Abstract
Compounds that bind in the minor groove of DNA have found use in the experimental treatment of cancer and certain infectious diseases. Furthermore, agents which target and can recognize discrete sequences of DNA have the potential to offer selective therapies by modulating the activity of specific transcription factors or genes. For this reason, a number of sequence-selective DNA binding agents have been evaluated with a range of affinities and recognition fidelities. In this respect, the pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are of interest as they bind to guanine residues in the minor groove with a preference for Pu-G-Pu sequences. A dramatic increase in cytotoxicity and sequence selectivity has been achieved by linking two PBD units to form PBD dimers as cross-linking agents on opposite DNA strands (e.g., interstrand cross-links). SJG-136 is currently undergoing Phase I evaluation in both the United States (through the NCI) and United Kingdom (through Cancer Research United Kingdom). This review will focus on design, synthesis and structure activity relationship studies of pyrrolobenzodiazepines as anticancer therapeutics reported since 2003.
Keywords: Anti- Tumour Drugs, Synthesis, pyrrolo[2,1-c][1,4]benzodiazepines (PBDs), transcription factors, cytotoxicity, PBD dimers, anticancer therapeutics
Anti-Cancer Agents in Medicinal Chemistry
Title: Pyrrolo[2,1-c][1,4]benzodiazepine as a Scaffold for the Design and Synthesis of Anti- Tumour Drugs
Volume: 9 Issue: 1
Author(s): Laura Cipolla, Ana C. Araujo, Cristina Airoldi and Davide Bini
Affiliation:
Keywords: Anti- Tumour Drugs, Synthesis, pyrrolo[2,1-c][1,4]benzodiazepines (PBDs), transcription factors, cytotoxicity, PBD dimers, anticancer therapeutics
Abstract: Compounds that bind in the minor groove of DNA have found use in the experimental treatment of cancer and certain infectious diseases. Furthermore, agents which target and can recognize discrete sequences of DNA have the potential to offer selective therapies by modulating the activity of specific transcription factors or genes. For this reason, a number of sequence-selective DNA binding agents have been evaluated with a range of affinities and recognition fidelities. In this respect, the pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are of interest as they bind to guanine residues in the minor groove with a preference for Pu-G-Pu sequences. A dramatic increase in cytotoxicity and sequence selectivity has been achieved by linking two PBD units to form PBD dimers as cross-linking agents on opposite DNA strands (e.g., interstrand cross-links). SJG-136 is currently undergoing Phase I evaluation in both the United States (through the NCI) and United Kingdom (through Cancer Research United Kingdom). This review will focus on design, synthesis and structure activity relationship studies of pyrrolobenzodiazepines as anticancer therapeutics reported since 2003.
Export Options
About this article
Cite this article as:
Cipolla Laura, Araujo C. Ana, Airoldi Cristina and Bini Davide, Pyrrolo[2,1-c][1,4]benzodiazepine as a Scaffold for the Design and Synthesis of Anti- Tumour Drugs, Anti-Cancer Agents in Medicinal Chemistry 2009; 9 (1) . https://dx.doi.org/10.2174/187152009787047743
DOI https://dx.doi.org/10.2174/187152009787047743 |
Print ISSN 1871-5206 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5992 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Recent Advances in the Synthesis and Anticancer Activity of Some Molecules Other Than Nitrogen Containing Heterocyclic Moeities
Mini-Reviews in Medicinal Chemistry Implications of the Dominant Role of Transporters in Drug Uptake by Cells
Current Topics in Medicinal Chemistry Computational Insights for the Discovery of Non-ATP Competitive Inhibitors of MAP Kinases
Current Pharmaceutical Design CXCL12-CXCR4 Axis in Angiogenesis, Metastasis and Stem Cell Mobilization
Current Pharmaceutical Design Prodrugs and Endogenous Transporters: Are They Suitable Tools for Drug Targeting into the Central Nervous System?
Current Pharmaceutical Design Coumarins as Antioxidants
Current Medicinal Chemistry Induced Stem Cells as a Novel Multiple Sclerosis Therapy
Current Stem Cell Research & Therapy Targeting p73 - a Potential Approach in Cancer Treatment
Current Pharmaceutical Design Himalayan Plants as a Source of Anti-Cancer Agents: A Review
The Natural Products Journal Quinone-Based Drugs: An Important Class of Molecules in Medicinal Chemistry
Medicinal Chemistry Current Understanding of Dietary Polyphenols and their Role in Health and Disease
Current Nutrition & Food Science The Development of Targeted Therapies for Hepatocellular Cancer
Current Pharmaceutical Design Novel Therapeutic Approaches to Autoimmune Demyelinating Disorders
Current Pharmaceutical Design Natural Products as a Source of Protein Kinase Activators and Inhibitors
Current Topics in Medicinal Chemistry Long Chain n-3 Polyunsaturated Fatty Acids in the Prevention of Allergic and Cardiovascular Disease
Current Pharmaceutical Design A Combination of Two Antioxidants (An SOD Mimic and Ascorbate) Produces a Pro-Oxidative Effect Forcing Escherichia coli to Adapt Via Induction of oxyR Regulon
Anti-Cancer Agents in Medicinal Chemistry Exploring Cancer Therapeutics with Natural Products from African Medicinal Plants, Part I: Xanthones, Quinones, Steroids, Coumarins, Phenolics and other Classes of Compounds
Anti-Cancer Agents in Medicinal Chemistry Respiratory Stem Cells and Progenitors: Overview, Derivation, Differentiation, Carcinogenesis, Regeneration and Therapeutic Application
Current Stem Cell Research & Therapy Pharmacogenetics of Thiopurines in Inflammatory Bowel Disease
Current Pharmaceutical Design Drug-Related Cardiotoxicity for the Treatment of Haematological Malignancies in Elderly
Current Pharmaceutical Design