LT-B combined immunization induces strong mucosal and systemic immune responses in mice. Hum. Vaccin. Immunother., 2013, 9(1), 83-89.
[http://dx.doi.org/10.4161/hv.22292] [PMID: 23108357]
[55]
Dupuy, C.; Buzoni-Gate, D.; Touze, A.; Le Cann, P.; Bout, D.; Coursaget, P. Cell mediated immunity induced in mice by HPV 16 L1 virus-like particles. Microb. Pathog., 1997, 22(4), 219-225.
[http://dx.doi.org/10.1006/mpat.1996.0113] [PMID: 9140917]
[56]
Loza-Rubio, E.; Rojas-Anaya, E.; López, J.; Olivera-Flores, M.T.; Gómez-Lim, M.; Tapia-Pérez, G. Induction of a protective immune response to rabies virus in sheep after oral immunization with transgenic maize, expressing the rabies virus glycoprotein. Vaccine, 2012, 30(37), 5551-5556.
[http://dx.doi.org/10.1016/j.vaccine.2012.06.039] [PMID: 22749836]
[57]
Nahampun, H.N.; Bosworth, B.; Cunnick, J.; Mogler, M.; Wang, K. Expression of H3N2 nucleoprotein in maize seeds and immunogenicity in mice. Plant Cell Rep., 2015, 34(6), 969-980.
[http://dx.doi.org/10.1007/s00299-015-1758-0] [PMID: 25677970]
[58]
Tokuhara, D.; Yuki, Y.; Nochi, T.; Kodama, T.; Mejima, M.; Kurokawa, S.; Takahashi, Y.; Nanno, M.; Nakanishi, U.; Takaiwa, F.; Honda, T.; Kiyono, H. Secretory IgA-mediated protection against V. cholerae and heat-labile enterotoxin-producing enterotoxigenic Escherichia coli by rice-based vaccine. Proc. Natl. Acad. Sci., 2010, 107(19), 8794-8799.
[http://dx.doi.org/10.1073/pnas.0914121107] [PMID: 20421480]
[59]
Stratmann, T. Cholera toxin subunit b as adjuvant––an accelerator in protective immunity and a break in autoimmunity. Vaccines, 2015, 3(3), 579-596.
[http://dx.doi.org/10.3390/vaccines3030579] [PMID: 26350596]
[60]
Del L Yácono, M.; Farran, I.; Becher, M.L.; Sander, V.; Sánchez, V.R.; Martín, V.; Veramendi, J.; Clemente, M.; Clemente, M. A chloroplast-derived Toxoplasma gondii GRA4 antigen used as an oral vaccine protects against toxoplasmosis in mice. Plant Biotechnol. J., 2012, 10(9), 1136-1144.
[http://dx.doi.org/10.1111/pbi.12001] [PMID: 23020088]
[61]
Chan, H.T.; Daniell, H. Plant-made oral vaccines against human infectious diseases-Are we there yet? Plant Biotechnol. J., 2015, 13(8), 1056-1070.
[http://dx.doi.org/10.1111/pbi.12471] [PMID: 26387509]
[62]
Monreal-Escalante, E.; Bañuelos-Hernández, B.; Hernández, M.; Fragoso, G.; Garate, T.; Sciutto, E.; Rosales-Mendoza, S. RosalesMendoza S. Expression of multiple Taenia solium immunogens in plant cells through a ribosomal skip mechanism. Mol. Biotechnol., 2015, 57(7), 635-643.
[http://dx.doi.org/10.1007/s12033-015-9853-6] [PMID: 25761936]
[63]
Hirlekar, R.; Bhairy, S. Edible vaccines: An advancement in oral immunization. Asian J. Pharm. Clin. Res., 2017, 10, 82-88.
[64]
Roychoudhury, A. Edible vaccines and oral immunization against viruses: Prospects, promises and pitfalls. SF Journal of Medicine and Research., 2020, 1, 1012.
[65]
Muñoz-Atienza, E.; Díaz-Rosales, P.; Tafalla, C. Systemic and mucosal B and T cell responses upon mucosal vaccination of teleost fish. Front. Immunol., 2021, 11, 622377.
[http://dx.doi.org/10.3389/fimmu.2020.622377] [PMID: 33664735]
[66]
Pointner, L.; Bethanis, A.; Thaler, M.; Traidl-Hoffmann, C.; Gilles, S.; Ferreira, F.; Aglas, L. Initiating pollen sensitization – complex source, complex mechanisms. Clin. Transl. Allergy, 2020, 10(1), 36.
[http://dx.doi.org/10.1186/s13601-020-00341-y] [PMID: 32884636]
[67]
Kounis, N.G.; Koniari, I.; de Gregorio, C.; Velissaris, D.; Petalas, K.; Brinia, A.; Assimakopoulos, S.F.; Gogos, C.; Kouni, S.N.; Kounis, G.N.; Calogiuri, G.; Hung, M.Y. Allergic reactions to current available COVID-19 vaccinations: Pathophysiology, causality, and therapeutic considerations. Vaccines (Basel), 2021, 9(3), 221.
[http://dx.doi.org/10.3390/vaccines9030221] [PMID: 33807579]
[68]
Giraldo, P.A.; Shinozuka, H.; Spangenberg, G.C.; Cogan, N.O.I.; Smith, K.F. Safety assessment of genetically modified feed: Is there any difference from food? Front. Plant Sci., 2019, 10, 1592.
[http://dx.doi.org/10.3389/fpls.2019.01592] [PMID: 31921242]
[69]
Gong, C.Y.; Wang, T. Proteomic evaluation of genetically modified crops: current status and challenges. Front. Plant Sci., 2013, 4, 41.
[http://dx.doi.org/10.3389/fpls.2013.00041] [PMID: 23471542]
[70]
Rajeevkumar, S.; Anunanthini, P.; Sathishkumar, R. Epigenetic silencing in transgenic plants. Front. Plant Sci., 2015, 6, 693.
[http://dx.doi.org/10.3389/fpls.2015.00693] [PMID: 26442010]
[71]
WHO. Immunization coverage, 2021. Available From: https://www.who.int/news-room/fact-sheets/detail/immunization-coverage
[72]
Frenkel, L.D. The global burden of vaccine-preventable infectious diseases in children less than 5 years of age: Implications for COVID-19 vaccination. how can we do better? Allergy Asthma Proc., 2021, 42(5), 378-385.
[http://dx.doi.org/10.2500/aap.2021.42.210065] [PMID: 34474707]
[73]
Meriç, S.; Gümüş, T.; Ayan, A. Plant-based vaccines: The future of preventive healthcare? IntechOpen, 2021.
[74]
Debnath, N.; Thakur, M.; Khushboo; Negi, N.P.; Gautam, V.; Yadav, A.; Kumar, D. Insight of oral vaccines as an alternative approach to health and disease management: An innovative intuition and challenges. Biotechnol. Bioeng., 2022, 119(2), 327-346.
[http://dx.doi.org/10.1002/bit.27987] [PMID: 34755343]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy