Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Neurotensin and Neurotensin Receptors in Stress-related Disorders: Pathophysiology & Novel Drug Targets

Author(s): Grigorios Kyriatzis, Michel Khrestchatisky, Lotfi Ferhat* and Ekaterini Alexiou Chatzaki*

Volume 22, Issue 5, 2024

Published on: 04 August, 2023

Page: [916 - 934] Pages: 19

DOI: 10.2174/1570159X21666230803101629

Price: $65

Abstract

Neurotensin (NT) is a 13-amino acid neuropeptide widely distributed in the CNS that has been involved in the pathophysiology of many neural and psychiatric disorders. There are three known neurotensin receptors (NTSRs), which mediate multiple actions, and form the neurotensinergic system in conjunction with NT. NTSR1 is the main mediator of NT, displaying effects in both the CNS and the periphery, while NTSR2 is mainly expressed in the brain and NTSR3 has a broader expression pattern. In this review, we bring together up-to-date studies showing an involvement of the neurotensinergic system in different aspects of the stress response and the main stress-related disorders, such as depression and anxiety, post-traumatic stress disorder (PTSD) and its associated symptoms, such as fear memory and maternal separation, ethanol addiction, and substance abuse. Emphasis is put on gene, mRNA, and protein alterations of NT and NTSRs, as well as behavioral and pharmacological studies, leading to evidence-based suggestions on the implicated regulating mechanisms as well as their therapeutic exploitation. Stress responses and anxiety involve mainly NTSR1, but also NTSR2 and NTSR3. NTSR1 and NTSR3 are primarily implicated in depression, while NTSR2 and secondarily NTSR1 in PTSD. NTSR1 is interrelated with substance and drug abuse and NTSR2 with fear memory, while all NTSRs seem to be implicated in ethanol consumption. Some of the actions of NT and NTSRs in these pathological settings may be driven through interactions between NT and corticotrophin releasing factor (CRF) in their regulatory contribution, as well as by NT’s pro-inflammatory mediating actions.

Graphical Abstract

[1]
Carraway, R.; Leeman, S.E. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J. Biol. Chem., 1973, 248(19), 6854-6861.
[http://dx.doi.org/10.1016/S0021-9258(19)43429-7] [PMID: 4745447]
[2]
Kleczkowska, P.; Lipkowski, A.W. Neurotensin and neurotensin receptors: Characteristic, structure-activity relationship and pain modulation—A review. Eur. J. Pharmacol., 2013, 716(1-3), 54-60.
[http://dx.doi.org/10.1016/j.ejphar.2013.03.004] [PMID: 23500196]
[3]
Fuxe, K.; Euler, G.; Agnati, L.F.; Pich, M.; O’Connor, W.T.; Tanganelli, S.; Li, X.M.; Tinner, B.; Cintra, A.; Carani, C.; Benfenati, F. Intramembrane interactions between neurotensin receptors and dopamine D2 receptors as a major mechanism for the neuroleptic-like action of neurotensin. Ann. N. Y. Acad. Sci., 1992, 668(1 The Neurobiol), 186-204.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb27350.x] [PMID: 1361113]
[4]
Mustain, W.C.; Rychahou, P.G.; Evers, B.M. The role of neurotensin in physiologic and pathologic processes. Curr. Opin. Endocrinol. Diabetes Obes., 2011, 18(1), 75-82.
[http://dx.doi.org/10.1097/MED.0b013e3283419052] [PMID: 21124211]
[5]
Boules, M.; Li, Z.; Smith, K.; Fredrickson, P.; Richelson, E. Diverse roles of neurotensin agonists in the central nervous system. Front. Endocrinol. (Lausanne), 2013, 4, 36.
[http://dx.doi.org/10.3389/fendo.2013.00036] [PMID: 23526754]
[6]
Bean, A.J.; During, M.J.; Roth, R.H. Stimulation-induced release of coexistent transmitters in the prefrontal cortex: An in vivo microdialysis study of dopamine and neurotensin release. J. Neurochem., 1989, 53(2), 655-657.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb07384.x] [PMID: 2568407]
[7]
Vincent, J.P.; Mazella, J.; Kitabgi, P. Neurotensin and neurotensin receptors. Trends Pharmacol. Sci., 1999, 20(7), 302-309.
[http://dx.doi.org/10.1016/S0165-6147(99)01357-7] [PMID: 10390649]
[8]
Kitabgi, P. Functional domains of the subtype 1 neurotensin receptor (NTS1). Peptides, 2006, 27(10), 2461-2468.
[http://dx.doi.org/10.1016/j.peptides.2006.02.013] [PMID: 16901586]
[9]
St-Gelais, F.; Jomphe, C.; Trudeau, L.E. The role of neurotensin in central nervous system pathophysiology: what is the evidence? J. Psychiatry Neurosci., 2006, 31(4), 229-245.
[PMID: 16862241]
[10]
Sharma, R.P.; Janicak, P.G.; Bissette, G.; Nemeroff, C.B. CSF neurotensin concentrations and antipsychotic treatment in schizophrenia and schizoaffective disorder. Am. J. Psychiatry, 1997, 154(7), 1019-1021.
[http://dx.doi.org/10.1176/ajp.154.7.1019] [PMID: 9210757]
[11]
Hawkins, M.F.; Barkemeyer, C.A.; Tulley, R.T. Synergistic effects of dopamine agonists and centrally administered neurotensin on feeding. Pharmacol. Biochem. Behav., 1986, 24(5), 1195-1201.
[http://dx.doi.org/10.1016/0091-3057(86)90170-X] [PMID: 3725825]
[12]
Hernandez-Chan, N.G.; Bannon, M.J.; Orozco-Barrios, C.E.; Escobedo, L.; Zamudio, S.; De la Cruz, F.; Gongora-Alfaro, J.L.; Armendáriz-Borunda, J.; Reyes-Corona, D.; Espadas-Alvarez, A.J.; Flores-Martínez, Y.M.; Ayala-Davila, J.; Hernandez-Gutierrez, M.E.; Pavón, L.; García-Villegas, R.; Nadella, R.; Martinez-Fong, D. Neurotensin-polyplex-mediated brain-derived neurotrophic factor gene delivery into nigral dopamine neurons prevents nigrostriatal degeneration in a rat model of early Parkinson’s disease. J. Biomed. Sci., 2015, 22(1), 59.
[http://dx.doi.org/10.1186/s12929-015-0166-7] [PMID: 26198255]
[13]
Ouyang, Q.; Gong, X.; Xiao, H.; Zhou, J.; Xu, M.; Dai, Y.; Xu, L.; Feng, H.; Cui, H.; Yi, L. Neurotensin promotes the progression of malignant glioma through NTSR1 and impacts the prognosis of glioma patients. Mol. Cancer, 2015, 14(1), 21.
[http://dx.doi.org/10.1186/s12943-015-0290-8] [PMID: 25644759]
[14]
Martin, L.; Ibrahim, M.; Gomez, K.; Yu, J.; Cai, S.; Chew, L.A.; Bellampalli, S.S.; Moutal, A.; Largent-Milnes, T.; Porreca, F.; Khanna, R.; Olivera, B.M.; Patwardhan, A. Conotoxin contulakin-G engages a neurotensin receptor 2/R-type calcium channel (Cav2.3) pathway to mediate spinal antinociception. Pain, 2022, 163(9), 1751-1762.
[http://dx.doi.org/10.1097/j.pain.0000000000002561] [PMID: 35050960]
[15]
Torup, L.; Borsdal, J.; Sager, T. Neuroprotective effect of the neurotensin analogue JMV-449 in a mouse model of permanent middle cerebral ischaemia. Neurosci. Lett., 2003, 351(3), 173-176.
[http://dx.doi.org/10.1016/j.neulet.2003.08.008] [PMID: 14623134]
[16]
Lee, H.K.; Zhang, L.; Smith, M.D.; White, H.S.; Bulaj, G. Glycosylated neurotensin analogues exhibit sub-picomolar anticonvulsant potency in a pharmacoresistant model of epilepsy. ChemMedChem, 2009, 4(3), 400-405.
[http://dx.doi.org/10.1002/cmdc.200800421] [PMID: 19173215]
[17]
Clynen, E.; Swijsen, A.; Raijmakers, M.; Hoogland, G.; Rigo, J.M. Neuropeptides as targets for the development of anticonvulsant drugs. Mol. Neurobiol., 2014, 50(2), 626-646.
[http://dx.doi.org/10.1007/s12035-014-8669-x] [PMID: 24705860]
[18]
Nemeroff, C.B.; Bissette, G.; Manberg, P.J.; Osbahr, A.J., III; Breese, G.R.; Prange, A.J. Jr Neurotensin-induced hypothermia: Evidence for an interaction with dopaminergic systems and the hypothalamic-pituitary-thyroids axis. Brain Res., 1980, 195(1), 69-84.
[http://dx.doi.org/10.1016/0006-8993(80)90867-7] [PMID: 6446951]
[19]
Popp, E.; Schneider, A.; Vogel, P.; Teschendorf, P.; Böttiger, B.W. Time course of the hypothermic response to continuously administered neurotensin. Neuropeptides, 2007, 41(5), 349-354.
[http://dx.doi.org/10.1016/j.npep.2007.06.002] [PMID: 17655926]
[20]
Babcock, A.M.; Baker, D.A.; Hallock, N.L.; Lovec, R.; Lynch, W.C.; Peccia, J.C. Neurotensin-induced hypothermia prevents hippocampal neuronal damage and increased locomotor activity in ischemic gerbils. Brain Res. Bull., 1993, 32(4), 373-378.
[http://dx.doi.org/10.1016/0361-9230(93)90202-M] [PMID: 8221127]
[21]
Petrie, K.A.; Schmidt, D.; Bubser, M.; Fadel, J.; Carraway, R.E.; Deutch, A.Y. Neurotensin activates GABAergic interneurons in the prefrontal cortex. J. Neurosci., 2005, 25(7), 1629-1636.
[http://dx.doi.org/10.1523/JNEUROSCI.3579-04.2005] [PMID: 15716398]
[22]
da Silva, L.; Neves, B.M.; Moura, L.; Cruz, M.T.; Carvalho, E. Neurotensin downregulates the pro-inflammatory properties of skin dendritic cells and increases epidermal growth factor expression. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(10), 1863-1871.
[http://dx.doi.org/10.1016/j.bbamcr.2011.06.018] [PMID: 21767580]
[23]
Rock, S.A.; Jiang, K.; Wu, Y.; Liu, Y.; Li, J.; Weiss, H.L.; Wang, C.; Jia, J.; Gao, T.; Evers, B.M. Neurotensin regulates proliferation and stem cell function in the small intestine in a nutrient-dependent manner. Cell. Mol. Gastroenterol. Hepatol., 2022, 13(2), 501-516.
[http://dx.doi.org/10.1016/j.jcmgh.2021.09.006] [PMID: 34560309]
[24]
Li, J.; Song, J.; Zaytseva, Y.Y.; Liu, Y.; Rychahou, P.; Jiang, K.; Starr, M.E.; Kim, J.T.; Harris, J.W.; Yiannikouris, F.B.; Katz, W.S.; Nilsson, P.M.; Orho-Melander, M.; Chen, J.; Zhu, H.; Fahrenholz, T.; Higashi, R.M.; Gao, T.; Morris, A.J.; Cassis, L.A.; Fan, T.W.M.; Weiss, H.L.; Dobner, P.R.; Melander, O.; Jia, J.; Evers, B.M. An obligatory role for neurotensin in high-fat-diet-induced obesity. Nature, 2016, 533(7603), 411-415.
[http://dx.doi.org/10.1038/nature17662] [PMID: 27193687]
[25]
Wouters, Y.; Jaspers, T.; De Strooper, B.; Dewilde, M. Identification and in vivo characterization of a brain-penetrating nanobody. Fluids Barriers CNS, 2020, 17(1), 62.
[http://dx.doi.org/10.1186/s12987-020-00226-z] [PMID: 33054787]
[26]
Checler, F.; Vincent, J.P.; Kitabgi, P. Purification and characterization of a novel neurotensin-degrading peptidase from rat brain synaptic membranes. J. Biol. Chem., 1986, 261(24), 11274-11281.
[http://dx.doi.org/10.1016/S0021-9258(18)67379-X] [PMID: 3525564]
[27]
Vincent, J.P. Neurotensin receptors: Binding properties, transduction pathways, and structure. Cell. Mol. Neurobiol., 1995, 15(5), 501-512.
[http://dx.doi.org/10.1007/BF02071313] [PMID: 8719037]
[28]
Mazella, J. Sortilin/neurotensin receptor-3: A new tool to investigate neurotensin signaling and cellular trafficking? Cell. Signal., 2001, 13(1), 1-6.
[http://dx.doi.org/10.1016/S0898-6568(00)00130-3] [PMID: 11257441]
[29]
Tanaka, K.; Masu, M.; Nakanishi, S. Structure and functional expression of the cloned rat neurotensin receptor. Neuron, 1990, 4(6), 847-854.
[http://dx.doi.org/10.1016/0896-6273(90)90137-5] [PMID: 1694443]
[30]
Chalon, P.; Vita, N.; Kaghad, M.; Guillemot, M.; Bonnin, J.; Delpech, B.; Le Fur, G.; Ferrara, P.; Caput, D. Molecular cloning of a levocabastine-sensitive neurotensin binding site. FEBS Lett., 1996, 386(2-3), 91-94.
[http://dx.doi.org/10.1016/0014-5793(96)00397-3] [PMID: 8647296]
[31]
Vita, N.; Laurent, P.; Lefort, S.; Chalon, P.; Dumont, X.; Kaghad, M.; Gully, D.; Le Fur, G.; Ferrara, P.; Caput, D. Cloning and expression of a complementary DNA encoding a high affinity human neurotensin receptor. FEBS Lett., 1993, 317(1-2), 139-142.
[http://dx.doi.org/10.1016/0014-5793(93)81509-X] [PMID: 8381365]
[32]
Laurent, P.; Clerc, P.; Mattei, M.G.; Forgez, P.; Dumont, X.; Ferrara, P.; Caput, D.; Rostene, W. Chromosomal localization of mouse and human neurotensin receptor genes. Mamm. Genome, 1994, 5(5), 303-306.
[http://dx.doi.org/10.1007/BF00389545] [PMID: 8075503]
[33]
Rioux, F.; Kérouac, R.; Quirion, R.; St-Pierre, S. Mechanisms of the cardiovascular effects of neurotensin. Ann. N. Y. Acad. Sci., 1982, 400(1), 56-74.
[http://dx.doi.org/10.1111/j.1749-6632.1982.tb31560.x] [PMID: 6963116]
[34]
Roussy, G.; Dansereau, M.A.; Doré-Savard, L.; Belleville, K.; Beaudet, N.; Richelson, E.; Sarret, P. Spinal NTS1 receptors regulate nociceptive signaling in a rat formalin tonic pain model. J. Neurochem., 2008, 105(4), 1100-1114.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05205.x] [PMID: 18182046]
[35]
Ramirez-Virella, J.; Leinninger, G.M. The role of central neurotensin in regulating feeding and body weight. Endocrinology, 2021, 162(5), bqab038.
[http://dx.doi.org/10.1210/endocr/bqab038] [PMID: 33599716]
[36]
Nikolaou, S.; Qiu, S.; Fiorentino, F.; Simillis, C.; Rasheed, S.; Tekkis, P.; Kontovounisios, C. The role of neurotensin and its receptors in non-gastrointestinal cancers: A review. Cell Commun. Signal., 2020, 18(1), 68.
[http://dx.doi.org/10.1186/s12964-020-00569-y] [PMID: 32336282]
[37]
Pettibone, D.J.; Hess, J.F.; Hey, P.J.; Jacobson, M.A.; Leviten, M.; Lis, E.V.; Mallorga, P.J.; Pascarella, D.M.; Snyder, M.A.; Williams, J.B.; Zeng, Z. The effects of deleting the mouse neurotensin receptor NTR1 on central and peripheral responses to neurotensin. J. Pharmacol. Exp. Ther., 2002, 300(1), 305-313.
[http://dx.doi.org/10.1124/jpet.300.1.305] [PMID: 11752130]
[38]
Opland, D.; Sutton, A.; Woodworth, H.; Brown, J.; Bugescu, R.; Garcia, A.; Christensen, L.; Rhodes, C.; Myers, M., Jr; Leinninger, G. Loss of neurotensin receptor-1 disrupts the control of the mesolimbic dopamine system by leptin and promotes hedonic feeding and obesity. Mol. Metab., 2013, 2(4), 423-434.
[http://dx.doi.org/10.1016/j.molmet.2013.07.008] [PMID: 24327958]
[39]
Yamada, M.; Bolden-Watson, C.; Watson, M.A.; Cho, T.; Coleman, N.J.; Yamada, M.; Richelson, E. Regulation of neurotensin receptor mRNA expression by the receptor antagonist SR 48692 in the rat midbrain dopaminergic neurons. Brain Res. Mol. Brain Res., 1995, 33(2), 343-346.
[http://dx.doi.org/10.1016/0169-328X(95)00094-9] [PMID: 8750895]
[40]
Turner, J.T.; James-Kracke, M.R.; Camden, J.M. Regulation of the neurotensin receptor and intracellular calcium mobilization in HT29 cells. J. Pharmacol. Exp. Ther., 1990, 253(3), 1049-1056.
[PMID: 2162944]
[41]
Najimi, M.; Maloteaux, J.M.; Hermans, E. Cytoskeleton-related trafficking of the EAAC1 glutamate transporter after activation of the G q/11 -coupled neurotensin receptor NTS1. FEBS Lett., 2002, 523(1-3), 224-228.
[http://dx.doi.org/10.1016/S0014-5793(02)02981-2] [PMID: 12123836]
[42]
Gully, D.; Labeeuw, B.; Boigegrain, R.; Oury-Donat, F.; Bachy, A.; Poncelet, M.; Steinberg, R.; Suaud-Chagny, M.F.; Santucci, V.; Vita, N.; Pecceu, F.; Labbé-Jullié, C.; Kitabgi, P.; Soubrié, P.; Le Fur, G.; Maffrand, J.P. Biochemical and pharmacological activities of SR 142948A, a new potent neurotensin receptor antagonist. J. Pharmacol. Exp. Ther., 1997, 280(2), 802-812.
[PMID: 9023294]
[43]
Kreitel, K.D.; Swisher, C.B.; Behbehani, M.M. The effects of diphenhydramine and SR142948A on periaqueductal gray neurons and on the interactions between the medial preoptic nucleus and the periaqueductal gray. Neuroscience, 2002, 114(4), 935-943.
[http://dx.doi.org/10.1016/S0306-4522(02)00360-3] [PMID: 12379249]
[44]
Hermans, E.; Maloteaux, J.M. Mechanisms of regulation of neurotensin receptors. Pharmacol. Ther., 1998, 79(2), 89-104.
[http://dx.doi.org/10.1016/S0163-7258(98)00009-6] [PMID: 9749878]
[45]
Chabry, J.; Botto, J.M.; Nouel, D.; Beaudet, A.; Vincent, J.P.; Mazella, J. Thr-422 and Tyr-424 residues in the carboxyl terminus are critical for the internalization of the rat neurotensin receptor. J. Biol. Chem., 1995, 270(6), 2439-2442.
[http://dx.doi.org/10.1074/jbc.270.6.2439] [PMID: 7852303]
[46]
Besserer-Offroy, É.; Brouillette, R.L.; Lavenus, S.; Froehlich, U.; Brumwell, A.; Murza, A.; Longpré, J.M.; Marsault, É.; Grandbois, M.; Sarret, P.; Leduc, R. The signaling signature of the neurotensin type 1 receptor with endogenous ligands. Eur. J. Pharmacol., 2017, 805, 1-13.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.046] [PMID: 28341345]
[47]
Mazella, J.; Botto, J.M.; Guillemare, E.; Coppola, T.; Sarret, P.; Vincent, J.P. Structure, functional expression, and cerebral localization of the levocabastine-sensitive neurotensin/neuromedin N receptor from mouse brain. J. Neurosci., 1996, 16(18), 5613-5620.
[http://dx.doi.org/10.1523/JNEUROSCI.16-18-05613.1996] [PMID: 8795617]
[48]
Sun, Y.J.; Maeno, H.; Aoki, S.; Wada, K. Mouse neurotensin receptor 2 gene (Ntsr2): Genomic organization, transcriptional regulation and genetic mapping on chromosome 12. Brain Res. Mol. Brain Res., 2001, 95(1-2), 167-171.
[http://dx.doi.org/10.1016/S0169-328X(01)00220-0] [PMID: 11687289]
[49]
Schotte, A.; Leysen, J.E.; Laduron, P.M. Evidence for a displaceable non-specific [3H]neurotensin binding site in rat brain. Naunyn Schmiedebergs Arch. Pharmacol., 1986, 333(4), 400-405.
[http://dx.doi.org/10.1007/BF00500016] [PMID: 3022160]
[50]
Asselin, M.L.; Dubuc, I.; Coquerel, A.; Costentin, J. Localization of neurotensin NTS2 receptors in rat brain, using [3H]levocabastine. Neuroreport, 2001, 12(5), 1087-1091.
[http://dx.doi.org/10.1097/00001756-200104170-00044] [PMID: 11303751]
[51]
Sarret, P.; Perron, A.; Stroh, T.; Beaudet, A. Immunohistochemical distribution of NTS2 neurotensin receptors in the rat central nervous system. J. Comp. Neurol., 2003, 461(4), 520-538.
[http://dx.doi.org/10.1002/cne.10718] [PMID: 12746866]
[52]
Mitra, S.P. Neurotensin and Neurotensin Receptors in health and diseases: A brief review. Indian J. Biochem. Biophys., 2017, 54(1&2), 7-23.
[53]
Kyriatzis, G.; Bernard, A.; Bôle, A.; Pflieger, G.; Chalas, P.; Masse, M.; Lécorché, P.; Jacquot, G.; Ferhat, L.; Khrestchatisky, M. Neurotensin receptor 2 is induced in astrocytes and brain endothelial cells in relation to neuroinflammation following pilocarpine‐induced seizures in rats. Glia, 2021, 69(11), 2618-2643.
[http://dx.doi.org/10.1002/glia.24062] [PMID: 34310753]
[54]
Sarret, P.; Beaudet, A.; Vincent, J.P.; Mazella, J. Regional and cellular distribution of low affinity neurotensin receptor mRNA in adult and developing mouse brain. J. Comp. Neurol., 1998, 394(3), 344-356.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19980511)394:3<344:AID-CNE6>3.0.CO;2-1] [PMID: 9579398]
[55]
Walker, N.; Lepee-Lorgeoux, I.; Fournier, J.; Betancur, C.; Rostene, W.; Ferrara, P.; Caput, D. Tissue distribution and cellular localization of the levocabastine-sensitive neurotensin receptor mRNA in adult rat brain. Brain Res. Mol. Brain Res., 1998, 57(2), 193-200.
[http://dx.doi.org/10.1016/S0169-328X(98)00074-6] [PMID: 9675417]
[56]
Woodworth, H.L; Perez-Bonilla, P.A; Beekly, B.G.; Lewis, T.J.; Leinninger, G.M. Identification of neurotensin receptor expressing cells in the ventral tegmental area across the lifespan. eNeuro, 2018, 5(1), eCollection.
[57]
Nouel, D.; Faure, M.P.; St Pierre, J.A.; Alonso, R.; Quirion, R.; Beaudet, A. Differential binding profile and internalization process of neurotensin via neuronal and glial receptors. J. Neurosci., 1997, 17(5), 1795-1803.
[http://dx.doi.org/10.1523/JNEUROSCI.17-05-01795.1997] [PMID: 9030638]
[58]
Wu, Z.; Martinez-Fong, D.; Trédaniel, J.; Forgez, P. Neurotensin and its high affinity receptor 1 as a potential pharmacological target in cancer therapy. Front. Endocrinol. (Lausanne), 2013, 3, 184.
[http://dx.doi.org/10.3389/fendo.2012.00184] [PMID: 23335914]
[59]
Richard, F.; Barroso, S.; Martinez, J.; Labbé-Jullié, C.; Kitabgi, P. Agonism, inverse agonism, and neutral antagonism at the constitutively active human neurotensin receptor 2. Mol. Pharmacol., 2001, 60(6), 1392-1398.
[http://dx.doi.org/10.1124/mol.60.6.1392] [PMID: 11723247]
[60]
Sarret, P.; Gendron, L.; Kilian, P.; Nguyen, H.M.K.; Gallo-Payet, N.; Payet, M.D.; Beaudet, A. Pharmacology and functional properties of NTS2 neurotensin receptors in cerebellar granule cells. J. Biol. Chem., 2002, 277(39), 36233-36243.
[http://dx.doi.org/10.1074/jbc.M202586200] [PMID: 12084713]
[61]
Gendron, L.; Perron, A.; Payet, M.D.; Gallo-Payet, N.; Sarret, P.; Beaudet, A. Low-affinity neurotensin receptor (NTS2) signaling: Internalization-dependent activation of extracellular signal-regulated kinases 1/2. Mol. Pharmacol., 2004, 66(6), 1421-1430.
[http://dx.doi.org/10.1124/mol.104.002303] [PMID: 15361549]
[62]
Mazella, J.; Vincent, J.P. Internalization and recycling properties of neurotensin receptors. Peptides, 2006, 27(10), 2488-2492.
[http://dx.doi.org/10.1016/j.peptides.2006.02.012] [PMID: 16901585]
[63]
Ayala-Sarmiento, A.E.; Martinez-Fong, D.; Segovia, J. The internalization of neurotensin by the low-affinity neurotensin receptors (NTSR2 and vNTSR2) activates ERK 1/2 in glioma cells and allows neurotensin-polyplex transfection of tGAS1. Cell. Mol. Neurobiol., 2015, 35(6), 785-795.
[http://dx.doi.org/10.1007/s10571-015-0172-z] [PMID: 25772140]
[64]
Debaigt, C.; Hirling, H.; Steiner, P.; Vincent, J.P.; Mazella, J. Crucial role of neuron-enriched endosomal protein of 21 kDa in sorting between degradation and recycling of internalized G-protein-coupled receptors. J. Biol. Chem., 2004, 279(34), 35687-35691.
[http://dx.doi.org/10.1074/jbc.M402751200] [PMID: 15187090]
[65]
Martin, S.; Vincent, J.P.; Mazella, J. Recycling ability of the mouse and the human neurotensin type 2 receptors depends on a single tyrosine residue. J. Cell Sci., 2002, 115(1), 165-173.
[http://dx.doi.org/10.1242/jcs.115.1.165] [PMID: 11801734]
[66]
Zsürger, N.; Mazella, J.; Vincent, J.P. Solubilization and purification of a high affinity neurotensin receptor from newborn human brain. Brain Res., 1994, 639(2), 245-252.
[http://dx.doi.org/10.1016/0006-8993(94)91737-X] [PMID: 8205478]
[67]
Marcusson, E.G.; Horazdovsky, B.F.; Cereghino, J.L.; Gharakhanian, E.; Emr, S.D. The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell, 1994, 77(4), 579-586.
[http://dx.doi.org/10.1016/0092-8674(94)90219-4] [PMID: 8187177]
[68]
Willnow, T.E.; Petersen, C.M.; Nykjaer, A. VPS10P-domain receptors — regulators of neuronal viability and function. Nat. Rev. Neurosci., 2008, 9(12), 899-909.
[http://dx.doi.org/10.1038/nrn2516] [PMID: 19002190]
[69]
Chabry, J.; Gaudriault, G.; Vincent, J.P.; Mazella, J. Implication of various forms of neurotensin receptors in the mechanism of internalization of neurotensin in cerebral neurons. J. Biol. Chem., 1993, 268(23), 17138-17144.
[http://dx.doi.org/10.1016/S0021-9258(19)85313-9] [PMID: 8394329]
[70]
Martin, S.; Dicou, E.; Vincent, J.P.; Mazella, J. Neurotensin and the neurotensin receptor-3 in microglial cells. J. Neurosci. Res., 2005, 81(3), 322-326.
[http://dx.doi.org/10.1002/jnr.20477] [PMID: 15957186]
[71]
Patel, A.B.; Tsilioni, I.; Leeman, S.E.; Theoharides, T.C. Neurotensin stimulates sortilin and mTOR in human microglia inhibitable by methoxyluteolin, a potential therapeutic target for autism. Proc. Natl. Acad. Sci. USA, 2016, 113(45), E7049-E7058.
[http://dx.doi.org/10.1073/pnas.1604992113] [PMID: 27663735]
[72]
Dal Farra, C.; Sarret, P.; Navarro, V.; Botto, J.M.; Mazella, J.; Vincent, J.P. Involvement of the neurotensin receptor subtype NTR3 in the growth effect of neurotensin on cancer cell lines. Int. J. Cancer, 2001, 92(4), 503-509.
[http://dx.doi.org/10.1002/ijc.1225] [PMID: 11304684]
[73]
Martin, S.; Vincent, J.P.; Mazella, J. Involvement of the neurotensin receptor-3 in the neurotensin-induced migration of human microglia. J. Neurosci., 2003, 23(4), 1198-1205.
[http://dx.doi.org/10.1523/JNEUROSCI.23-04-01198.2003] [PMID: 12598608]
[74]
Dicou, E.; Vincent, J.P.; Mazella, J. Neurotensin receptor-3/sortilin mediates neurotensin-induced cytokine/chemokine expression in a murine microglial cell line. J. Neurosci. Res., 2004, 78(1), 92-99.
[http://dx.doi.org/10.1002/jnr.20231] [PMID: 15372498]
[75]
Petersen, C.M.; Nielsen, M.S.; Nykjær, A.; Jacobsen, L.; Tommerup, N.; Rasmussen, H.H. RØigaard, H.; Gliemann, J.Ø.; Madsen, P.; Moestrup, S.Ø.K. Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. J. Biol. Chem., 1997, 272(6), 3599-3605.
[http://dx.doi.org/10.1074/jbc.272.6.3599] [PMID: 9013611]
[76]
Morris, N.J.; Ross, S.A.; Lane, W.S.; Moestrup, S.K.; Petersen, C.M.; Keller, S.R.; Lienhard, G.E. Sortilin is the major 110-kDa protein in GLUT4 vesicles from adipocytes. J. Biol. Chem., 1998, 273(6), 3582-3587.
[http://dx.doi.org/10.1074/jbc.273.6.3582] [PMID: 9452485]
[77]
Sarret, P.; Krzywkowski, P.; Segal, L.; Nielsen, M.S.; Petersen, C.M.; Mazella, J.; Stroh, T.; Beaudet, A. Distribution of NTS3 receptor/sortilin mRNA and protein in the rat central nervous system. J. Comp. Neurol., 2003, 461(4), 483-505.
[http://dx.doi.org/10.1002/cne.10708] [PMID: 12746864]
[78]
Hassan, A.J.; Zeng, J.; Ni, X.; Morales, C.R. The trafficking of prosaposin (SGP-1) and GM2AP to the lysosomes of TM4 sertoli cells is mediated by sortilin and monomeric adaptor proteins. Mol. Reprod. Dev., 2004, 68(4), 476-483.
[http://dx.doi.org/10.1002/mrd.20096] [PMID: 15236333]
[79]
Nykjaer, A.; Lee, R.; Teng, K.K.; Jansen, P.; Madsen, P.; Nielsen, M.S.; Jacobsen, C.; Kliemannel, M.; Schwarz, E.; Willnow, T.E.; Hempstead, B.L.; Petersen, C.M. Sortilin is essential for proNGF-induced neuronal cell death. Nature, 2004, 427(6977), 843-848.
[http://dx.doi.org/10.1038/nature02319] [PMID: 14985763]
[80]
Teng, H.K.; Teng, K.K.; Lee, R.; Wright, S.; Tevar, S.; Almeida, R.D.; Kermani, P.; Torkin, R.; Chen, Z.Y.; Lee, F.S.; Kraemer, R.T.; Nykjaer, A.; Hempstead, B.L. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci., 2005, 25(22), 5455-5463.
[http://dx.doi.org/10.1523/JNEUROSCI.5123-04.2005] [PMID: 15930396]
[81]
Fauchais, A.L.; Lalloué, F.; Lise, M.C.; Boumediene, A.; Preud’homme, J.L.; Vidal, E.; Jauberteau, M.O. Role of endogenous brain-derived neurotrophic factor and sortilin in B cell survival. J. Immunol., 2008, 181(5), 3027-3038.
[http://dx.doi.org/10.4049/jimmunol.181.5.3027] [PMID: 18713973]
[82]
Coutinho, M.F.; Bourbon, M.; Prata, M.J.; Alves, S. Sortilin and the risk of cardiovascular disease. Rev. Port. Cardiol., 2013, 32(10), 793-799.
[http://dx.doi.org/10.1016/j.repc.2013.02.006] [PMID: 23910371]
[83]
Biscetti, F.; Nardella, E.; Rando, M.M.; Cecchini, A.L.; Bonadia, N.; Bruno, P.; Angelini, F.; Di Stasi, C.; Contegiacomo, A.; Santoliquido, A.; Pitocco, D.; Landolfi, R.; Flex, A. Sortilin levels correlate with major cardiovascular events of diabetic patients with peripheral artery disease following revascularization: A prospective study. Cardiovasc. Diabetol., 2020, 19(1), 147.
[http://dx.doi.org/10.1186/s12933-020-01123-3] [PMID: 32977814]
[84]
Schneiderman, N.; Ironson, G.; Siegel, S.D. Stress and health: psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol., 2005, 1(1), 607-628.
[http://dx.doi.org/10.1146/annurev.clinpsy.1.102803.144141] [PMID: 17716101]
[85]
Smoller, J.W. The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology, 2016, 41(1), 297-319.
[http://dx.doi.org/10.1038/npp.2015.266] [PMID: 26321314]
[86]
Santomauro, D.F.; Mantilla Herrera, A.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y.; Bang-Jensen, B.L.; Bertolacci, G.J.; Bloom, S.S.; Castellano, R.; Castro, E.; Chakrabarti, S.; Chattopadhyay, J.; Cogen, R.M.; Collins, J.K.; Dai, X.; Dangel, W.J.; Dapper, C.; Deen, A.; Erickson, M.; Ewald, S.B.; Flaxman, A.D.; Frostad, J.J.; Fullman, N.; Giles, J.R.; Giref, A.Z.; Guo, G.; He, J.; Helak, M.; Hulland, E.N.; Idrisov, B.; Lindstrom, A.; Linebarger, E.; Lotufo, P.A.; Lozano, R.; Magistro, B.; Malta, D.C.; Månsson, J.C.; Marinho, F.; Mokdad, A.H.; Monasta, L.; Naik, P.; Nomura, S.; O’Halloran, J.K.; Ostroff, S.M.; Pasovic, M.; Penberthy, L.; Reiner, R.C., Jr; Reinke, G.; Ribeiro, A.L.P.; Sholokhov, A.; Sorensen, R.J.D.; Varavikova, E.; Vo, A.T.; Walcott, R.; Watson, S.; Wiysonge, C.S.; Zigler, B.; Hay, S.I.; Vos, T.; Murray, C.J.L.; Whiteford, H.A.; Ferrari, A.J. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet, 2021, 398(10312), 1700-1712.
[http://dx.doi.org/10.1016/S0140-6736(21)02143-7] [PMID: 34634250]
[87]
Gradus, J. Prevalence and prognosis of stress disorders: A review of the epidemiologic literature. Clin. Epidemiol., 2017, 9, 251-260.
[http://dx.doi.org/10.2147/CLEP.S106250] [PMID: 28496365]
[88]
Ellis, S.R.; Nguyen, M.; Vaughn, A.R.; Notay, M.; Burney, W.A.; Sandhu, S.; Sivamani, R.K. The skin and gut microbiome and its role in common dermatologic conditions. Microorganisms, 2019, 7(11), 550.
[http://dx.doi.org/10.3390/microorganisms7110550] [PMID: 31717915]
[89]
Kline, S.A.; Mega, M.S. Stress-induced neurodegeneration: The potential for coping as neuroprotective therapy. Am. J. Alzheimers Dis. Other Demen., 2020, 35, 1533317520960873.
[http://dx.doi.org/10.1177/1533317520960873] [PMID: 32969239]
[90]
Song, H.; Sieurin, J.; Wirdefeldt, K.; Pedersen, N.L.; Almqvist, C.; Larsson, H.; Valdimarsdóttir, U.A.; Fang, F. Association of stress-related disorders with subsequent neurodegenerative diseases. JAMA Neurol., 2020, 77(6), 700-709.
[http://dx.doi.org/10.1001/jamaneurol.2020.0117] [PMID: 32150226]
[91]
Dallé, E.; Mabandla, M.V. Early life stress, depression and Parkinson’s disease: A new approach. Mol. Brain, 2018, 11(1), 18.
[http://dx.doi.org/10.1186/s13041-018-0356-9] [PMID: 29551090]
[92]
Corcoran, C.; Walker, E.; Huot, R.; Mittal, V.; Tessner, K.; Kestler, L.; Malaspina, D. The stress cascade and schizophrenia: Etiology and onset. Schizophr. Bull., 2003, 29(4), 671-692.
[http://dx.doi.org/10.1093/oxfordjournals.schbul.a007038] [PMID: 14989406]
[93]
Espinosa-Garcia, C.; Zeleke, H.; Rojas, A. Impact of stress on epilepsy: focus on neuroinflammation—a mini review. Int. J. Mol. Sci., 2021, 22(8), 4061.
[http://dx.doi.org/10.3390/ijms22084061] [PMID: 33920037]
[94]
Toda, H.; Boku, S.; Nakagawa, S.; Inoue, T.; Kato, A.; Takamura, N.; Song, N.; Nibuya, M.; Koyama, T.; Kusumi, I. Maternal separation enhances conditioned fear and decreases the mRNA levels of the neurotensin receptor 1 gene with hypermethylation of this gene in the rat amygdala. PLoS One, 2014, 9(5), e97421.
[http://dx.doi.org/10.1371/journal.pone.0097421] [PMID: 24831231]
[95]
Zelikowsky, M.; Hersman, S.; Chawla, M.K.; Barnes, C.A.; Fanselow, M.S. Neuronal ensembles in amygdala, hippocampus, and prefrontal cortex track differential components of contextual fear. J. Neurosci., 2014, 34(25), 8462-8466.
[http://dx.doi.org/10.1523/JNEUROSCI.3624-13.2014] [PMID: 24948801]
[96]
Fuchs, E.; Flügge, G. Experimental animal models for the simulation of depression and anxiety. Dialogues Clin. Neurosci., 2006, 8(3), 323-333.
[http://dx.doi.org/10.31887/DCNS.2006.8.3/efuchs] [PMID: 17117614]
[97]
Normandeau, C.P.; Ventura-Silva, A.P.; Hawken, E.R.; Angelis, S.; Sjaarda, C.; Liu, X.; Pêgo, J.M.; Dumont, É.C. A Key role for neurotensin in chronic-stress-induced anxiety-like behavior in rats. Neuropsychopharmacology, 2018, 43(2), 285-293.
[http://dx.doi.org/10.1038/npp.2017.134] [PMID: 28649992]
[98]
Seta, K.A.; Jansen, H.T.; Kreitel, K.D.; Lehman, M.; Behbehani, M.M. Cold water swim stress increases the expression of neurotensin mRNA in the lateral hypothalamus and medial preoptic regions of the rat brain. Brain Res. Mol. Brain Res., 2001, 86(1-2), 145-152.
[http://dx.doi.org/10.1016/S0169-328X(00)00279-5] [PMID: 11165381]
[99]
Lafrance, M.; Roussy, G.; Belleville, K.; Maeno, H.; Beaudet, N.; Wada, K.; Sarret, P. Involvement of NTS2 receptors in stress-induced analgesia. Neuroscience, 2010, 166(2), 639-652.
[http://dx.doi.org/10.1016/j.neuroscience.2009.12.042] [PMID: 20035838]
[100]
Ollmann, T.; Péczely, L.; László, K.; Kovács, A.; Gálosi, R.; Kertes, E.; Kállai, V.; Zagorácz, O.; Karádi, Z.; Lénárd, L. Anxiolytic effect of neurotensin microinjection into the ventral pallidum. Behav. Brain Res., 2015, 294, 208-214.
[http://dx.doi.org/10.1016/j.bbr.2015.08.010] [PMID: 26296669]
[101]
Carboni, L.; El Khoury, A.; Beiderbeck, D.I.; Neumann, I.D.; Mathé, A.A. Neuropeptide Y, calcitonin gene-related peptide, and neurokinin A in brain regions of HAB rats correlate with anxiety-like behaviours. Eur. Neuropsychopharmacol., 2022, 57, 1-14.
[http://dx.doi.org/10.1016/j.euroneuro.2021.12.011] [PMID: 35008014]
[102]
Naganuma, F.; Kroeger, D.; Bandaru, S.S.; Absi, G.; Madara, J.C.; Vetrivelan, R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol., 2019, 17(3), e3000172.
[http://dx.doi.org/10.1371/journal.pbio.3000172] [PMID: 30893297]
[103]
Azevedo, E.P.; Tan, B.; Pomeranz, L.E.; Ivan, V.; Fetcho, R.; Schneeberger, M.; Doerig, K.R.; Liston, C.; Friedman, J.M.; Stern, S.A. A limbic circuit selectively links active escape to food suppression. eLife, 2020, 9, e58894.
[http://dx.doi.org/10.7554/eLife.58894] [PMID: 32894221]
[104]
Steele, F.F. III; White house, S.C.; Aday, J.S.; Prus, A.J. Neurotensin NTS1 and NTS2 receptor agonists produce anxiolytic-like effects in the 22-kHz ultrasonic vocalization model in rats. Brain Res., 2017, 1658, 31-35.
[http://dx.doi.org/10.1016/j.brainres.2017.01.012] [PMID: 28089664]
[105]
Corley, K.C.; Phan, T.H.; Daugherty, W.P.; Boadle-Biber, M.C. Stress-induced activation of median raphe serotonergic neurons in rats is potentiated by the neurotensin antagonist, SR 48692. Neurosci. Lett., 2002, 319(1), 1-4.
[http://dx.doi.org/10.1016/S0304-3940(01)02414-4] [PMID: 11814639]
[106]
Fitzpatrick, K.; Winrow, C.J.; Gotter, A.L.; Millstein, J.; Arbuzova, J.; Brunner, J.; Kasarskis, A.; Vitaterna, M.H.; Renger, J.J.; Turek, F.W. Altered sleep and affect in the neurotensin receptor 1 knockout mouse. Sleep, 2012, 35(7), 949-956.
[http://dx.doi.org/10.5665/sleep.1958] [PMID: 22754041]
[107]
Prus, A.J.; Hillhouse, T.M.; LaCrosse, A.L. Acute, but not repeated, administration of the neurotensin NTS1 receptor agonist PD149163 decreases conditioned footshock-induced ultrasonic vocalizations in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 49, 78-84.
[http://dx.doi.org/10.1016/j.pnpbp.2013.11.011] [PMID: 24275076]
[108]
Griebel, G.; Moindrot, N.; Aliaga, C.; Simiand, J.; Soubrié, P. Characterization of the profile of neurokinin-2 and neurotensin receptor antagonists in the mouse defense test battery. Neurosci. Biobehav. Rev., 2001, 25(7-8), 619-626.
[http://dx.doi.org/10.1016/S0149-7634(01)00045-8] [PMID: 11801287]
[109]
Li, B.; Chang, L.L.; Xi, K. Neurotensin 1 receptor in the prelimbic cortex regulates anxiety-like behavior in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 104, 110011.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110011] [PMID: 32561375]
[110]
Ma, H.; Huang, Y.; Zhang, B.; Jin, L.; Cong, Z.; Wang, Y.; Li, J.; Zhu, G. Neurotensin receptor 1 gene polymorphisms are associated with personality traits in healthy Chinese individuals. Neuropsychobiology, 2014, 69(1), 11-18.
[http://dx.doi.org/10.1159/000356966] [PMID: 24401289]
[111]
Hou, I.C. Suzuki, C.; Kanegawa, N.; Oda, A.; Yamada, A.; Yoshikawa, M.; Yamada, D.; Sekiguchi, M.; Wada, E.; Wada, K.; Ohinata, K. β-Lactotensin derived from bovine β-lactoglobulin exhibits anxiolytic-like activity as an agonist for neurotensin NTS2 receptor via activation of dopamine D1 receptor in mice. J. Neurochem., 2011, 119(4), 785-790.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07472.x] [PMID: 21895659]
[112]
Yang, C.R.; Zhang, X.Y.; Liu, Y.; Du, J.Y.; Liang, R.; Yu, M.; Zhang, F.Q.; Mu, X.F.; Li, F.; Zhou, L.; Zhou, F.H.; Meng, F.J.; Wang, S.; Ming, D.; Zhou, X.F. Antidepressant drugs correct the imbalance between proBDNF/p75NTR/sortilin and mature BDNF/] TrkB in the brain of mice with chronic stress. Neurotox. Res., 2020, 37(1), 171-182.
[http://dx.doi.org/10.1007/s12640-019-00101-2] [PMID: 31493120]
[113]
Mikhael, N.W.; Mansour, A.I.; Salah El Din, E.M.; El Azab, M.H.; Salem, R.M. Serum neurotensin: An objective mirror to acne-induced quality of life and psychological impairment. J. Clin. Aesthet. Dermatol., 2021, 14(12), E69-E73.
[PMID: 35096258]
[114]
Sakumoto, R.; Hayashi, K.G.; Saito, S.; Kanahara, H.; Kizaki, K.; Iga, K. Comparison of the global gene expression profiles in the bovine endometrium between summer and autumn. J. Reprod. Dev., 2015, 61(4), 297-303.
[http://dx.doi.org/10.1262/jrd.2015-024] [PMID: 25994242]
[115]
Plaza-Manzano, G.; Molina-Ortega, F.; Lomas-Vega, R.; Martínez-Amat, A.; Achalandabaso, A.; Hita-Contreras, F. Changes in biochemical markers of pain perception and stress response after spinal manipulation. J. Orthop. Sports Phys. Ther., 2014, 44(4), 231-239.
[http://dx.doi.org/10.2519/jospt.2014.4996] [PMID: 24450367]
[116]
Mathé, A.A.; Jimenez, P.A.; Theodorsson, E.; Stenfors, C. Neuropeptide Y, neurokinin A and neurotensin in brain regions of Fawn Hooded “depressed”, wistar, and Sprague dawley rats. Effects of electroconvulsive stimuli. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1998, 22(3), 529-546.
[http://dx.doi.org/10.1016/S0278-5846(98)00023-2] [PMID: 9612849]
[117]
Ellenbroek, B.A.; Angelucci, F.; Husum, H.; Mathé, A.A. Gene-environment interactions in a rat model of depression. Maternal separation affects neurotensin in selected brain regions. Neuropeptides, 2016, 59, 83-88.
[http://dx.doi.org/10.1016/j.npep.2016.05.001] [PMID: 27372546]
[118]
Cervo, L.; Rossi, C.; Tatarczynska, E.; Samanin, R. Antidepressant-like effect of neurotensin administered in the ventral tegmental area in the forced swimming test. Psychopharmacology (Berl.), 1992, 109(3), 369-372.
[http://dx.doi.org/10.1007/BF02245885] [PMID: 1365637]
[119]
Perez-Bonilla, P.; Santiago-Colon, K.; Matasovsky, J.; Ramirez-Virella, J.; Khan, R.; Garver, H.; Fink, G.; Dorrance, A.M.; Leinninger, G.M. Activation of ventral tegmental area neurotensin Receptor-1 neurons promotes weight loss. Neuropharmacology, 2021, 195, 108639.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108639] [PMID: 34116109]
[120]
Glimcher, P.W.; Margolin, D.H.; Giovino, A.A.; Hoebel, B.G. Neurotensin: A new ‘reward peptide’. Brain Res., 1984, 291(1), 119-124.
[http://dx.doi.org/10.1016/0006-8993(84)90657-7] [PMID: 6320951]
[121]
Woodworth, H.L.; Beekly, B.G.; Batchelor, H.M.; Bugescu, R.; Perez-Bonilla, P.; Schroeder, L.E.; Leinninger, G.M. Lateral hypothalamic neurotensin neurons orchestrate dual weight loss behaviors via distinct mechanisms. Cell Rep., 2017, 21(11), 3116-3128.
[http://dx.doi.org/10.1016/j.celrep.2017.11.068] [PMID: 29241540]
[122]
Wölk, E.; Stengel, A.; Schaper, S.J.; Rose, M.; Hofmann, T. Neurotensin and xenin show positive correlations with perceived stress, anxiety, depressiveness and eating disorder symptoms in female obese patients. Front. Behav. Neurosci., 2021, 15, 629729.
[http://dx.doi.org/10.3389/fnbeh.2021.629729] [PMID: 33664656]
[123]
Weiwei, Z.; Yan, Y.; Xiaohuan, G. Samuel In-young, K.; Ryan, C.; Modupe, L.; Thomas A, D.; Ling, W.; Shan, P.Y. Neuropsychological deficits chronically developed after focal ischemic stroke and beneficial effects of pharmacological hypothermia in the mouse. Aging Dis., 2020, 11(1), 1-16.
[http://dx.doi.org/10.14336/AD.2019.0507] [PMID: 32010477]
[124]
Li, Z.; Boules, M.; Williams, K.; Gordillo, A.; Li, S.; Richelson, E. Similarities in the behavior and molecular deficits in the frontal cortex between the neurotensin receptor subtype 1 knockout mice and chronic phencyclidine-treated mice: Relevance to schizophrenia. Neurobiol. Dis., 2010, 40(2), 467-477.
[http://dx.doi.org/10.1016/j.nbd.2010.07.011] [PMID: 20659557]
[125]
Carey, L.M.; Rice, R.J.; Prus, A.J. The neurotensin NTS1 receptor Agonist PD149163 produces antidepressant-like effects in the forced swim test: further support for neurotensin as a novel pharmacologic strategy for antidepressant drugs. Drug Dev. Res., 2017, 78(5), 196-202.
[http://dx.doi.org/10.1002/ddr.21393] [PMID: 28736839]
[126]
Mazella, J.; Borsotto, M.; Heurteaux, C. The involvement of sortilin/NTSR3 in depression as the progenitor of spadin and its role in the membrane expression of TREK-1. Front. Pharmacol., 2019, 9, 1541.
[http://dx.doi.org/10.3389/fphar.2018.01541] [PMID: 30670975]
[127]
Chen, S.; Gao, C.; Lv, Q.; Zhao, M.; Qin, X.; Liao, H. Sortilin deletion in the prefrontal cortex and hippocampus ameliorates depressive-like behaviors in mice via regulating ASM/ceramide signaling. Acta Pharmacol. Sin., 2022, 43(8), 1940-1954.
[http://dx.doi.org/10.1038/s41401-021-00823-0] [PMID: 34931016]
[128]
Ruan, C.S.; Yang, C.R.; Li, J.Y.; Luo, H.Y.; Bobrovskaya, L.; Zhou, X.F. Mice with Sort1 deficiency display normal cognition but elevated anxiety-like behavior. Exp. Neurol., 2016, 281, 99-108.
[http://dx.doi.org/10.1016/j.expneurol.2016.04.015] [PMID: 27118371]
[129]
Biggins, J.A.; Perry, E.K.; McDermott, J.R.; Smith, A.I.; Perry, R.H.; Edwardson, J.A. Post mortem levels of thyrotropin-releasing hormone and neurotensin in the amygdala in Alzheimer’s disease, schizophrenia and depression. J. Neurol. Sci., 1983, 58(1), 117-122.
[http://dx.doi.org/10.1016/0022-510X(83)90114-4] [PMID: 6405015]
[130]
Nemeroff, C.B.; Bissette, G.; Widerlov, E.; Beckmann, H.; Gerner, R.; Manberg, P.J.; Lindstrom, L.; Prange, A.J., Jr; Gattaz, W.F. Neurotensin-like immunoreactivity in cerebrospinal fluid of patients with schizophrenia, depression, anorexia nervosa-bulimia, and premenstrual syndrome. J. Neuropsychiatry Clin. Neurosci., 1989, 1(1), 16-20.
[http://dx.doi.org/10.1176/jnp.1.1.16] [PMID: 2577718]
[131]
Kim, D.J.; Blossom, S.J.; Delgado, P.L.; Carbajal, J.M.; Cáceda, R. Examination of pain threshold and neuropeptides in patients with acute suicide risk. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 95, 109705.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109705] [PMID: 31326514]
[132]
Liu, Y.; Qu, H.Q.; Chang, X.; Qu, J.; Mentch, F.D.; Nguyen, K.; Tian, L.; Glessner, J.; Sleiman, P.M.A.; Hakonarson, H. Mutation burden analysis of six common mental disorders in African Americans by whole genome sequencing. Hum. Mol. Genet., 2022, 31(22), 3769-3776.
[http://dx.doi.org/10.1093/hmg/ddac129] [PMID: 35642741]
[133]
Buttenschøn, H.N.; Demontis, D.; Kaas, M.; Elfving, B.; Mølgaard, S.; Gustafsen, C.; Kaerlev, L.; Petersen, C.M.; Børglum, A.D.; Mors, O.; Glerup, S. Increased serum levels of sortilin are associated with depression and correlated with BDNF and VEGF. Transl. Psychiatry, 2015, 5(11), e677-e677.
[http://dx.doi.org/10.1038/tp.2015.167] [PMID: 26556286]
[134]
Roulot, M.; Minelli, A.; Bortolomasi, M.; Maffioletti, E.; Gennarelli, M.; Borsotto, M.; Heurteaux, C.; Mazella, J. Increased serum levels of sortilin-derived propeptide after electroconvulsive therapy in treatment-resistant depressed patients. Neuropsychiatr. Dis. Treat., 2018, 14, 2307-2312.
[http://dx.doi.org/10.2147/NDT.S170165] [PMID: 30233189]
[135]
van der Kolk, B. Posttraumatic stress disorder and the nature of trauma. Dialogues Clin. Neurosci., 2000, 2(1), 7-22.
[http://dx.doi.org/10.31887/DCNS.2000.2.1/bvdkolk] [PMID: 22034447]
[136]
Yehuda, R.; Giller, E.L.; Southwick, S.M.; Lowy, M.T.; Mason, J.W. Hypothalamic-pituitary-adrenal dysfunction in posttraumatic stress disorder. Biol. Psychiatry, 1991, 30(10), 1031-1048.
[http://dx.doi.org/10.1016/0006-3223(91)90123-4] [PMID: 1661614]
[137]
Chitrala, K.N.; Nagarkatti, P.; Nagarkatti, M. Prediction of possible biomarkers and novel pathways conferring risk to post-traumatic stress disorder. PLoS One, 2016, 11(12), e0168404.
[http://dx.doi.org/10.1371/journal.pone.0168404] [PMID: 27997584]
[138]
Algamal, M.; Ojo, J.O.; Lungmus, C.P.; Muza, P.; Cammarata, C.; Owens, M.J.; Mouzon, B.C.; Diamond, D.M.; Mullan, M.; Crawford, F. Chronic hippocampal abnormalities and blunted HPA axis in an animal model of repeated unpredictable stress. Front. Behav. Neurosci., 2018, 12, 150.
[http://dx.doi.org/10.3389/fnbeh.2018.00150] [PMID: 30079015]
[139]
Maes, M.; Lin, A.H.; Bonaccorso, S.; Goossens, F.; Van Gastel, A.; Pioli, R.; Delmeire, L.; Scharpé, S. Higher serum prolyl endopeptidase activity in patients with post-traumatic stress disorder. J. Affect. Disord., 1999, 53(1), 27-34.
[http://dx.doi.org/10.1016/S0165-0327(98)00086-X] [PMID: 10363664]
[140]
Kim, J.; Zhang, X.; Muralidhar, S.; LeBlanc, S.A.; Tonegawa, S. Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron, 2017, 93(6), 1464-1479.e5.
[http://dx.doi.org/10.1016/j.neuron.2017.02.034] [PMID: 28334609]
[141]
Ben-Zion, Z.; Shany, O.; Admon, R.; Keynan, N.J.; Avisdris, N.; Balter, S.R.; Shalev, A.Y.; Liberzon, I.; Hendler, T. Neural responsivity to reward versus punishment shortly after trauma predicts long-term development of posttraumatic stress symptoms. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2022, 7(2), 150-161.
[http://dx.doi.org/10.1016/j.bpsc.2021.09.001] [PMID: 34534702]
[142]
Torruella-Suárez, M.L.; Vandenberg, J.R.; Cogan, E.S.; Tipton, G.J.; Teklezghi, A.; Dange, K.; Patel, G.K.; McHenry, J.A.; Hardaway, J.A.; Kantak, P.A.; Crowley, N.A.; DiBerto, J.F.; Faccidomo, S.P.; Hodge, C.W.; Stuber, G.D.; McElligott, Z.A. Manipulations of central amygdala neurotensin neurons alter the consumption of ethanol and sweet fluids in mice. J. Neurosci., 2020, 40(3), 632-647.
[http://dx.doi.org/10.1523/JNEUROSCI.1466-19.2019] [PMID: 31744862]
[143]
Li, H.; Namburi, P.; Olson, J.M.; Borio, M.; Lemieux, M.E.; Beyeler, A.; Calhoon, G.G.; Hitora-Imamura, N.; Coley, A.A.; Libster, A.; Bal, A.; Jin, X.; Wang, H.; Jia, C.; Choudhury, S.R.; Shi, X.; Felix-Ortiz, A.C.; de la Fuente, V.; Barth, V.P.; King, H.O.; Izadmehr, E.M.; Revanna, J.S.; Batra, K.; Fischer, K.B.; Keyes, L.R.; Padilla-Coreano, N.; Siciliano, C.A.; McCullough, K.M.; Wichmann, R.; Ressler, K.J.; Fiete, I.R.; Zhang, F.; Li, Y.; Tye, K.M. Neurotensin orchestrates valence assignment in the amygdala. Nature, 2022, 608(7923), 586-592.
[http://dx.doi.org/10.1038/s41586-022-04964-y] [PMID: 35859170]
[144]
László, K.; Tóth, K.; Kertes, E.; Péczely, L.; Lénárd, L. The role of neurotensin in positive reinforcement in the rat central nucleus of amygdala. Behav. Brain Res., 2010, 208(2), 430-435.
[http://dx.doi.org/10.1016/j.bbr.2009.12.022] [PMID: 20035801]
[145]
Rouibi, K.; Bose, P.; Rompré, P.P.; Warren, R.A. Ventral midbrain NTS1 receptors mediate conditioned reward induced by the neurotensin analog, D-Tyr[11]neurotensin. Front. Neurosci., 2015, 9, 470.
[http://dx.doi.org/10.3389/fnins.2015.00470] [PMID: 26733785]
[146]
Ollmann, T.; Péczely, L.; László, K.; Kovács, A.; Gálosi, R.; Berente, E.; Karádi, Z.; Lénárd, L. Positive reinforcing effect of neurotensin microinjection into the ventral pallidum in conditioned place preference test. Behav. Brain Res., 2015, 278, 470-475.
[http://dx.doi.org/10.1016/j.bbr.2014.10.021] [PMID: 25447302]
[147]
Zoellner, L.A.; Ojalehto, H.J.; Rosencrans, P.; Walker, R.W.; Garcia, N.M.; Sheikh, I.S. Anxiety and fear in PTSD. Emotion in posttraumatic stress disorder: Etiology, assessment, neurobiology, and treatment; Elsevier Academic Press: San Diego, CA, US, 2020, pp. 43-63.
[http://dx.doi.org/10.1016/B978-0-12-816022-0.00002-8]
[148]
Maeng, L.Y.; Milad, M.R. Post-traumatic stress disorder: the relationship between the fear response and chronic stress. Chronic Stress (Thousand Oaks), 2017, 1.
[http://dx.doi.org/10.1177/2470547017713297] [PMID: 32440579]
[149]
McCullough, K.M.; Morrison, F.G.; Hartmann, J.; Carlezon, W.A., Jr; Ressler, K.J. Quantified coexpression analysis of central amygdala subpopulations. eNeuro, 2018, 5(1)
[150]
Shilling, P.; Feifel, D. The neurotensin-1 receptor agonist PD149163 blocks fear-potentiated startle. Pharmacol. Biochem. Behav., 2008, 90(4), 748-752.
[http://dx.doi.org/10.1016/j.pbb.2008.05.025] [PMID: 18577396]
[151]
Yamada, D.; Wada, E.; Amano, T.; Wada, K.; Sekiguchi, M. Lack of neurotensin type 1 receptor facilitates contextual fear memory depending on the memory strength. Pharmacol. Biochem. Behav., 2010, 96(3), 363-369.
[http://dx.doi.org/10.1016/j.pbb.2010.06.007] [PMID: 20600248]
[152]
Yamauchi, R.; Wada, E.; Yamada, D.; Yoshikawa, M.; Wada, K. Effect of β-lactotensin on acute stress and fear memory. Peptides, 2006, 27(12), 3176-3182.
[http://dx.doi.org/10.1016/j.peptides.2006.08.009] [PMID: 17000030]
[153]
Yamauchi, R.; Wada, E.; Kamichi, S.; Yamada, D.; Maeno, H.; Delawary, M.; Nakazawa, T.; Yamamoto, T.; Wada, K. Neurotensin type 2 receptor is involved in fear memory in mice. J. Neurochem., 2007, 102(5), 1669-1676.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04805.x] [PMID: 17697051]
[154]
McCullough, K.M.; Choi, D.; Guo, J.; Zimmerman, K.; Walton, J.; Rainnie, D.G.; Ressler, K.J. Molecular characterization of Thy1 expressing fear-inhibiting neurons within the basolateral amygdala. Nat. Commun., 2016, 7(1), 13149.
[http://dx.doi.org/10.1038/ncomms13149] [PMID: 27767183]
[155]
Zhou, Y.; McNeil, D.W.; Haworth, S.; Dudding, T.; Chernus, J.M.; Liu, C.; Liu, D.; Wright, C.D.; Brumbaugh, J.; Randall, C.L.; Weyant, R.J.; Crout, R.J.; Foxman, B.; Reis, S.; Timpson, N.J.; Marazita, M.L.; Shaffer, J.R. Genome-wide scan of dental fear and anxiety nominates novel genes. J. Dent. Res., 2022, 101(12), 1526-1536.
[http://dx.doi.org/10.1177/00220345221105226] [PMID: 35771046]
[156]
Becker, H.C. Influence of stress associated with chronic alcohol exposure on drinking. Neuropharmacology, 2017, 122, 115-126.
[http://dx.doi.org/10.1016/j.neuropharm.2017.04.028] [PMID: 28431971]
[157]
Mcclearn, G.E.; Kakihana, R. Selective breeding for ethanol sensitivity in mice. Behav. Genet., 1973, 3(4), 409-410.
[158]
Dowell, R.; Odell, A.; Richmond, P.; Malmer, D.; Halper-Stromberg, E.; Bennett, B.; Larson, C.; Leach, S.; Radcliffe, R.A. Genome characterization of the selected long- and short-sleep mouse lines. Mamm. Genome, 2016, 27(11-12), 574-586.
[http://dx.doi.org/10.1007/s00335-016-9663-6] [PMID: 27651241]
[159]
Widdowson, P.S. The effect of neurotensin, TRH and the δ-opioid receptor antagonist ICI 174864 on alcohol-induced narcosis in rats. Brain Res., 1987, 424(2), 281-289.
[http://dx.doi.org/10.1016/0006-8993(87)91472-7] [PMID: 2823997]
[160]
Luttinger, D.; Nemeroff, C.B.; Mason, G.A.; Frye, G.D.; Breese, G.R.; Prange, A.J., Jr Enhancement of ethanol-induced sedation and hypothermia by centrally administered neurotensin, β-endorphin and bombesin. Neuropharmacology, 1981, 20(3), 305-309.
[http://dx.doi.org/10.1016/0028-3908(81)90139-8] [PMID: 6267506]
[161]
Erwin, V.G.; Korte, A.; Marty, M. Neurotensin selectively alters ethanol-induced anesthesia in LS/Ibg and SS/Ibg lines of mice. Brain Res., 1987, 400(1), 80-90.
[http://dx.doi.org/10.1016/0006-8993(87)90655-X] [PMID: 2949796]
[162]
Gene, E.V.; Jones, B.C. Comparison of neurotensin levels, receptors and actions in LS/Ibg and SS/Ibg mice. Peptides, 1989, 10(2), 435-440.
[http://dx.doi.org/10.1016/0196-9781(89)90055-7] [PMID: 2547208]
[163]
Erwin, V.G.; Jones, B.C.; Radcliffe, R. Low doses of ethanol reduce neurotensin levels in discrete brain regions from LS/Ibg and SS/Ibg mice. Alcohol. Clin. Exp. Res., 1990, 14(1), 42-47.
[http://dx.doi.org/10.1111/j.1530-0277.1990.tb00444.x] [PMID: 2178471]
[164]
Boileau, I.; Assaad, J.M.; Pihl, R.O.; Benkelfat, C.; Leyton, M.; Diksic, M.; Tremblay, R.E.; Dagher, A. Alcohol promotes dopamine release in the human nucleus accumbens. Synapse, 2003, 49(4), 226-231.
[http://dx.doi.org/10.1002/syn.10226] [PMID: 12827641]
[165]
Erwin, G.; Campbell, A.D.; Radcliffe, R. Effects of chronic ethanol administration on neurotensinergic processes: Correlations with tolerance in LS and SS mice. Ann. N. Y. Acad. Sci., 1992, 654(1), 441-443.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb25992.x] [PMID: 1321578]
[166]
Ehlers, C.L.; Somes, C.; Li, T.K.; Lumeng, L.; Kinkead, B.; Owens, M.J.; Nemeroff, C.B. Neurotensin studies in alcohol naive, preferring and non-preferring rats. Neuroscience, 1999, 93(1), 227-236.
[http://dx.doi.org/10.1016/S0306-4522(99)00113-X] [PMID: 10430486]
[167]
Lee, M.R.; Hinton, D.J.; Song, J.Y.; Lee, K.W.; Choo, C.; Johng, H.; Unal, S.S.; Richelson, E.; Choi, D.S. Neurotensin receptor type 1 regulates ethanol intoxication and consumption in mice. Pharmacol. Biochem. Behav., 2010, 95(2), 235-241.
[http://dx.doi.org/10.1016/j.pbb.2010.01.012] [PMID: 20122953]
[168]
Campbell, A.D.; Jones, B.C.; Erwin, V.G. Regional characterization of brain neurotensin receptor subtypes in LS and SS mice. Alcohol. Clin. Exp. Res., 1991, 15(6), 1011-1017.
[http://dx.doi.org/10.1111/j.1530-0277.1991.tb05203.x] [PMID: 1686369]
[169]
Campbell, A.D.; Gene Erwin, V. Chronic ethanol administration downregulates neurotensin receptors in long- and short-sleep mice. Pharmacol. Biochem. Behav., 1993, 45(1), 95-106.
[http://dx.doi.org/10.1016/0091-3057(93)90092-8] [PMID: 8100076]
[170]
Erwin, V.G. Chapter 10 Neurotensin: A potential mediator of ethanol actions. In: Pharmacological Effects of Ethanol on the Nervous System edited by Richard A Deitrich; 1st edition; CRC Press, 1995; p. 163-173.
[171]
Erwin, V.G.; Markel, P.D.; Johnson, T.E.; Gehle, V.M.; Jones, B.C. Common quantitative trait loci for alcohol-related behaviors and central nervous system neurotensin measures: Hypnotic and hypothermic effects. J. Pharmacol. Exp. Ther., 1997, 280(2), 911-918.
[PMID: 9023306]
[172]
Gehle, V.M.; Erwin, V.G. Common quantitative trait loci for alcohol-related behaviors and CNS neurotensin measures: voluntary ethanol consumption. Alcohol. Clin. Exp. Res., 1998, 22(2), 401-408.
[http://dx.doi.org/10.1097/00000374-199804000-00016] [PMID: 9581646]
[173]
Lee, M.R.; Hinton, D.J.; Unal, S.S.; Richelson, E.; Choi, D.S. Increased ethanol consumption and preference in mice lacking neurotensin receptor type 2. Alcohol. Clin. Exp. Res., 2011, 35(1), 99-107.
[http://dx.doi.org/10.1111/j.1530-0277.2010.01326.x] [PMID: 21039631]
[174]
Pandey, S.; Barson, J.R. Heightened exploratory behavior following chronic excessive ethanol drinking: Mediation by neurotensin receptor type 2 in the anterior paraventricular thalamus. Alcohol. Clin. Exp. Res., 2020, 44(9), 1747-1759.
[http://dx.doi.org/10.1111/acer.14406] [PMID: 32623746]
[175]
Ma, H.; Huang, Y.; Zhang, B.; Wang, Y.; Zhao, H.; Du, H.; Cong, Z.; Li, J.; Zhu, G. Association between neurotensin receptor 1 gene polymorphisms and alcohol dependence in a male Han Chinese population. J. Mol. Neurosci., 2013, 51(2), 408-415.
[http://dx.doi.org/10.1007/s12031-013-0041-5] [PMID: 23743782]
[176]
Perron, A.; Sharif, N.; Sarret, P.; Stroh, T.; Beaudet, A. NTS2 modulates the intracellular distribution and trafficking of NTS1 via heterodimerization. Biochem. Biophys. Res. Commun., 2007, 353(3), 582-590.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.062] [PMID: 17188644]
[177]
Liang, Y.; Boules, M.; Li, Z.; Williams, K.; Miura, T.; Oliveros, A.; Richelson, E. Hyperactivity of the dopaminergic system in NTS1 and NTS2 null mice. Neuropharmacology, 2010, 58(8), 1199-1205.
[http://dx.doi.org/10.1016/j.neuropharm.2010.02.015] [PMID: 20211191]
[178]
Zhou, L.; Xiong, J.; Ruan, C.S.; Ruan, Y.; Liu, D.; Bao, J.J.; Zhou, X.F. ProBDNF/p75NTR/sortilin pathway is activated in peripheral blood of patients with alcohol dependence. Transl. Psychiatry, 2018, 7(11), 2.
[http://dx.doi.org/10.1038/s41398-017-0015-4] [PMID: 29520063]
[179]
Zhou, L.; Xiong, J.; Gao, C.; Bao, J.; Zhou, X. Early alcohol withdrawal reverses the abnormal levels of proBDNF/mBDNF and their receptors. Res. Square, 2021, 337394. https://www.researchsquare.com/article/rs-337394/v1
[http://dx.doi.org/10.21203/rs.3.rs-337394/v1]
[180]
Sinha, R. Chronic stress, drug use, and vulnerability to addiction. Ann. N. Y. Acad. Sci., 2008, 1141(1), 105-130.
[http://dx.doi.org/10.1196/annals.1441.030] [PMID: 18991954]
[181]
Rompré, P.P.; Perron, S. Evidence for a role of endogenous neurotensin in the initiation of amphetamine sensitization. Neuropharmacology, 2000, 39(10), 1880-1892.
[http://dx.doi.org/10.1016/S0028-3908(99)00269-5] [PMID: 10884569]
[182]
Panayi, F.; Dorso, E.; Lambás-Señas, L.; Renaud, B.; Scarna, H.; Bérod, A. Chronic blockade of neurotensin receptors strongly reduces sensitized, but not acute, behavioral response to D-amphetamine. Neuropsychopharmacology, 2002, 26(1), 64-74.
[http://dx.doi.org/10.1016/S0893-133X(01)00354-2] [PMID: 11751033]
[183]
Blackburn, A.; Dewar, K.; Bauco, P.; Rompré, P.P. Excitotoxic lesions of the prefrontal cortex attenuate the potentiation of amphetamine-induced locomotion by repeated neurotensin receptor activation. Brain Res., 2004, 998(2), 184-193.
[http://dx.doi.org/10.1016/j.brainres.2003.11.022] [PMID: 14751589]
[184]
Dominguez-Lopez, S.; Piccart, E.; Lynch, W.B.; Wollet, M.B.; Sharpe, A.L.; Beckstead, M.J. Antagonism of neurotensin receptors in the ventral tegmental area decreases methamphetamine self-administration and methamphetamine seeking in mice. Int. J. Neuropsychopharmacol., 2018, 21(4), 361-370.
[http://dx.doi.org/10.1093/ijnp/pyx117] [PMID: 29272412]
[185]
Dominguez-Lopez, S.; Sharma, R.; Beckstead, M.J. Neurotensin receptor 1 deletion decreases methamphetamine self‐administration and the associated reduction in dopamine cell firing. Addict. Biol., 2021, 26(1), e12854.
[http://dx.doi.org/10.1111/adb.12854] [PMID: 31742874]
[186]
Sharpe, A.L.; Varela, E.; Beckstead, M.J. Systemic PD149163, a neurotensin receptor 1 agonist, decreases methamphetamine self-administration in DBA/2J mice without causing excessive sedation. PLoS One, 2017, 12(7), e0180710.
[http://dx.doi.org/10.1371/journal.pone.0180710] [PMID: 28686721]
[187]
Barak, L.S.; Bai, Y.; Peterson, S.; Evron, T.; Urs, N.M.; Peddibhotla, S.; Hedrick, M.P.; Hershberger, P.; Maloney, P.R.; Chung, T.D.Y.; Rodriguiz, R.M.; Wetsel, W.C.; Thomas, J.B.; Hanson, G.R.; Pinkerton, A.B.; Caron, M.G. ML314: A biased neurotensin receptor ligand for methamphetamine abuse. ACS Chem. Biol., 2016, 11(7), 1880-1890.
[http://dx.doi.org/10.1021/acschembio.6b00291] [PMID: 27119457]
[188]
Slosky, L.M. Bai, Y.; Toth, K.; Ray, C.; Rochelle, L.K.; Badea, A.; Chandrasekhar, R.; Pogorelov, V.M.; Abraham, D.M.; Atluri, N.; Peddibhotla, S.; Hedrick, M.P.; Hershberger, P.; Maloney, P.; Yuan, H.; Li, Z.; Wetsel, W.C.; Pinkerton, A.B.; Barak, L.S.; Caron, M.G. β-Arrestin-biased allosteric modulator of NTSR1 selectively attenuates addictive behaviors. Cell, 2020, 181(6), 1364-1379.e14.
[http://dx.doi.org/10.1016/j.cell.2020.04.053] [PMID: 32470395]
[189]
Rompré, P.P.; Bauco, P. Neurotensin receptor activation sensitizes to the locomotor stimulant effect of cocaine: A role for NMDA receptors. Brain Res., 2006, 1085(1), 77-86.
[http://dx.doi.org/10.1016/j.brainres.2006.02.011] [PMID: 16574078]
[190]
Hall, F.S.; Centeno, M.; Perona, M.T.G.; Adair, J.; Dobner, P.R.; Uhl, G.R. Effects of neurotensin gene knockout in mice on the behavioral effects of cocaine. Psychopharmacology (Berl.), 2012, 219(1), 35-45.
[http://dx.doi.org/10.1007/s00213-011-2370-9] [PMID: 21720755]
[191]
Felszeghy, K.; Espinosa, J.M.; Scarna, H.; Bérod, A.; Rostène, W.; Pélaprat, D. Neurotensin receptor antagonist administered during cocaine withdrawal decreases locomotor sensitization and conditioned place preference. Neuropsychopharmacology, 2007, 32(12), 2601-2610.
[http://dx.doi.org/10.1038/sj.npp.1301382] [PMID: 17356568]
[192]
Chou, S.; Davis, C.; Jones, S.; Li, M. Repeated effects of the neurotensin receptor agonist PD149163 in three animal tests of antipsychotic activity: Assessing for tolerance and cross-tolerance to clozapine. Pharmacol. Biochem. Behav., 2015, 128, 78-88.
[http://dx.doi.org/10.1016/j.pbb.2014.11.015] [PMID: 25433325]
[193]
Holly, E.N.; Ebrecht, B.; Prus, A.J. The neurotensin-1 receptor agonist PD149163 inhibits conditioned avoidance responding without producing catalepsy in rats. Eur. Neuropsychopharmacol., 2011, 21(7), 526-531.
[http://dx.doi.org/10.1016/j.euroneuro.2010.12.004] [PMID: 21277173]
[194]
Levran, O.; Peles, E.; Randesi, M.; Correa da Rosa, J.; Ott, J.; Rotrosen, J.; Adelson, M.; Kreek, M.J. Synaptic plasticity and signal transduction gene polymorphisms and vulnerability to drug addictions in populations of european or african ancestry. CNS Neurosci. Ther., 2015, 21(11), 898-904.
[http://dx.doi.org/10.1111/cns.12450] [PMID: 26384852]
[195]
Pomrenze, M.B.; Giovanetti, S.M.; Maiya, R.; Gordon, A.G.; Kreeger, L.J.; Messing, R.O. Dissecting the roles of GABA and neuropeptides from rat central amygdala CRF neurons in anxiety and fear learning. Cell Rep., 2019, 29(1), 13-21.e4.
[http://dx.doi.org/10.1016/j.celrep.2019.08.083] [PMID: 31577943]
[196]
Chatzaki, E.; Minas, V.; Zoumakis, E.; Makrigiannakis, A. CRF receptor antagonists: utility in research and clinical practice. Curr. Med. Chem., 2006, 13(23), 2751-2760.
[http://dx.doi.org/10.2174/092986706778521977] [PMID: 17073626]
[197]
Baritaki, S.; de Bree, E.; Chatzaki, E.; Pothoulakis, C. Chronic stress, inflammation, and colon cancer: A CRH system-driven molecular crosstalk. J. Clin. Med., 2019, 8(10), 1669.
[http://dx.doi.org/10.3390/jcm8101669] [PMID: 31614860]
[198]
Nicot, A.; Rowe, W.B.; De Kloet, E.R.; Betancur, C.; Jessop, D.S.; Lightman, S.L.; Quirion, R.; Rostène, W.; Bérod, A. Endogenous neurotensin regulates hypothalamic-pituitary-adrenal axis activity and peptidergic neurons in the rat hypothalamic paraventricular nucleus. J. Neuroendocrinol., 1997, 9(4), 263-269.
[http://dx.doi.org/10.1046/j.1365-2826.1997.00581.x] [PMID: 9147289]
[199]
Rowe, W.B.; Nicot, A.; Sharma, S.; Gully, D.; Walker, C.D.; Rostène, W.H.; Meaney, M.J.; Quirion, R. Central administration of the neurotensin receptor antagonist, SR48692, modulates diurnal and stress-related hypothalamic-pituitary-adrenal activity. Neuroendocrinology, 1997, 66(2), 75-85.
[http://dx.doi.org/10.1159/000127223] [PMID: 9263204]
[200]
Asok, A.; Draper, A.; Hoffman, A.F.; Schulkin, J.; Lupica, C.R.; Rosen, J.B. Optogenetic silencing of a corticotropin-releasing factor pathway from the central amygdala to the bed nucleus of the stria terminalis disrupts sustained fear. Mol. Psychiatry, 2018, 23(4), 914-922.
[http://dx.doi.org/10.1038/mp.2017.79] [PMID: 28439099]
[201]
Leinninger, G.M.; Opland, D.M.; Jo, Y.H.; Faouzi, M.; Christensen, L.; Cappellucci, L.A.; Rhodes, C.J.; Gnegy, M.E.; Becker, J.B.; Pothos, E.N.; Seasholtz, A.F.; Thompson, R.C.; Myers, M.G., Jr Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab., 2011, 14(3), 313-323.
[http://dx.doi.org/10.1016/j.cmet.2011.06.016] [PMID: 21907138]
[202]
Carraway, R.; Leeman, S.E. The amino acid sequence of a hypothalamic peptide, neurotensin. J. Biol. Chem., 1975, 250(5), 1907-1911.
[http://dx.doi.org/10.1016/S0021-9258(19)41780-8] [PMID: 1167549]
[203]
Webster, E.L.; Elenkov, I.J.; Chrousos, G.P. Corticotropin-releasing hormone acts on immune cells to elicit pro-inflammatory responses. Mol. Psychiatry, 1997, 2(5), 345-346.
[http://dx.doi.org/10.1038/sj.mp.4000314] [PMID: 9322220]
[204]
Alysandratos, K.D.; Asadi, S.; Angelidou, A.; Zhang, B.; Sismanopoulos, N.; Yang, H.; Critchfield, A.; Theoharides, T.C. Neurotensin and CRH interactions augment human mast cell activation. PLoS One, 2012, 7(11), e48934.
[http://dx.doi.org/10.1371/journal.pone.0048934] [PMID: 23155429]
[205]
Castagliuolo, I.; Leeman, S.E.; Bartolak-Suki, E.; Nikulasson, S.; Qiu, B.; Carraway, R.E.; Pothoulakis, C. A neurotensin antagonist, SR 48692, inhibits colonic responses to immobilization stress in rats. Proc. Natl. Acad. Sci. USA, 1996, 93(22), 12611-12615.
[http://dx.doi.org/10.1073/pnas.93.22.12611] [PMID: 8901630]
[206]
Kempuraj, D.; Selvakumar, G.P.; Thangavel, R.; Ahmed, M.E.; Zaheer, S.; Raikwar, S.P.; Iyer, S.S.; Bhagavan, S.M.; Beladakere-Ramaswamy, S.; Zaheer, A. Mast cell activation in brain injury, stress, and post-traumatic stress disorder and Alzheimer’s disease pathogenesis. Front. Neurosci., 2017, 11, 703.
[http://dx.doi.org/10.3389/fnins.2017.00703] [PMID: 29302258]
[207]
Mishra, A.; Singh, K.P. Neurotensin agonist PD 149163 modulates the neuroinflammation induced by bacterial endotoxin lipopolysaccharide in mice model. Immunopharmacol. Immunotoxicol., 2022, 44(2), 216-226.
[http://dx.doi.org/10.1080/08923973.2022.2037628] [PMID: 35166614]
[208]
Theoharides, T.C.; Tsilioni, I.; Patel, A.B.; Doyle, R. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Transl. Psychiatry, 2016, 6(6), e844.
[http://dx.doi.org/10.1038/tp.2016.77] [PMID: 27351598]
[209]
Donelan, J.; Boucher, W.; Papadopoulou, N.; Lytinas, M.; Papaliodis, D.; Dobner, P.; Theoharides, T.C. Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin-dependent process. Proc. Natl. Acad. Sci. USA, 2006, 103(20), 7759-7764.
[http://dx.doi.org/10.1073/pnas.0602210103] [PMID: 16682628]
[210]
Holmes, A.; Heilig, M.; Rupniak, N.M.J.; Steckler, T.; Griebel, G. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol. Sci., 2003, 24(11), 580-588.
[http://dx.doi.org/10.1016/j.tips.2003.09.011] [PMID: 14607081]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy